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ABSTRACT

An improved method for interpolating sparsely sampled climatological data onto a regular grid is shown. The
method uses the spatial and temporal covariance of the field, along with the sparse data, to fill the full grid.
This improves on similar methods that have recently been developed by eliminating the development of features
that are not sufficiently supported by the data (i.e., overfitting). Statistical tests are used to tune the method to
represent as much variability as the spatial–temporal information will support without overfitting. The method
is further improved by a data-checking procedure that detects and removes suspect data. The method is developed
and evaluated by interpolating tropical Pacific sea surface temperature (SST) monthly anomalies to a regular
grid for the 1856–1995 period. Ship data averaged to 58 squares are used as input and are interpolated to a
complete 18 grid. Comparing the results to interpolations using other methods shows this method’s quantitative
improvements where satellite data are available for validation. Comparisons in the presatellite era show sharper
and stronger anomaly patterns with this method, compared to another method developed for use with sparse
data. Also shown are several periods when data are so sparse that only very weak SST anomalies may be reliably
reconstructed in the tropical Pacific (i.e., before 1870 and 1915–25). In future research, the global SST and
possibly other climatological fields will be gridded using improved methods.

1. Introduction

Interpolation of historical climatological data onto a
regular grid is often necessary in order to use those data
for climate studies, and various interpolation techniques
have been developed. When data are sufficiently dense,
many techniques give almost identical results. Problems
arise when data become sparse and irregularly distrib-
uted. This problem has been addressed using the data’s
large-scale covariance structure as defined by a set of
empirical orthogonal functions (EOFs) (Rayner et al.
1995; Shriver and O’Brien 1995; Smith et al. 1996;
Kaplan et al. 1997a, Kaplan et al. 1997b, manuscripts
submitted to J. Geophys. Res., hereafter K97a, K97b).
Here we begin with the method of Smith et al. (1996,
hereafter SRLS), which was developed to grid sea sur-
face temperature (SST) anomalies for the period begin-
ning 1950. The post-1950 period was chosen because
there is moderate to good sampling in that period. With
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poor sampling, that approach can lead to overfitting er-
rors (i.e., generating large anomalies not supported by
the sparse observations). We show how to build onto
the method of SRLS to allow SST interpolation with
very sparse data. The new method prevents overfitting
with sparse data while slightly better representing vari-
ations supported by the available data.

The procedure is developed and tested using monthly
SST anomalies in the tropical Pacific Ocean (208S–208N
1558E–1058W), from January 1856 to October 1995.
Here, a limited region is used to develop the method
and show its improvements over previously used meth-
ods. The selected area is one of the most important for
studies of interannual variability, but also one of the
most difficult to produce gridded analyses for prior to
the satellite era. In future research the study area will
be enlarged. Data are supplied by the U.K. Meteoro-
logical Office (UKMO) and are an updated version of
the atlas of Bottomley et al. (1990). They consist of
averages of individual observations on 58 longitude–
latitude squares (58 superobservations). The UKMO
data are used in this study because they have already
been carefully bias corrected for the pre-1942 period,
when biased bucket temperatures are most common
(Parker et al. 1994; Folland and Parker 1995). Also, in
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the extremely data-sparse period before 1950, there is
little advantage gained by going from 58 superobser-
vations to higher-resolution superobservations, such as
the 28 Comprehensive Ocean–Atmosphere Data Set
(COADS) data (Slutz et al. 1985). With either size su-
perobservations, they will be sparsely distributed. For
these reasons, we decided to use the corrected 58 su-
perobservations from the UKMO. We form anomalies
(departures from norms) of these data using the cli-
matology of Reynolds and Smith (1995), and assign
each SST value to the center of its 58 square.

Spatial covariance is computed using the 18 resolution
monthly optimal interpolation (OI) of SST (Reynolds
and Smith 1994) for the 1982–95 period. The OI is an
accurate analysis of that period because of the use of
bias-corrected satellite data as well as in situ observa-
tions. This relatively brief and recent period may be
used because, as discussed below, we separately account
for interdecadial variations, and we also use the co-
variance to interpolate month-to-month SST increments
rather than the full anomaly. The full anomaly is then
computed by adding the interpolated increment to the
previous month’s analysis, with the interdecadal com-
ponent added on later. Results show that this approach
is justified. Interpolation of the full anomaly all in one
step requires a longer basis period to fully describe the
anomaly, which requires the use of lower quality basis
data. It also requires more dependence on the statistical
structure obtained from that lower quality data, because
anomalies are more complicated than monthly incre-
ments.

