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1. Introduction 

We consider long near critical surface waves forced by locally dis- 
tributed pressure applied on the free surface in channels of arbitrary cross 
section. The fluid under consideration is inviscid and has constant density. 
The upstream flow is uniform and the upstream velocity is near critical, i.e., 
u0 = uc + ~2 + 0(ez), where uc is the critical velocity and 0 < e ,~ 1. The 
external pressure applied on the free surface is e2pf(x), where 6(x) is the 
Dirac delta function. This forcing is equivalent to having a localized bottom 
topography whose amplitude is of order e z and that varies along the 
longitudinal direction of the channel. 

The study of such forced nonlinear free surface waves has attracted 
many researchers' attention recently. Since 1982, there has been a vast 
amount of research work published on this subject. Most experimental and 
numerical work has been done on two-dimensional channels (Wu and Wu 
[1], Forbes and Schwartz [2], Vanden-Broeck [3], and Forbes [4], etc.). 
Asymptotic approximation method has also been used to study this problem 
by Akylas [5], Cole [6], Miles [7], Mei [8], Wu [9], Shen [10-11], and others. 
Two dimensional and three dimensional waves in a rectangular channel 
were studied by Mei [8] and Ertekin et al. [12] respectively. Two dimen- 
sional waves in channels of arbitrary cross section were studied in [10-11]. 
We may summarize their results as follows: 

(i) There exist two supercritical stationary solitary waves; 
(ii) There exists one subcritical downstream cnoidal wave; 

(iii) There exists one hydraulic fall which transmits an upstream 
subcritical flow to a downstream supercritical flow; 

(iv) There exist no transcritical steady state waves; 
(v) At some upstream transcritical velocities, solitons are periodically 

generated at the location of the forcing and radiated upstream. 
For a two-dimensional channel, Miles showed (iv) analytically via 

Rayleigh asymptotic reduction process [7]. He assumed that the external 
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forcing is localized (he called it compact). With this assumption, he was able 
to express the forcing in the asymptotically reduced equation in terms of the 
Dirac delta function. Then he found the exact Froude number range 
(FL, Fc), in which no steady state free surface waves exist. He also men- 
tioned in [7] that there possibly exist two solitary wave solutions when the 
Froude number F > Ft. Nonetheless, he did not explicitly find them. This 
nonuniqueness of stationary solitary wave solutions for an fK-dV  was first 
noticed by Patone and Warn as early as 1982 for a special type of forcing 
[13], and was later systematically studied in [10]. 

In this paper, we adopt Miles' assumption of localized forcing. The 
forced Korteweg-de Vries equation fK-dV  derived by Shen [10-1 lJ is used 
as our model equation. The assumption of localized forcing enables us to 
find solutions of an f K - d V  analytically. In this paper we focus on steady 
state solutions. An initial work on finding unsteady state analytic solutions 
of an f K - d V  can be found in [14]. In section 2, we recapitulate the 
derivation of fK-dV. In section 3, we find 2c=(3b2p2~2/(-4flm2)) 1/3 
analytically and show that there are two cusped solitary waves for each 
2 >2c. It is also found that when 2 =2a=(3eZbZPZ/(-flm~)) 1/3, there 
exists a jump solution, which consists of a horizontal free surface down- 
stream matched with a semi-solitary wave upstream. The difference between 
the downstream larger depth and the upstream smaller depth is - 2e / e .  In 
section 4, we find 2L = (3bZp2o~2/flm2) 1/3= - 2 u  analytically and show that 
there is unique downstream cnoidal wave solution matched with the up- 
stream null solution when 2 < 2L. It is also shown that there is a unique 
wave free hydraulic fall solution when 2 = 2L. In this steady state, the 
upstream flow is subcritical and the downstream flow is supercritical. 

The difference between this paper and my previous work [10, 11] is that 
here analytic solutions of the fK -dV  equation, which before required 
numerical solutions, are found because of the assumption of localized 
forcing. Thus many of the previous results become more transparent. The 
results obtained here are consistent with those of [10, 11]. It appears that 
such an approach to study surface waves in channels of arbitrary cross 
section is novel. 

