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Disturbed critical surface waves in a channel of  
arbitrary cross section 

By S. S. P. Shen, Dept of Mathematics, Texas A&M University, 
College Station, TX 77843, U.S.A. 

1. Introduction 

We consider the flow of an inviscid fluid of constant density in a channel 
with arbitrary cross section. Let L and H be longitudinal and transverse 
scales respectively. A small number ~ is defined by e = (H/L)2. When cross 
section of the channel varies at order O(~ 3) in the longitudinal direction and 
the ambient shear flow is U0(y, z), the governing equation of the first order 
elevation of free surface, derived first by Peters [1], is a Korteweg-de Vries 
(K-dV) equation. This K-dV equation possesses a traveling soliton solution. 
Shen [2] considered O(e) order variation of the cross section of the channel 
in the longitudinal direction and zero ambient shear flow, and derived a 
governing equation for the first order elevation of the free surface, which is 
an equation of K-dV type with variable coefficients. This equation has been 
successfully used to study soliton fission in channels (Zhong and Shen [3]). 
Here we consider O(~ 2) order variation of the cross section of the channel in 
the longitudinal direction and a nonzero ambient shear flow Uo(y, z) which 
is near its critical state Uc(y, z). A forced K-dV (fK-dV) equation with 
constant coefficients is derived. The forcing term is due to the O(~ 2) 
variation of the cross section and pressure disturbance on the free surface. 
The derived fK-dV equation is the same as the one obtained by Mei [4] for 
a channel of rectangular cross section and constant shear flow. For channels 
with different cross sections, the critical states, Uc(y, z), are different. If 
Uo(y, z) - F is constant, the critical state Uc(y, z) = Fc is also constant. The 
surface waves correspond to F > Fc(F < Fc) are referred as supercritical 
(subcritical) waves. When the forcing function in the fK-dV equation is of 
compact support and far upstream free surface elevation is prescribed as 
zero, supercritical solutions of steady state die out far downstream, i.e. the 
steady supercritical solutions are solitary waves. For the same forcing 
function and the same upstream data, subcritical solutions of steady state 
oscillate far downstream, which are cnoidal waves. It is further shown in this 
paper that there do not exist solitary wave solutions of steady state when the 
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shear flow takes its critical speed Ft. This gives a partial proof of the 
conjecture due to Wu and Wu [5] that "The transcritical motion does not 
approach a steady state". 

The aforementioned results agree qualitatively well with those obtained 
by Shen, et al. [6], Vanden-Broeck [7] and Forbes and Schwartz [8], all of 
whom considered two dimensional channel flows. 

In section 2, the forced K-dV (fK-dV) equation is derived. The existence 
and nonexistence of supercritical solutions of steady state is discussed in 
section 3. Numerical methods and results are described in section 4. 

2. Derivation of a forced K - d V  equation 

Let the x*-axis be aligned along the longitudinal direction of the 
channel, the y*-axis along the spanwise direction and z*-axis vertically in 
the opposite direction to gravitation. The x*-y* plane is placed on the 
undisturbed free surface. The equation of the boundary of the channel is 
h*(x*, y*, z*) =0.  The equation of free surface is denoted by 
z* = t/*(x*, y*, t*) where t* stands for the time coordinate and the super- 
script * characterizes dimensional quantities. Then the equations of motion 
and boundary conditions are 

ux* + vy* + w** = 0, 

u*~. + u*u*~, + v 'u** + w'u** - 

v*,. + u ' v * *  + v ' v * *  + w*v*z. - 

1 
pr 

1 
p.P**, 

* * ~ * w ] .  w ' w * . =  - -  w**+u wx.+ + - g  
1 

(1) 

(2) 

(3) 

(4) 

on the free surface 

z* = q*(x*, y*, t*), 

~* + u*~tx** + v*~** - w* = 0, (5) 

p* =/5*(x*); (6) 

on the wall of the channel 

h*(x*, y*,z*) =0,  

u'h** + v'h** + w'h** = 0. (7) 

Here (u*, v*, w*) is velocity; p* is density; p* is pressure; g is the gravita- 
tional acceleration constant; and/5", which is assumed to be function of 
only x*, is the disturbance pressure on the free surface (see Fig. 1). 
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z* ~, / 

X*f  "~'~-----d--- ---'I" 

Figure 1 
An ideal fluid flow through a channel of arbitrary cross section with the free surface of the flow disturbed 
by a distributed pressure/~*(x*). 