2. The method

A simple way to interpolate SST data that are rea-
sonably dense, such as after 1950 in the tropical Pacific,
is to use the method of SRLS,

M

T(n) 5 m(n) 1 w c (n), (1)O m m
m51

where T(n) is the SST anomaly analysis at location n,
m(n) is the low-frequency anomaly, cm the anomaly
EOF (for M modes), and wm is the weight for mode m.
Weights are computed for the set of modes to minimize
the mean-squared error (MSE) of the interpolated field
compared to the available observations, as discussed in
detail by SRLS. However, the method of SRLS cannot
be used with extremely sparse data, such as is often
encountered with SST before 1950. The method de-
scribed below was developed to overcome the limita-
tions of the SRLS method without taking away from its
strengths. There are several parts to the new interpo-
lation method, each described later as follows. Section
2a: Before interpolation, the low-frequency (decadal or
longer) SST anomaly is removed from the data, to be
added back on later. Removal of the low-frequency
anomaly is referred to as recentering the anomaly. Sec-

tion 2b: Data increments from the previous month’s re-
centered analysis (i.e., from the first guess, G) are in-
terpolated using the increment spatial covariance. This
1-month incremental correction is then added onto G to
form the recentered anomaly for the month. Temporal
information is included through the first guess. Rotated
covariance EOFs of monthly increments are used to
define the modes of spatial covariability. Section 2c:
Screening regression is used to ensure that only those
modes of spatial variability that are supported by the
available data are used, to avoid overfitting. Section 2d:
Modes of spatial variability that are not supported by
the available data are damped to avoid unsupported
anomaly persistence. Section 2e: A system for checking
data increments is developed to find and discard suspect
superobservations. Section 2f: These components are
used to obtain the anomaly analysis for each month. In
section 3 the statistical tuning of the method is dis-
cussed, which is needed to ensure the highest possible
accuracy.

The 58 superobservations are interpolated to a 18 reg-
ular grid by using 18 resolution EOFs. Although some
small-scale variations must be lost by the use of 58
superobservations, the use of 18 EOFs makes it possible
to reconstruct some sharp SST anomaly gradients as-
sociated with several leading EOFs. This approach as-
sumes that the 58 superobservations can be assigned to
the center of the 58 box. Results show that this as-
sumption does not cause large errors.

a. Removal of low-frequency anomalies

Separate interpolation of the very low frequency sig-
nal reduces the amount of variance that the statistical
interpolation must account for. Since decadal or longer
timescale SST anomalies describe large-scale variations
that can be estimated more directly from the available
SST observations (e.g., Parker et al. 1994), they can be
computed separately and removed from the data. With
those anomalies accounted for separately, the limited-
period but high quality OI SST data may be used to
more accurately estimate subdecadal spatial covariance.

As was shown by SRLS, separate interpolation of
low-frequency anomalies improves the interpolation ac-
curacy. The improvements in skill should be even great-
er when interpolating over the much longer period of
data used here, because the low-frequency signal is sub-
stantial over the .100-yr period. The low-frequency
anomaly is therefore computed and removed from the
58 superobservations before computation of statistics
and gridding. After interpolation, the low-frequency
anomaly is added back on.

Low-frequency anomalies are computed from a run-
ning mean of monthly UKMO anomalies optimally av-
eraged within 108 longitude–latitude squares. The op-
timal averaging (OA) method used here is similar to the
method described by Smith et al. (1994) and is described
in the appendix. Time series of the OA used here are
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FIG. 1. Area-average low-frequency anomalies in the tropical Pa-
cific (208S–208N, 1558E–1058W) from UKMO data, a 181-month
average period (8C), using the 108 OA superobservations and the raw
data anomalies (simple averaging).

similar to those shown by Smith et al. (1994) for the
same regions. A running mean with a length of about
14 yr is appropriate because that is the length of the
OI-basis period. We use a 15-yr (181 month) running
mean as a compromise that filters out interannual vari-
ations and is long enough to span some extremely sparse
data periods (e.g., 1913–23).

The OA-based 181-month running mean, averaged
over the entire tropical Pacific area (Fig. 1), has a gen-
erally upward trend over the period, similar to the run-
ning mean from simple averaging (i.e., area-weighted
averaging) of the available data. However, the OA-based
mean exhibits less artificial low-frequency variability
from sampling across extreme sparse-sampling periods
before 1880 and around 1915. For the first 90 months
of the record, the first available low-frequency anomaly
is used, and for the last 90 months of the record, the
last available low-frequency anomaly is used. For the
remainder of this study, it should be understood that the
58 superobservation anomalies are recentered by re-
moval of these low-frequency anomalies before statis-
tical interpolation, and that the low-frequency anomalies
are added back onto the interpolation afterwards.

b. Data increments

Data increments are computed for gridding to further
reduce the work that the EOF-based gridding scheme
must perform, by using information from the previous
month’s analysis to help form the recentered anomaly.
Because SST anomalies generally have decay times of
3–6 months (e.g., see SRLS), their 1-month increments
require less information to interpolate than the full
anomalies do. As discussed by Thiébaux (1997), this
technique can provide greater accuracy in practical sit-
uations when a statistical description of the increment

is available. That is the case with SST, due to the avail-
ability of the OI analysis. Data increments (or monthly
tendencies) are differences between the (recentered) 58
superobservation anomaly, D, and a first guess, G,

I(n) 5 D(n) 2 G(n). (2)

The increments, I, are defined at all data locations. Be-
cause the monthly SST anomalies have long timescales,
a slightly damped previous month’s analysis is used for
G. Damping of G is proportional to the 1-month lag
autocorrelation of anomalies and is discussed in detail
later. By using a first guess and interpolated increments,
temporal information is used in addition to the spatial
information, which is important when data are sparse.