2. A forced Korteweg-de Vries equation 

Consider an inviscid fluid flow in a channel of arbitrary but uniform 
cross section. Let L and H be longitudinal and transverse length scales of 
the flow respectively. The x*-axis is aligned along the longitudinal direction 
of the channel, the y*-axis along the spanwise direction and the z*-axis 
vertically in the opposite direction to gravitation. The x*, y* plane is placed 
on the upstream undisturbed free surface. The equation of the boundary of 



124 S . S . P .  Shen Z A M P  

the channel is h*(y*,z*)=0. The equation of the free surface is 
z * =  t/*(x*, y*, t*), where t* is time coordinate. (u*, v*, w*) is velocity; 0* 
is density; p* is pressure; g is the gravitational acceleration constant; and p* 
which is assumed to be function of x* only, is the external pressure applied 
on the free surface. The superscript �9 signifies dimensional quantities. 

The following dimensionless quantities are introduced: 

e =  ~1,  t = ~  k / ~ t * ,  

(x, y, z) = 1 (~l/2x*, y* ,  z*), 

.* p *  
rI=--H ' P-Q*gH' P=e2ogH' 

1 
(u, v, w) - 4 g-ff (u , ,  -1/:v, ,  

h2=h**, h3=h~*. 

In the following, we adopt three basic asymptotic assumptions: 
(i) The upstream velocity is near critical, i.e. 

(ii) 

(iii) 

Then it 

uo = uc + e2 + O(e2); (1) 

The amplitude of the applied external pressure on the free surface is 
of order O(e2), i.e./~ = e2fi*/(Q*gH); 
The amplitude of the free surface elevation is of order O(e), i.e., 

r/ = ~3r/l(X , t )"J r - /32r /2(X,  y ,  t) + O(e3). (2) 

can be shown (see [10] or [11]) that: 

(A) The critical velocity uc satisfies 

A (3) 2 - - _ _  
Uc - -  b 

where A is the wet area of cross section of the channel and b is width of the 
channel (see Figure 1); 

(B) The first order perturbation of the free surface r/1 satisfies a forced 
Korteweg-de Vries equation (fK-dV) 

m l  ?]lt -[- 2ml rhx + m 2 q l  q l x  + m3r l l xxx  = -f(x), (4) 

where 

ml = - 2b x/if/A, (5) 
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Figure I 
D is the wet area of the cross section of a channel (also 
see equations (7) and (9)). 
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r .L 

r 
m2 = 3bZ/A - (b/A) .Jr d~yy dy, (6) 

f (x) = bpx. (8) 

In (4)-(8) ,  the integration domain D and the integration contour F are 
shown in Figure 1. V = (O/Oy, ~/Ox), and q5 = ~b(y, z) is a solution of  the 
following Neumann problem: 

V 2 r  i n D ,  (9) 

A 
r = -~ on F, (10) 

~b. = 0  on C (11) 

where W = ( ~ 2 / ~ y 2 )  _~_ ( ~ 2 / ~ x 2 )  and r  is the unit outward normal derivative 
of r on C. 

The details of the derivation of (3)-(11)  can be found in [10] or [11]. 
From (4)-(11),  we see that the coefficients mx, m2 and m3 of t h e f K - d V  (4) 
are entirely determined by the geometry of the cross section of the channel. 
The upstream velocity enters the f K - d V  only by 2. It is this 2 that controls 
the behavior of the solutions of  the f K - d V .  For different values of  2, the 
solutions of the f K - d V  may be dramatically different. We may see this in 
section 3-5.  

If D is a rectangle or a triangle, ml, m2 and m 3 can be found very easily 
[10]. If D is an ellipse, a conformal mapping method can be used to find ml, 
m2 and m3 (Cai and Shen [18]). For the data used in this paper, see 
Table 1. 

When the forcing is localized, then p(x) = P6(x), where 6(x) is the Dirac 
delta function. Physically, it means that if the support of/~(x) is very small 
compared with the wave length which measured by L, then the distributed 
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Table  1 
Bifurcat ion da ta  for rec tangular ,  t r i angu la r  and  el l ipt ic channels .  

S. S. P. Shen Z A M P  

b d m 1 m 2 m 3 ~ fl P 2C 2L 2d 

1 3 1 
Rec tangu la r  1 I - 2  3 ~ 4 - g 1 0.859 - 1.36 1.36 

13 5 21/2 13 21/2 
Tr iangu la r  1 1 -23 /2  5 4-8 8 192 1 0.914 - 1.45 1.45 

8 48 3 
El l ipt ic  2 1 0.666 - - - 0.15 1 0.970 - 1.54 1.54 

7~ 1/2 7~ 3/2  7t 

pressure applied on the free surface may be considered approximately as a 
concentrated force of magnitude P. In the following we only study the case 
of localized forcing. 