To nondimensional ize (1-7), the following dimensionless quantities are 
introduced.  

= .~1, t = e  3/2 g t*, 

1 
(x, y, z) = ~ (e 1/2x*, y*, z*), 

_ * fi* tl* p = C2 

q = H '  P p * g H '  fi p g H '  

1 
(u, ~, w) - (u*, ~ '/2v*, ~- ' /2w*),  ,/g. 
ht = ~"-5/2/~'*,tx* , h 2 = hy*, h 3 = h**. 

In terms of  these dimensionless quantities and by approximat ing the 
boundary  condit ions on the free surface a round  z = 0, (1-7) can be written 
as 

u x + v y + w z  = 0 ,  

au, + uux + px + VUy + wuz = O, 

ev, + auv~ + py + vvy + wv~ = O, 

ew, +auwx  + l + p x  +VWf + W w z = O ;  

on z = O, 

w - etlt - Utlx -- Vtly = O, 

p = e2fi + rl; 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 
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on h = 0 ,  

~2uhl + vh2 + wh3 = 0. (14) 

For  an ambient  shear flow Uo(y, z) = uo(y, z) + ~2 + 0(e2), we assume 
asymptot ic  expansion of  the following form: 

(u, v, w, rl, p) = (uo( y, z), O, O, O, - z) + ~(ul + 2, vl, wb rh, Pl) 

-t- ~2(b/2, U2, W2, q2, P2) + 0(e3) �9 (15) 

Inserting (15) into (8-14) and assembling the resulting equat ions according 
to the powers of  e, it follows that  the equations of  the order e and e2 are as 
below. 

o n  

o n  

o n  

o n  

ulx + vty + Wlz = 0, (16) 

UoUlx +Plx  + VlU0y + WlUOz = 0 ,  (17) 

Ply = 0, (18) 

P~z = 0; (19) 

z = 0 ,  

wl - Uotllx = 0, Pl = rh; (20) 

h = 0 ,  

vlh2 + wlh3 = 0. (21) 

U2x + v2y. + w2~ = O, 

ult + UoU2x + (ul + 2)Ulx +P2x + Vluly 

+ V2UOy + WlUlz -t'- WZUOz = O, 

UoVlx + P 2 . v  = O, 

UoWlx + P2z = O, 

Z ~ 0 ~  

W2 - -  ?lit - -  Uo?]2x - -  (Ul ' t- ~)~]lx - -  Vl~]ly : 0 ,  

P 2  = f i  + q2; 

h = 0 ,  

uzh 2 q- w2h 3 = _ u o h  1. 

(22) 

(23) 

(24) 

(25) 

(26) 

(27) 

(28) 
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Figure 2 
is the integration domain of equation (29). 

z r 

From (16-21), one can derive that (see Fig. 2) 

For nontrivial solutions, rhx ~ O. It follows the dispersion relation, 

J u~(y, z) - b. 
(29) 

Any shear flow Uo(y, z) with Uo(y, z) = uo(y, z) satisfying (29) is called a 
critical shear flow. By (24-25), 

( 2z)  ,xx 
u l L  + t, ul)  = - �9 

Assume 

P2 = -- f f ) (Y,  Z)Plxx(X, t) .3f- C l (X  ' t), 

then q~ satisfies 

v ( V . ~  1 
\ U o /  U~o in ~ ,  

(30) 

(31) 

(32) 

(33) 

q$~ = Uo 2 on F, 

~ - - 0  on C 

where V = ~zz and ~bn is the outward normal derivation of ~b on C. 

By (16), 

(34) 
\ \ U o /  u0 / 

Multiplying (22) by Uo I and (23) by - U o  2, and integrating the sum of 
the resulting equations over ~ ,  it follows from (29), (30) and (34) that 

mVht + 2mVhx + m2qlrllx -Jr- m3rIlxxx = - - f ( x )  (35) 



Vol. 40, 1989 Disturbed critical surface waves 221 

where 

m,=-2ff  dydzug , (36) 

mz=3f f~  dydzu 4 fr (~~2"]ds'kuo/y (37) 

m3=ff~ Vdp2dydz'uo (38) 

f ds (39) f(x) = b~x + h,(x) ~ 2  + h2" 
c 

Equation (35) is the forced K-dV equation we desired to derive. To 
determine m~, m2 and m3, one needs to solve the Neumann  problem (31-33). 
It seems that it is rather difficult to find an analytical solution of (31-33) 
when ~ is neither a rectangular nor triangular region and u0(y, z) not a 
constant. 