By running the analysis backward in time, informa-
tion from the month after the analysis month is included.
Since the autocorrelation is equally valid in both direc-
tions, a backward run is as valid as a forward run. We
perform the analysis in both forward and backward di-
rections, and average the results to include time infor-
mation in both directions. The forward analysis uses an
initial first guess of zero anomaly, and the backward
analysis uses an initial first guess of the last forward
analysis.

To grid the data increments, a set of increment EOFs
are computed and varimax rotated. The increment EOFs
are computed from month-to-month SST anomaly dif-
ferences. Data used are the OI analysis, using all months
in the 1982–95 period. Increments are smaller than full
anomalies, so computation of increment covariance
structure requires accurate data such as the OI to prevent
noise from excessively contaminating the EOFs.

Rotated modes are generally more localized and more
closely resemble observed structures than unrotated
modes (Richman 1986) and, therefore, are preferred
when not all modes are always used. If all EOF modes
in a set were to be used always, then rotation would be
unnecessary. However, with sparse data not all modes
will always be sufficiently supported by the available
data, and therefore we will generally choose a subset
of the total for interpolation. Weights for the set of EOFs
supported by the data are computed using least squares
best-fit criteria. The computation of the weights is the
same as in SRLS except that only those supported modes
are used, while SRLS used all modes.

c. Screening regression

Screening regression is necessary in order to avoid
overfitting (i.e., using modes that are not supported by
the available data). Screening is a tool for choosing a
best set of predictors given a set of predictands, and for
interpolation it amounts to choosing the rotated EOF
modes that are supported by the monthly data. Using
modes that are not supported by the data would lead to
overfitting, which occurs when there are no data near
the strongest loadings of a mode and the weight for the
mode is entirely determined by data in weak-loading
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regions. Since the weight reflects the least squared best
fit only where data exist, a little noise in the data can
cause the unsupported mode to have a large weight in
order to better fit the noise in the weak-loading region.
However, the large weight would cause an unsupported
local maxima or minima at the locations where the
mode’s loadings are strongest (where there are no data).
Screening regression eliminates overfitting problems by
not using unsupported EOF modes in the fit.

To determine how well a mode is supported, we com-
pute for each mode m and for each set of data the vari-
able

N

2d c (n) cosfO n m n
n51f (m) 5 . (3)y N

2c (n) cosfO m n
n51

Here, the summations are over all N spatial points,
cosf n is the cosine of latitude f n, and dn is 1 if there
is an observation at point n, and 0 otherwise. The vari-
able f y (m) gives the fraction of the total variance of
mode m that is directly sampled. The minimum value
of f y (m) for acceptance of the mode ( ) is found byf*y
tuning, described below.

d. Damping of unsupported modes

As noted in section 2b, the first guess, G, is the pre-
vious month’s recentered anomaly slightly damped.
There is no need to damp that part of G that is supported
by the data at the analysis month, because that part of
the guess will be directly corrected by the data. In order
to damp only those parts of G that are not supported
by the data, the previous month’s (recentered) anomaly
analysis is projected onto the full set of increment EOFs.
Since the recentered anomalies are built up by a series
of increment fits, with an assumption of zero anomaly
first guess for the first analysis, projection of the anom-
alies onto the increment EOFs is justified and com-
pletely represents G. The previous month’s anomaly
analysis is defined at all points so there is no problem
with projecting it onto the full set of EOFs.

Thus, the first guess is

M

G(n) 5 [D 1 (1 2 D )c ]wg c (n), (4)O m m m m m
m51

where wgm is the weight for rotated increment EOF
mode cm, and cm is the 1-month lag autocorrelation of
the SST anomaly projected onto the increment EOF
mode cm. Here, the variable Dm 5 1 if mode cm is
supported by the data and 0 otherwise, as determined
from the data distribution using (3). Note that the
weights wgm are for the least squares best fit of the full
recentered anomaly from the previous month’s analysis,
but the EOFs cm are the same increment EOFs used to
grid the increments.

e. Data checking

Ship observations of SST tend to be extremely noisy
(Reynolds and Smith 1994). Since errors in the ship
observations will be represented in the interpolated anal-
ysis, it is highly desirable to remove as many question-
able 58 superobservations as possible. However, with
sparse data, care must be taken to avoid discarding any
superobservations that may represent real variations.