3. Supereritical steady flow: solitary waves 

For a steady state flow, the f K - d V  (4) becomes 

b 
2r/lx-'k 2ar/ir/ix + flr/l~xx-- fix, 2 > 0  (12) 

m l  

where ~ = m2/(2m1 ) and fl = m3/ml.  Since the upstream flow is uniform, we 
have 

rh( - oo) - r/ix( - c~) = r/lxx( - ~ )  = O. (13) 

Using/~ = P6(x), the first integral of (12) reads 

b 
2r/l + ar/2 + flr/,xx - P6(x), 2 > 0 .  (14) 

m l  

We look for solitary wave solutions of (14). Hence r/l satisfies the boundary 
conditions: 

r/,( + oo) = r/ix( + = 0. (15 )  

By direct integration, the solutions of (14)-(15)  can be expressed as follows 
F - - - ' - -  

32 
-X/-~-fl (x - L + ) ,  x > 0 ,  (16) r / i ( x )  = -  sech 2 

- ~ ( x - L  ), x < 0  (17) 
32 

r/l(x) = -  2--a sech 2 

where L+ and L are constants. The continuity condition of the free surface 
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at x = 0  

,1 , (o+ ) = 7 , ( 0 -  ) - 

implies that 

L+ = + L _ .  (18) 

Because of 6(x) in (14), r/ix must have a jump discontinuity at x = 0. 
Namely, 

bP 
q~x(0+) - thx(O--) = --/~m-----~ " 

By (16) and (17), this condition can be written as 

(iii) 

So 

bPe 1 2 
C =  - -  ~ = - b - -  

3rn,2 ~----f12 - 3V/-3 

determines the critical value of 2: 

= (362p2c~2~ 1/3 

Zc \ - 4 m ~ f l  J " 

- r / l ( 0 ) - t a n h  --~-L+ + t a n h  L_ = 

This equation holds for a nonzero P only if L+ # L_,  and by (18), 

L+ = - L _  = L0. 

Hence (19) can be written a s  

f3 _ f _  e = 0 (20) 

w h e r e  

 _-tanh(g 0) 
bP~ 1 

c = 3m�94 2 xf~---/~2 " (22) 

By f 3 - - f = f ( f +  1) ( f - -  1.), we see that 
(i) when Ic[ < 2/(3x/3 ), (20) has three distinct real roots and only two 

of  them are in (-~1, 1); 
(ii) when [el > 2/(3x/3), (20) has only one real root whose absolute 

value is greater than one; 
when Icl = 2/(3x/~), (20) has a double real root whose absolute 
value is less than one and the third real root is not  in ( -  1, 1). 

(23) 
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Therefore 

L0 = - - ~  a rc tanh(f )  (24) 

has: (i) two solutions if 2 > 2c; (ii) one solution if 2 = 2c; and (iii) no 
solution if 0 < 2 <2c. As soon as one finds L0, the solution (16)-(17) is 
determined. 

34 sech2~--~ (x-Lo),X> O, 
- ( 2 5 )  q I ( x )  2 ~  _ 7 _  

sechZx/--~-- (x + Lo), x < 0. 

For a given Lo, 25) defines a cusped solitary wave (see Figure 2c) and 
d)). The cusp is concave up (down) if Lo > 0 ( < 0  respectively). By (20)-  
(22) and (24), we have: 

P < 0 =~ c < 0 =~ f > 0 =~ Lo > 0 =~ cusp is concave up 

P > 0 =~ c > 0 =~ f < 0 =~ Lo < 0 =~ cusp is concave down 

Hence 

sign(P) --- - sign(Lo). 

Some solutions of (14)-(15), determined by (25), are shown in Figures 
2c), d), for a triangular channel. Correspondingly, the saddle node bifurca- 
tion diagrams are shown in Figure 2a). The relationship between Lo and 2 
is also shown in Figure 2b). The turning points of the bifurcation diagrams 
are computed from equation (23). For the bifurcation data, see Figure 2 a) 
and also see Table 1. 