When u0 is constant and ~ is a rectangle (see Fig. 3), ~bz = z + d, ~by = 0, 
2b b bd 3 

ml = , - - ,  m 2 = 3-,, m 3 - -  f(x) = (fix + hl(x))b. This agrees with 
, /d  a 3 '  

Mei's equation (2.44) [4]. 

Figure 3 
Cross section of  a rectangular channel. 

~ y 

d 

Figure 4 
Cross section of  a triangular channel. 

t - -  

\t-;L 

Z 

/ i 
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When u0 is constant  and ~ is a triangle (see Fig. 4), 
h h 1 

q~ = �88 + (z + d)Z), m , =  - 2 x / / 2  % ,  m 2 :  5 d ,  m3:~-~[bd2+�89 +b~] ,  
" 4 "  

f ( x )  = (fix + h,(x))b. 

3. Steady supercritieal solutions of (35) 

Assume the shear flow is along the positive x-axis. Then u0(y, z) > 0 and 
satisfies (29). Thus waves corresponding to 2 > 0(2 < 0) are supercritical 
(subcritical) solutions of  (35). By equations (36-38), m~ < 0, m 2 > 0,  m3 > 0. 
The steady state of  (30) can be written as 

2qlx + 2~Zqtx + f l q l x x x  = r'(x) 

m2 m3 f ( x )  
where a = ~ < 0, fl = - -  < 0, r'(x) - 

m~ m 1 

solution of  (40), then it yields 

2 , ,  + = r(x),  

(40) 

If  th(X ) is a solitary wave 

(41) 

~h( -+ ~ )  = 0. (42) 

In practical applications, it is very often that  r(x)> 0 and r~Co(~). Let 
x_ = inf supp(r) and x+ = sup supp(r). 

Theorem 1. There exists at least one solution to the problem (41-42) as 
2 is sufficiently large. 

Proof." We define a complete  metric space B as 

B = {ulu c(-oo, oo), Ilull = s u p  exp(vlxl)lu(x) I <_ M 

for some given positive constant  M}. 

Here v = (-2/fl)1/2.  A contract ion mapping  theorem in the space B will be 
used to prove Theorem 1. Equat ions  (41-42) can be converted into the 
intergral equat ion 

rl,(x) = ~ ~ K(x, ~)(c~q~ - r)(~) d~ - T(qO (43) 

where 

1 
K(x, 4) = 2vv exp( -- v 14 -- x 1). (44) 
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It is not difficult to show that if 

and 

1 {4lc lM 2 m a x { e x p ( 2 v ] x l ) , e x p ( 2 v l x + I ) }  

2l/~lv \ 3-v- + M 

;/ ) cosh(vx) lr(x) I dx <- 1, (45) 

4~M 
]3~'~Y2~ "~ 1, (46) 

then T is a contraction map in B. We notice that (45-46) can always be 
satisfied as 2 is sufficiently large. So T(ql)  = t/1 has a unique solution in B. 
This solution approaches zero as r(x) - 0 by (45). Also by (45), this solution 
goes to zero as 2 goes to infinity. It follows from (43-44) that if rh(x) is 
continuous, then T(r/l) is twice differentiable. Therefore t/1 = T(th) is a 
classical solution of (41-42). The proof is finished. 

The results of our numerical computations indicate that (41-42) has 
actually more than one solution. For r(x) >- O, this result is stated as follows. 

Theorem 2. If ~ < 0,/~ < 0, and r(x) > O, then there exists 2c > 0 such 
that (41-42) has (i) at least two solutions for 2 > 2c; (ii) no solution for 
0 < 2 < 2 c .  

Proof: If r ( x ) =  O, then solutions of (41-42) are well known [9], and 
satisfy the claim of the theorem. So we shall assume that r(x) 7~ O. We then 
claim that every solution of (41-42) is positive. If the claim failed to hold, 
for any solution O(x) of (41-42) there would exist a point a E ~  such that 

~(a) < 0, 

"(a) > 0. 

By (41), 

0 > ~ " ( a )  = r(a) -- 2~(a) - ~b2(a) -> 0. 

This contradiction shows that ~9(x) > 0. Since r(x) 7& O, qt(x) - 0 is not a 
solution of (41-42). Hence O(x) > 0, for real x. 

If r/1 = ~ ( x )  is a positive solution, ~ must be bounded. Define 
|  qJ ' (x)=O}.  By Theorem 1, |  Let N = ~ / ( z ) > 0 ,  
z = inf | So O(x) is monotically increasing in ( -  0% z). ~b has an inverse 
function with parameter N: x = x(~, N). 