As an example of the sort of errors possible in the
superobservations, consider March 1985. In that month
the 58 superobservations of ship data show anomalies
between 118C and 148C in the eastern equatorial Pa-
cific. The size of the anomalies are physically realistic,
but the high quality OI analysis shows negative anom-
alies in the same region. Buoy data also show negative
anomalies in the region. The ship-based 58 superobser-
vation anomalies are positive only for a few months,
and then rapidly switch to negative anomalies consistent
with the OI and the buoy data. Clearly, this is a case
of erroneous ship reports (either instrument or ship-po-
sition errors). The problem is that for most of the ship-
data record there is no higher quality analysis with
which to compare the ship-based superobservations.

One way to detect physically unrealistic reports is to
examine their month-to-month variability. In regions
where the reported SST anomaly changes more rapidly
than is physically reasonable, it can be assumed that
there is an error. The undamped anomaly increments are
therefore checked for all data, and data that are found
to change too rapidly are not used in the statistical in-
terpolation.

The OI anomaly 1-month increment standard devia-
tion (sI) is computed at all spatial points. The range of
sI in the tropical Pacific is approximately 0.258–0.758C,
with largest values in the eastern equatorial Pacific
where changes in upwelling can force rapid SST vari-
ations. Absolute increments from the undamped pre-
vious month’s analysis, Tt21(n), are therefore computed,

IA(n) 5 |Dt(n) 2 Tt21(n)|, (5)

and compared to AsI. Here A is an amplitude to be
preset (e.g., 3 or 4). If IA(n) . AsI(n), then Dt(n) is
rejected. Tuning, described below, is used to find the
optimal amplitude A.

Although the 58 superobservations have undergone
rough quality control in their development (Bottomley
et al. 1990), the example cited above shows the need
for further data checking. The data-checking method
outlined here removes the most suspect superobserva-
tions through a spatial–temporal consistency check.
Since SST anomalies normally do not change rapidly
from month to month, this approach is justified. How-
ever, only consistency with analyses based on other su-
perobservations can be checked, and therefore situations
involving systematic errors over a region or in two or
more months are very difficult to find.
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f. The complete interpolation method

After the data are checked for outliers, screening re-
gression is applied to find which modes are supported
by the remaining data (to define D) and then the first-
guess weights (wg) and the damped first guess (G) are
computed. The increments from G are computed and
the weights for the increment gridding (w) are deter-
mined for the supported modes. Adding the damped first
guess to the interpolated increment yields the full re-
centered interpolated SST anomaly analysis,

M

Tr (n) 5 c (n)[D (w 1 wg ) 1 (1 2 D )c wg ].Ot m m m m m m m
m51

(6)

Adding the low-frequency anomaly back onto (6) gives
the full interpolated anomaly,

Tt(n) 5 m(n) 1 Trt(n). (7)

Note that when all rotated EOFs are supported by the
data, Dm [ 1 and (7) is equivalent to (1), the method
of SRLS, but with a slightly different basis. For the next
month’s analysis the process is repeated, with the guess
Gt11 computed using weights for the projection of Trt

onto the full set of modes cm.
As discussed in section 2b, to include temporal in-

formation in both directions, we run (7) both forward
and backward, and then average the results. The dif-
ference between the forward and backward runs gives
an indication of the stability of the method in extremely
data-sparse periods, as discussed later. Stability can de-
velop for two reasons: either enough data to sample from
both directions or no data for an extended period. Thus,
stability alone cannot be used as a measure of accuracy.

3. Tuning

Tuning of the interpolation method is done to estimate
the parameters needed. Estimates are found to optimize
the skill of the fit throughout the period of record. These
parameters include the number of rotated anomaly in-
crement EOF modes to choose from (M), the cutoff
criterion for choosing modes ( ), the 1-month lag cor-f*y
relations for each mode (cm), and the amplitude for re-
jection of suspect data (A). Similar experiments also
helped in the development of the method by showing
an advantage in gridding anomaly increments and a first
guess compared to directly gridding anomalies, and also
an advantage in removing low-frequency variance
anomalies before gridding and then adding it back in
afterward.

Cross-validation tests over a part of the OI period are
used for tuning. Briefly, the cross-validation tests are
conducted as follows. The 1985–89 60-month period is
chosen for analysis, because it contains both warm and
cool episodes in the tropical Pacific and because it is
long enough to yield stable cross-validation statistics.
For each month in that period, a separate set of rotated

increment EOFs is computed. These cross-validation
EOFs are computed using all data over the OI period
except for a 17-month window centered on the month.
That window is removed to produce EOFs that are ap-
proximately independent of the month. Note that after
tuning, interpolation for the full record uses just one set
of EOFs using all available OI data. Data used for in-
terpolation in the cross-validation period are the UKMO
superobservations for the period, except that they are
subsampled to simulate historical sampling conditions.
If there is a superobservation at a location in the his-
torical month as well as in the cross-validation month,
then the superobservation is used for interpolation. Re-
sults from the test are evaluated by computing mean
square error (mse) with respect to the OI data, for the
given historical sampling conditions and the given
choice of parameters. By varying the parameters in these
tests, their optimal values can be determined for the
given historical sampling conditions. The historical
grids tested are for the periods 1885–89, 1905–09,
1915–19, 1935–39, and 1955–59. More details of cross
validation are given by SRLS.