When P > 0, lit/11[o~ = - - ~  sech L0 < - - ~ ,  which is the am- 

plitude of the free solitary wave. The bifurcation diagram I1., versus 2 is 
given by 

i]th[[ ~ bP -~2( [ larcc~ x/~bP~ 3" ~ ~4n/3~]~ -I  (26) 
= 4m, cos ~ ! ~ 2 m l ~ ]  + [2n/3J],] 

The rl,1 [Iv - 2  curve defined above has two branches. The upper branch and 
the lower branch correspond to 4r~/3 and 2rt/3 respectively in the above 
formula. The two branches are joined at 2c, at which I1,111  As 
P - - * 0 + ,  L0l ~ 0 - -  and L02-* -o r .  Hence I171111oo approaches - 3 2 / 2 e  and 
zero respectively. See Fig. 2a). 

When e < 0, I1 1 [Io  = -32 /2e  all the time. The cusped solitary waves 
have two peaks in each single solution. As P--, 0 - ,  the two peaks of a 
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Figure 2 (a) 
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5 8 ~ ,  1 3 x ~  a) Bifurcation diagrams: ic = 0.58, Flows in a triangular channel: b = d = 1, ct = - fl = - 19~2-- 

0.91, 1.2 and 1.45 when P = 0.5, 1.0, 1.5 and 2.0 respectively, b) Relationship between the phase shift 
L o and 2 (see equation (24)). c) Two cusped solitary wave solutions of (14): P = 1.0, 2 = 1.4, 
L o t = - - 0 . 1 1 ,  L o 2 = - 0 . 7 1 .  d) Two cusped solitary wave solutions of (14): P = - 1 . 0 ,  2 = 1 . 4 ,  
Lo] =0.11,  Lo2 = 0.71. 
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cusped solitary wave merges and the cusp disappears gradually. The limit is 
the usual solitary wave in the case of  no forcing. At  the same time, the two 
peaks of  the other cusped solitary wave move further apart  to ups t ream and 
downst ream respectively. The limit is the usual null solution in the case of  
no forcing since the peaks have moved  to negative and positive infinities. 

F r o m  s i g n ( P ) = - s i g n ( L o ) ,  and f rom equat ion (25) which determines 
the free surface profile, we see that  if P < 0 ( > 0 ) ,  then the cusps of  the 
solitary waves are concave up (down respectively). Namely,  a surface 
suction (P < 0) corresponds to a dent  of  the free surface and a surface 
pressure (P > 0 corresponds to a crest of  the free surface. This is consistent 
with the result obtained in [7], but  is not  consistent with one's intuit ion, and 
so it is a paradox.  

Another  supercritical wave free flow satisfies the following: 

bP 
")U~]l + 0~ 2 + ~]lxx - -  • (X) ,  2 > 0 (27) 

ml 

rh( - oo) = rhx( - oo) = 0, r/l( + oo) = constant  > 0. (28) 

The unique solution of  (27) - (28)  can be expressed in the form 

~ l ( X )  = 

- ~ sech 2 (x - Xo), x < 0  

2 > 0 ,  x > 0 .  
(29) 

2 bP 
r h ( 0 - ) =  c~' ~hx (0 - )  /3ml 

By (29), 

tan ( xo)= 
By r h ( O -  ) = -2/or 

2~ 1 - tanh Xo 

Equat ions  (30) - (31)  imply 

~Pb 
ml(  __f l~  3) 1/2 " 

= 

2b2p2~l/3 z,=\ > o .  

(3o) 

(31) 

(32) 

This solution exists only for a special value of  2, called ~d" ~d and the 
phase shift x0 are determined by the continuity condi t ion of  ql and the j u m p  
discontinuity condi t ion of  qlx at x = 0: 
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Comparing (32) with (41), one sees that 

;Ld > 2c. 

So the upstream velocity needed for the jump solution (29) to exist is larger 
than the minimum velocity needed for the solitary waves to exist. For 
solution profiles, see Figure 3. For a given forcing P and the geometry of 
the channel, the jump solution (29) exists only when 2 = 2d. 

Next we show that for solution (29), the downstream flow is subcritical 
in the case of a square channel where ~ = _3. The downstream Froude 
number can be approximately computed for the case of two dimensional 
channel flow. Let up be the dimensionless downstream velocity and 
Ha = ( l - e2d/a)H be the downstream depth. Then the conservation of flux 
gives 

(1 + e 2 d ) x / g n n  = u D x / g n n D .  

Hence 

H 
up = ( 1 + tad) ~--s 

The downstream Froude number 

FD - uo x / g H  
,/gi-io 

=(1  + ~ 2 a ) ( 1 -  ~_~)--3/2 
= 1 - e2a + 0(e 2) < 1 (subcritical). 