Multiplying (41) by ~k'(x) and integrating the resulting equation with 
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respect to x from - o c  to z, we have 

fo 2 = - 2~N + _/W r(x(O, N)) dO. (47) 

By a standard argument,  0 depends on 2 and N continuously when such an 
N exists [10]. So the curve S on N-2-p lane  defined by (47) is a continuous 
curve. The number  of  positive solutions when 2 = 20 > 0, therefore, is equal 
to the number  of  intersections of  the horizontal line 2 = 20 with S. 

By using the mean value theorem to evaluate So u r(x(O, N)) dO, we obtain 
2e 

that N = 0 and 2 - N are two asymptotes of  S. The fact that e < 0 
3 

and r(x) >- O, r(x) ~ 0 implies that 2 > 0. Hence 2 = 2(N) has a minimum 
2c > 0. Therefore, 2 = 20 > 2c intersects with S at least two points and 
2 = 21 < 2c intersects with S at no points. This completes the proof. 

Shen [11] recently showed that if solutions of  (41-42) are ordered, then 
(41-42) has exactly two solutions. Here the solutions of  (41-42) 01(x) and 
02(x) being ordered means that 01(x) -r 02(x) for any real x. 

4. Numerical methods and results 

Let us first consider the supercritical case, i.e., 2 > 0. The difficulty in 
finding numerical solutions of  (41-42) is to distinguish one solution from 
the other with the same parameter  2 and the same boundary  data at - o e  
and + oe. We resolve this difficulty by solving (41-42) analytically from 
- oe to x = inf supp(r), 

32 2 - ~  
ql(x) - ~ sech (x - Lo), x < x_,  (48) 

and to determine the phase shift Lo. 
A new quantity B(x, Lo) is introduced as follows 

fx B(x, Lo) = r(t)  dt 

fl (~l'1(x)) 2 + + t 1 ,(x). (49) 
2 

It is clear that if B(x+, Lo) = 0, x+ = sup supp(r), then B(x, Lo) = 0 for all 
x -> x+. It is well known that [9, 12] 

(q . (x))2+ = 0 .  x > x + .  (50) 
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rtl(x+) = r/+ > 0, 

r t l(~) = 0  

has a unique solution. 
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Therefore if we can solve the following initial value problem 

2r/, + ~r/~ +/~r/lxx = 0 for x > x_, (53) 

with initial conditions 

32 
-x/-~-B (x_ - L0), (54) ql(x_) = -  2~ s e c h  2 

r/lx(x ) = - ~ - ~ r / , ( x  )tank / - ~ ( x _ - L 0 )  (55) 

32 
up to x+ for a given L0 such that B(x+, L0) = 0 and 0 < q~(x+) < -2-~7 then 

we have a global solution of (4142).  Therefore 

32 
B(x+, L0) = 0, 0 < r/l(x+) < - 2~ (56) 

is the condition to determine Lo. The number of solutions for L0 of (56) is 
the number of solutions of (4142).  

We have performed detailed computations for the case of triangular 

channel as d = �88 bc = b.  = -b b = ~/16w/~_ 3, and 
2' 

=)'R~/1-xZ; Ix I-<1, 
r(~) ~ 0, I x l >  l 

where R is a positive constant. Namely we solve the following problem 

5 
~lxx = 3( ,~,  - q~ - r(x)), x ~ ,  (57) 

~,( +_ 00) = 0 (58 )  

numerically. 
Based on the above analysis, the numerical procedure is carried out as 

follows. Given a trial value of Lo, we use a subroutine DVERK in IMSL 
(International Mathematical and Statistical Libraries) to solve the following 
initial value problem 

5 
q,~x=3(2qlx 2 . ,~ r /~ - r (x ) ) '  - l < x - <  1, (53') 

r /~ ( -1 )=35~)osech2  3 ~ ( - 1 - L o ) ,  (54') 

32 
rt+ < - 2-~' (51 )  

(52 )  
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~/Ix( --  1) = -- ~ / ~ l (  --  1)tanh / 4 ( - 1 - L0), (55') 

and compute  

( ~  5 t / l ( l ) ' ~  2,  , ,  B(I' L~ = ~ (q~(1))2 + ' , "  @ )  q l t  1)" 