Testing for the number of rotated anomaly increment
EOF modes was done setting A 5 4.0 and 5 0.005,f*y
and computing cm from the UKMO data. As shown be-
low, these parameter settings are reasonable estimates.
Truncations at 8 and 14 modes were selected for testing
using the method of O’Lenic and Livezey (1988). There
was almost identical skill for all periods for either 8 or
14 modes. Since additional EOFs do not add skill, we
chose eight to avoid possibly introducing noise from the
higher modes. It is reassuring that relatively few EOFs
are needed, since the higher-order modes are more likely
to contain variations that may not have been well sam-
pled in the past. The value is relatively small becausef*y
we are using 18 resolution EOFs with 58 resolution data
(assumed to fill the 18 cell at the center of the 58 area
with other 18 cells in the 58 area set to missing), so even
a completely filled 58 grid would fill only 4% of the 18
grid.

The optimum was found by testing a range off*y
values (0.01–0.001) with eight rotated EOFs. For every
period, the minimum cross-validation mse occurs with

at or close to 0.005. We performed this test usingf*y
two sets of cm, one computed by projection of OI anom-
alies onto the EOFs and the other by projection of the
58 ship anomalies onto the EOFs. Since the ship data
are more noisy than the OI data, their cm’s are slightly
lower than those from the OI anomalies. Results were
slightly better when the cm’s were computed from ship
anomalies. Thus we fix at 0.005 and use cm’s fromf*y
projection of ship anomalies. Table 1 contains the cross-
validation mse for various using this choice for cm’s.f*y
Also shown is the average number of 58 superobser-
vations for each period within our test region.

Tests to determine the optimal data cutoff amplitude,
A, were done by fixing all other parameters as deter-
mined above and varying A between 3.0 and 4.5. Results
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TABLE 1. Cross-validation experiment results using (6) with data
checked with A 5 4.0, and eight rotated increment EOFs and cm’s
from the UKMO data. The mean-square errors (8C2) for different
cross-validation grids for choices of the fy* are tabulated. The constant
zero-anomaly fit has mse 5 0.498C2. Also tabulated are the average
number of monthly superobservations in each period (maximum num-
ber 5 160).

1885–89 1905–09 1915–19 1935–39 1955–59 fy*

0.23
0.20
0.22

0.33
0.29
0.24

0.47
0.45
0.39

0.30
0.24
0.23

0.15
0.15
0.15

0.010
0.007
0.005

0.23
0.38
37

0.25
0.37
38

0.38
0.48

7

0.29
0.33
59

0.15
0.15
124

0.003
0.001

N (avg)

TABLE 2. Total number of UKMO 58 superobservations per de-
cade and the number and percent discarded each decade using A 5
4.0 (maximum total number 5 19 200). For the 1860s the months
are Jan 1860–Dec 1869, etc.

Decade Total Discarded % discarded

1860s
1870s
1880s
1890s
1900s

481
2252
4230
3892
5253

22
133
141
107
159

5
6
3
3
3

1910s
1920s
1930s
1940s
1950s

2201
5183
7861
8385

13 879

87
371
467
644
890

4
7
6
8
6

1960s
1970s
1980s

18 301
18 487
18 397

814
1062
1233

4
6
7

FIG. 2. Rmse with respect to the OI over the 1982–94 period for
the improved analysis method (top), and the SRLS method (bottom),
in units of 8C.

are best (i.e., the cross-validation mse is lowest) with
A 5 4.0. Table 2 shows the total number of observations
per decade and the number of observations discarded
with A 5 4.0. The amount discarded is always less than
10% of the total, and often 5% or less. This is many
more than would be expected if there were no errors
and increments were normally distributed, but is not
surprising considering that ship observations tend to be
noisy (e.g., see Reynolds and Smith 1994). All results
discussed below use these parameter choices.

To summarize, tuning experiments show that the op-
timal parameter settings are M 5 8, 5 0.005, A 5f*y
4.0, and cm computed from the ship data.