We need to point out that this transition from upstream lower surface 
level to downstream higher surface level is different from the well known 
hydraulic jump phenomenon (Yih [17]). Here the entire flow field is laminar 
and the mechanical energy is conservative. But in the case of a hydraulic 
jump, some mechanical energy is transformed to internal energy and the 
transition region is turbulent. In fact, this jump solution is a mirror image 
of the hydraulic fall which will be discussed in the next section. 

4. Subcritical steady flow: cnoidal waves and hydraulic fall 

Model equations in this section are (see equation (12))" 

~ 1  + ~ 21 -Jr- J~  lxx -- 
bP 

6(x), 2 <0 ,  (33) 
m l  

(34) ,11( - oo  ) = , h x  ( - o o )  = o .  
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Figure 3(a) 
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The bounded solution of the above problem is unique [11]. When x < 0, the 
solution vanishes identically. 

r / l (x )=0  whenx_<0.  

Therefore solving the problem (33)-(34) is equivalent to integrating the 
following initial value problem 

2rh+~rl~+flrhxx=O, x > O  (35) 

q l (0+)  = 0, (36) 

bP 
r/ix(0+) - ml" (37) 

The first integral of the above gives 

3fl 32 3fl (bP~ 2 
- -  = - -  ------ e ( r / 1 ) ,  x > 0 ,  (38) 2~ (t/Ix) 2 --rl~--~~rl2+~-~\m,/ 

r / l (0+) = O. (39) 

In the above 2 can be chosen to make P(rh) have three distinct real zeros, 
a double real zero, or only one real zero. Correspondingly, the problem 
(38)-(39) has a cnoidal wave solution, a wave free solution (hydraulic fall 
[4]), and an unbounded solution respectively [15, 16]. Let 

I ~2bEp2 1/3 ] 2L= 3 ~ /  <0" (40) 

Then P(r/,) has three distinct real zeros, a double real zero, and only one 
real zero if 2 < 2r, 2 = 2L and 2 > 2L respectively. 

Thus, (38)-(39) has 

(i) A cnoidal wave solution when 2 < 2L, 
(ii) a hydraulic fall solution when 2 = 2L, 

(iii) no bounded solutions when 2 > 2L. 

From (40), one can see that for the given geometry of a channel (=, fl 
and b are determined), 2r depends only on P. Comparing (23) and (40), we 
see that 12,. ] > 2c. 

When 2 < 2L, the cnoidal wave solution (38)-(39) can be expressed in 
terms of a Jacobian elliptic function 

=!i os(o 
�9 cn2N/~-~(cosO-cos(O+~))(X--Xo) 1. (41) 
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The phase shift x0 is in [0, T] and is determined by r / l (0+)  = 0, i.e. 

(43) -- cos 0 + 

= (cos O - cos(O + 4--~) ) cn2(~/-~ (cos O - cos(O + 2--~) ) Xo ) �9 

Here T is the period of  the cnoidal wave (41) and is given by 

T=2K(k2)/~+(cosO-cos(O+2-~)). (42) 

The parameters  0 and k 2 are 

0 = �89 arc cos [ - I  +~(~bP~21 ~ < (43) \m3/ J--3' 
c o s 0 - c o s  0 +  

k 2 =  < 1. 

cos 0 - cos (0  + ~ )  

K(k 2) is the complete  elliptic integral. 
The closer ~ is to 2L, the larger is the period T of  the cnoidal wave. 

When  2 T 2L, this period approaches  infinity and the cnoidal wave solution 
becomes a wave free solution. This is the hydraulic fall [4, 11]. This 
conclusion can be easily derived f rom (30), and (42)- (43) .  When  2 = 2c, we 
have 0 = 0, k ~ = 1. Since K(1) = ~ ,  the period T = ~ by (42). The solution 
(41) becomes 

rh(x) = (2 / : /~) [ -  1 + ( 3 / 2 ) s e c h 2 ~ ( x  - xo)], x > 0 (44) 

where Xo is determined by q l ( 0 + )  = 0, i.e. 

Xo = ,v/-~-/2L arc seth v / ~ .  (45) 

The downst ream depth  is HD = (1 --e2L/oOH < H. So the free surface falls 
to a lower level f rom the ups t ream higher level. Next we show that  in a 
square channel  the down stream flow is supercritical for such a hydraulic 
fall. Let Up and HD be the downst ream velocity and depth.  The conserva- 
tion o f  mass flux yields 

UDHD = (1 + e2L + O ( e 2 ) ) v / ~ H .  