4. Results

Results are discussed in two sections: the dependent
period (which is within the period from which the EOFs
were computed, 1982–95) and the full period. In ad-
dition, comparisons to the SRLS method are made. The
SRLS method uses (1) to reconstruct using the same
UKMO data in the same region, and using the same
base period to compute the EOFs. That method uses the
same number of EOF modes that SRLS found was op-
timal for tropical Pacific reconstruction after 1950. As
noted by SRLS, this method is not reliable before 1950
when data are too sparse.

a. The dependent period

The root-mean square error (rmse) with respect to the
OI shows that even in the relatively data-dense depen-
dent period, the new method generally outperforms the
SRLS method (Fig. 2). The improvement is largest in
the eastern equatorial Pacific. In the western equatorial
Pacific near 1688E, the dependent period’s data are
noisy, leading to the increased error there. The analysis
methods both smooth out much of the noise in the raw
data, but data errors always contaminate the analysis.
The data-checking procedure in the new method sig-
nificantly reduces errors from excessively noisy data.
Besides having a lower rmse, a larger portion of the
signal strength is also captured by the new method (Fig.

3). Incrementally adjusting a first guess, rather than grid-
ding a full (recentered) anomaly is one reason for the
new method’s improvement. Another is the use of
screening regression, which does not allow unrepresen-
tative modes to take away from the fitted signal. The
high quality OI standard deviation is the best available
estimate of the true SST anomaly standard deviation
over the period, which is near 1.68C at its maximum.

Maps of the SST anomalies from the new analysis,
the SRLS method, and the OI from several months with-
in the dependent period help to illustrate the perfor-
mance of the EOF-based methods. For January 1983,
near the peak of a very strong warm episode, all three
have similar patterns (Fig. 4). A more difficult test is
March 1985 (Fig. 5), when the sampling is more sparse
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FIG. 3. Standard deviation over the 1982–94 period of the improved
analysis (top), the SRLS method (middle), and the OI (bottom), in
units of 8C.

FIG. 4. Interpolated analyses (8C) from the improved method (top)
and the SRLS method (middle), and the OI analysis (bottom), for
January 1983.

and there are several questionable observations in the
eastern equatorial Pacific (discussed in section 2e). For
that month, the OI shows weak to moderate cool episode
conditions. However, several strong, erroneous positive
superobservations in the eastern Pacific badly bias the
SRLS method. Mostly because of our data checking,
the new method avoids much of the problem. There is
not enough accurate ship data to fit the cool episode
properly, so the new analysis simply produces weak
anomalies in the eastern Pacific.

In July 1987 (Fig. 6), the new method better repre-
sents the strength and shape of the warm episode anom-
alies across the Pacific, compared to the SRLS method
which underestimates the magnitude along the equator.
In SRLS May 1988 was examined because of the ex-
istence of positive anomalies slightly off the equator,
which were sampled by ships, and strong negative
anomalies on the equator, which were not well sampled.
The new method better represents the phase and extent
of the cool anomalies, compared to the SRLS method,
although both methods underestimate the magnitude
(Fig. 7). Because cool episodes develop from strong

upwelling and are often confined to within 58 of the
equator, we may in general expect them to be under-
represented when gridding from sparse 58 resolution
data.

The analysis of K97b also uses UKMO 58 superob-
servations to grid data, but they account for much less
variance because of their use of 58 EOFs. Their method
grids the entire anomaly statistically, and so requires
many more EOFs from a much longer base period. Thus,
they need to use a coarse-grid analysis to develop their
basis EOFs. Increments can be much more accurately
described at finer resolution using fewer EOFs based on
the shorter period, higher quality OI analysis. Use of
OI-based EOFs allows interpolation to a 18 resolution,
and use of fewer EOFs filters out noise associated with
higher modes. Another difference between their analysis
and the increment-based analysis is that they weight
EOFs by their eigenvalue, and thus the leading modes
are given much more weight. This may not always be
desirable because modes that dominate one period may
be less dominant in another. Weighting by eigenvalue
also forces their method to strongly fit to the leading
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FIG. 5. Interpolated analyses (8C) from the improved method (top)
and the SRLS method (middle), and the OI analysis (bottom), for
March 1985.

FIG. 6. Interpolated analyses (8C) from the improved method (top)
and the SRLS method (middle), and the OI analysis (bottom), for
July 1987.

modes, which can cause overfitting in situations where
there are errors in extremely sparse data. However, even
with all of the differences, their results are consistent
with the present study in all but the most extremely
data-sparse situations. Although the method of K97b is
theoretically optimal, its assumptions are only approx-
imately satisfied and therefore it cannot be assumed to
be superior based on theory.

b. The full period

It is reassuring that the new method improves anal-
yses in the recent, well-sampled period. However, the
more important test is for earlier periods when sampling
is more sparse. In particular for the tropical Pacific SST,
sampling is too sparse in the pre-1950 period to reliably
use the SRLS method. Time series of the spatial stan-
dard deviation (ss) for both the new method and the
SRLS analyses (see SRLS for a definition of ss) indicate
much greater stability for the improved method when
data are sparse (Fig. 8). Variations in ss are consistent
throughout the record for the new method except in

extreme data-sparse periods when the analysis is
damped. However, with the SRLS method they increase
enormously in the pre-1950 period. The number of ob-
servations within the analysis region show that in this
case the SRLS method becomes unstable with fewer
than about 80 observations (Fig. 9).

As noted before, the new method analysis is the av-
erage of a forward running analysis and a backward
running analysis. This is done to use information in time
both prior to and after the analysis time. In periods with
poor or erratic sampling, there can be significant dif-
ferences between the forward and backward runs. Dur-
ing periods with good sampling there are, as expected,
relatively small rms differences between the forward
and backward runs (Fig. 10). Largest differences occur
when there is some, but sparse sampling. When there
are very few data the anomaly field is somewhat flat
from either direction.

Time series of the Niño 3.4 area (58S–58N by 1708–
1208W) SST anomalies from the two runs when differ-
ences are large help to illustrate why these difference
can occur (Fig. 11). With adequate sampling the two
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FIG. 7. Interpolated analyses (8C) from the improved method (top)
and the SRLS method (middle), and the OI analysis (bottom), for
May 1988.

analyses are close, but they damp in different directions
through bad sampling periods (e.g., see the 1860–66
period). Since the analysis is developed by adding in-
crements onto the guess anomaly, it may take several
months to build up a large anomaly when sampling is
sparse. Removal of excessively large increments in the
data-checking step can further complicate the situation.
Note that the forward and backward runs rarely have
significant anomalies of different signs, and then only
when data are extremely sparse. Most differences are
caused by one giving a strong anomaly while the other
gives a weaker anomaly of the same sign. Differences
between the forward and backward runs could be greatly
reduced by increasing and forcing these data-sparsef*y
periods to reject all or nearly all modes. However, that
would weaken all analyzed anomalies. Since the cross-
validation tests show that the best balance is obtained
with 5 0.005, we keep that setting.f*y

Comparison to the OI in the most recent period shows
that the average of the forward and backward runs is
more accurate than either individual run. However, large
differences between the forward and backward runs in-

dicate times when we should have less confidence in
the analysis due to insufficient sampling. The average
of the two runs for the Niño 3.4 region shows reasonable
interannual variations after about 1870, indicating at
least adequate sampling for most of that period (Fig.
12). The difference between the forward and backward
runs suggests that we should use these analyses carefully
before 1880, and in the 1910–28 and 1938–43 periods.
Comparison of the Niño 3.4 average to the optimal av-
erage of seasonal SST anomalies in the Niño 3 region
beginning in 1870 (Smith et al. 1994) shows consistent
results from both analyses.

To illustrate the type of anomaly patterns obtained
from the reconstruction, we show warm and cool Jan-
uary anomaly pairs, for four widely separated times with
different levels of sampling. For 1910 and 1912 (Fig.
13), a cool episode is indicated in 1910, with the strong-
est anomaly near 1408W, while the 1912 warm episode
shows a more typical anomaly structure. Anomalies for
1940 show weak, diffuse warm-episode conditions,
while 1943 shows a more typical cool episode pattern
(Fig. 14). For both of these warm–cool pairs (the 1910–
12 pair and the 1940–43 pair) the sampling is relatively
sparse, and we should be skeptical about the precise
shape and magnitude of the anomaly patterns. However,
the Niño 3.4 averages from the forward and backward
runs both show consistent anomaly pairs associated with
these periods, so the sampling is sufficient to tell the
general state of the tropical Pacific.

Anomalies for January 1956 and 1958 (Fig. 15) in-
dicate a weak cool episode followed by a strong warm
episode, respectively, while for 1973 and 1974 they in-
dicate a warm episode followed by a strong cool episode
(Fig. 16). For both of these periods sampling is fairly
good and we can have much more confidence in the
details than with the first two shown. As comparisons
during the dependent period show, even during rela-
tively well-sampled periods the anomalies patterns still
have errors. The rmse map for the dependent period
indicates the magnitude of the errors that may by typical
after 1960, when sampling is comparable to the depen-
dent period (Fig. 9).

Comparison of these independent-period analyses to
those of K97b indicate that the higher resolution of this
analysis produces stronger anomalies. In addition, the
increment-gridding analysis shows less spatial variabil-
ity associated with sampling patterns. However, the
overall patterns in the two analyses are consistent.

5. Conclusions

We have developed a method for gridding SST anom-
alies within the tropical Pacific for an extended period
beginning in the nineteenth century. There is generally
not enough data to reliably interpolate to a grid before
1880. There is also not enough data during and just after
the First World War, and also a lack of data early in the
Second World War. The decline in sampling associated
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FIG. 8. Spatial standard deviation, monthly from 1856 to 1995, from the improved
analysis (top) and the SRLS method analysis (bottom), in 8C.