Then the downst ream Froude  number  FD is 

FD = UD/x/gHD 
= 1 -- e2c + 0(~ 2) > 1 (supercritical). 

Another  limit is the case when 2 ~ - ~ .  Then 0 ~ zc/3, k2,~ 0, and 
K(k 2) ~ K(0) = re/2. Hence the period is T = 2rc/xf~-62. The cnoidal waves 
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become approximately sinusoidal waves whose amplitudes approach zero as 
2 ~ -  oo. The subcritical cnoidal waves, hydraulic falls and sinusoidal 
waves are shown in Figure 4 for triangular channel. 

5. Concluding remarks 

We have studied stationary long free surface waves of a perfect fluid in 
channels of arbitrary cross section. The upstream flow velocity is near 
critical, i.e. u0 = uc + ~2 + O(s2). An external distributed pressure is applied 
on the free surface. The length of the support of the distributed pressure is 
very small compared with the wave length. If the free surface elevation I/is 
written as q(x,y, t )=eql(X,  t )+O(e2),  then r/1 satisfies a forced K - d V  
equation. If ~ h ( -  or) -- q l x ( -  oo) = ql~x(-  oo) -- 0, then stationary solu- 
tions of the forced K - d V  equation exist only when 2 r (2L, 2c)- Here 2L and 
).c are given by (40) and (23) respectively. In the case of rectangular channel 
with b - - d  = 1, the interval (2L, 2~) reduces to the transcritical range of 
Froude number first discovered by Miles [7]. 
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For a given 2 > 2c, there are two cusped solitary wave solutions (see 
Figures 2c), d)). This is consistent with those results presented in [10]. From 
the bifurcation diagrams (Figures 2a)), we see that as P approaches zero, 
the lower solution is going to vanish and the upper solution is going to the 
free solitary wave. It is well known that a free solitary wave is stable and its 
amplitude is proportional to the upstream velocity. But in the case of 
positive forcing (P > 0), the solutions of the lower branch is inversely 
proportional to the upstream velocity. Hence we conjecture that this lower 
solitary wave solution is unstable. However, this intuitively reasonable 
conjecture has not yet been proved. Mathematically, this conjecture can be 
stated as follows: In the bifurcation diagram, if (d/d2)[[th j[~ > 0 (<0) ,  the 
corresponding solution is stable (unstable respectively), i.e. 

Positive slope r stable 

Negative slope -~ unstable 

We refer this as the slope stability theorem. 
When 2 e (2L,)~c), the forced K - d V  (4) does not have a stationary 

solution which satisfies ql( _+ oo) = thx( + oo) = qlxx( -+ oo) = 0. Instead, ac- 
cording to the experimental and numerical results of Cole [6], Grimshaw 
and Smyth [19] and Wu [9] solitons are periodically generated at x = 0 and 
radiated upstream from some 2 e (2L, 2c). 
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Abstract 

Critical long surface waves forced by locally distributed external pressure applied on the free 
surface in channels of  arbitrary cross section are studied in this paper. The fluid under consideration is 
inviscid and has constant density. The upstream flow is uniform and the upstream velocity is assumed 
to be near critical, i.e., u o = u c + e2 + 0(e2), where 0 < e ~ 1 and u c is the critical velocity determined by 
the geometry of  the channel. The external pressure applied on the free surface as the forcing is e2P,~(x). 
Then the first order perturbation of  the free surface elevation satisfies a forced Kor teweg-de  Vries 
equation ( fK-dV) .  It is shown in this paper that: (i) If 2 > 2~ = (3b2pZot2/(-41~m12)) 1/3 > 0 (supercrit- 
ical), the stationary f K - d V  has two cusped solitary wave solutions; (ii) if 2 < 2L = (3bZPZo:2/~m~) 1/3 < 
0 (subcritical), the stationary f K - d V  has a downstream cnoidal wave solution; (iii) when 2 = 2 L, the 
unique stationary solution of  the f K - d V  is a wave free hydraulic fall; (iv) if 2 = 2 a = - 2 L ,  the f K - d V  
has a jump solution; and (v) if 2L < 2 < 2c, the f K - d V  does not have stationary solutions. Some free 
surface profiles and bifurcation diagrams are presented. 
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