FIG. 9. Number of total observations each month, 1856–1995, in 8C.

with the First World War is more severe than at any
other time after 1880. The gridded SST anomalies for
the continuous period beginning in the early 1920s in-
corporate enough data to at least roughly reflect inter-

annual variations throughout the period, as shown by
the time series of Niño 3.4 SST anomalies (Fig. 14).

Anomalies are generally better represented by this
analysis method than by the analysis method of Smith
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FIG. 10. Spatial rms difference (for the entire averaging area) between the forward run and the
backward, in 8C.

FIG. 12. Niño 3.4 area-averaged SST anomalies from the average
of the forward and backward runs, for 1856–1995, in 8C.

FIG. 11. Niño 3.4 area-averaged SST anomalies from the forward
run and from the backward run, for 1862–80 (top) and 1912–30
(bottom), in 8C.

et al. (1996) for the 1950–92 period. For both techniques
cool-episode anomalies, associated with fairly narrow
equatorial upwelling, may be weakened because of the
coarse resolution of the superobservations used here. In
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FIG. 13. Interpolated analyses (8C) for January 1910 (top) and Jan-
uary 1912 (bottom).

FIG. 15. Interpolated analyses (8C) for January 1956 (top) and Jan-
uary 1958 (bottom).

FIG. 16. Interpolated analyses (8C) for January 1973 (top) and Jan-
uary 1974 (bottom).

FIG. 14. Interpolated analyses (8C) for January 1940 (top) and Jan-
uary 1943 (bottom).

the dependent period, the new analysis method is only
slightly better than the method of SRLS. In the pre-
1950 period, when data are often much more sparse, the
method of SRLS cannot be used but this method can
because it avoids overfitting and incorporates temporal
information and a gross data check.

K97a and K97b (hereafter K97) applied an elegant
analysis method to Atlantic and global SST, respective-
ly, based on minimization of a penalty function. Their

approach also uses an EOF basis for spatial interpolation
and the lag-one autocorrelation to tie together succeed-
ing maps, but additionally accounts for some sampling
error (in contrast to our gross error check) and errors
associated with truncation and order of modes. Beyond
the latter, there are two other very important differences
between their approach and that described here. First,
to avoid the necessity to represent interdecadal and lon-
ger variability in our EOFs, we fit the low-frequency
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variations separately and add them back onto the anal-
ysis after the EOF fitting. We also fit anomaly tendencies
rather than anomalies and add the tendencies onto an
analysis first guess. Thus, modes can be developed from
the relatively short period (in interdecadal terms) using
the more accurate OI data to ensure the proper repre-
sentation of the structural details of the EOFs. K97 in-
stead analyze anomalies directly with EOFs estimated
from an almost 50-yr record of the more coarsely re-
solved UKMO ship data. The other important difference
in the methods is that K97 fit to a large fixed number
of EOFs, in contrast to our screened subsets of a modest
number of rotated EOFs. It is unclear to what extent
their approach is vulnerable to overfitting in very sparse
data situations.

The leading EOFs computed are only estimates of the
actual leading modes, the variance associated with those
leading modes is only approximately constant in time,
and data errors only approximately obey the error as-
sumptions incorporated into the method of K97. There-
fore, the K97 method is only approximately optimal,
and in particular it may have overfitting problems when
data are excessively sparse. Those problems are greatly
reduced with the addition of more data. It may be pos-
sible to completely eliminate overfitting in the K97
method with the use of more accurate EOFs and ad-
ditional data-error checking. Comparisons shown here
indicate that our method may better represent the shape
and strength of anomalies, but a more systematic set of
diagnostic comparisons of the different approaches may
be needed to identify their relative strengths and weak-
nesses. A collaborative effort to do this is desirable.

The methods of gridding data developed here may be
applicable to the global SST as well as to other cli-
matological fields, such as sea level pressure anomalies.
Longer reliable series of gridded fields of these variables
should help us to better understand seasonal to inter-
annual climatic variations.
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APPENDIX

OA
Optimal averaging (OA) is used to form 108 super-

observations for computation of the low-frequency SST
anomaly. The OA of a region is a weighted average of
data in or near the region. Weights are chosen to min-
imize the mean-squared error that should occur, pro-
vided that the covariance between points and the random
data error can be approximated. It is assumed that there
are no systematic errors in the data.

The system of equations that must be solved to obtain
the weights is the same as in Smith et al. (1994), except

that here we normalize the weights as was recommended
by Kagan (1979) when averaging data that contain
trends. Other differences between this method and that
of Smith et al. (1994) are that here the spatial correlation
scales are slightly larger (since we are averaging anom-
alies rather than increments), and data from outside the
averaging area and time may be used to form the OA.
As in Smith et al. (1994), Gaussian functions are used
to estimate the covariance between points as a function
of distance. By using simple Gaussian functions in the
OA step, the low-frequency anomaly may assume any
form supported by the data.
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