Using a do loop for L0, a function B( 1, L0) vs Lo can be plotted. It turns out 
that  B(1, L0) has two zeros as were expected. For  2 = 2.2, R = 1.0, the two 
zeros are at L0t = -0 .126297  and L02 = 0.072517. Once having L01 and L02, 
we can solve (53'-55')  f rom - 1  to any positive right boundary  R+ instead 
to 1. Thus  two solutions of  (57-58) are obtained. The numerical  results 
obtained are shown in Figs. 5 and 6. For  R = 1.0, we find 2c = 2.075. For  
the parameter  2 > 2c, there exist two solutions of  the problem (50-51). The 
upper  branch corresponds to the perturbat ion,  due to the disturbance r(x), 
of solitary waves in a channel  of  uni form cross section. The lower branch 
corresponds to the per turbat ion,  also due to the disturbance r(x), of a null 
solution in a channel  of  uni form cross section. Thus  as r approaches zero, 
the solution diagram degenerates into its asymptotes.  We conjecture that  the 
upper  branch corresponds to stable solutions and the lower branch corre- 
sponds to unstable solutions. The p roo f  of  this conjecture for r = 0 was 

3 . 0  

2.5 

2 . 0  

1.5 

1.0 

0 . 5  

0 
0 

1 [ 
0 . 5  1.0 

R~l.O 

I I I I I 
1.5 2 . 0  2 . 5  3 . 0  3 . 5 4 . 0  ,k 

N 
3 . 5  

Figure 5 
Supercritical solution diagrams of  (41~42). The cross section of  the channel is a triangle with d = �88 
bL = b8 = l x f ~ x ~ _  43. The disturbance function r(x) is 

= f R ~ 0  Ixl<- 1, 
r(x) [ O, I x I > 1. 

The right curve corresponds to R = 1.0 and at its turning point 2 = 2 c = 2.075. The left curve 
corresponds to R = 0.5 and 2 c = 1.379. Also see equation (47). 
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1.0 
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0 .7  

0.6 

0.5 
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0.2 

0. !  

- 2 . 0  - 1 .5  - 1 . 0  

' r / l (X)  

f ~ i i i i t 

0 
- 0 . 5  0 0.5 1.0 1.5 2.0 

Figure 6 
Two  supercritical solutions of  (50-51) as 2 = 2.2 and R = 1.0. 
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11',,711l= 
2.0 , 

1.8 

1.6 

1,4 

1.0 

0.8 

0 .6  

0.4 

o 2  ~ ~ ~  
I I , '  15 r I 12 I 

-010 - 9  - 8  - 7  - v  - - 4  - 3  - -1 

Figure 7 
Subcritical solution diagrams of  (41-42). The cross section of  the channel is a triangle with 
d=~,bLl  = b  n =51~6x~__ -~'3 The disturbance function r(x) is 

= ~ R x / 1 - - x  2 Ix[-< 1 

r(x) ~ O, I x I > 1. 

The upper  curve corresponds to R = 1 and at its cutting point  2 = 2 d = - - 1 . 5 0 .  The lower curve 
corresponds  to R = 0.5 and at its cutting point  2 = 2 a = -1 .15 .  
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given by Jeffrey and Kakutan i  [ 13]. It seems that  to prove this conjecture for 
r ~ 0 is a very difficult problem. This is deferred to subsequent  research. 

Next  we consider subcritical waves for which 2 < 0. At  the steady state, 
if we take constant  solution of  (40) upstream, then the solution downst ream 
is cnoidal waves. Fol lowing the method  due to Shen, et al. [6], we need to 
solve an initial value problem. 

2~h + ~rl 2 + ~rhxx = r(x) + 2H~ + c~H~, x > x_ ,  (59) 

ql(x) = HI, x < x _ ,  (60) 

qlx(X) = 0 ,  x < x _  (61) 

with the constraint  

- t l~ (X)  d x  + H~ = 0 (62) 
T + 

where T is the period of  cnoidal waves at downstream.  The constraint  (62) 
is used to determine Ht > 0. 

For  a tr iangular channel  of  d = �88 b R = bL =-b b = ~/16,~/-2--34, and 
2' 

= , f R , / 1 -  x =, I x l -  1, 
r(x) ~ O, Ixl > 1, 

the numerical  results are shown in Figs. 7-8. F r o m  Fig. 7, we see that  there 

'r'tl(x) 
2.0 , , 

1.5 

1 .0  

0 . 5  

0 

- 0 . 5  

- 1 . 0  

- 1 . 5  

- 2 . 0  I 11 I I I I L I I 
3 - 2  - 0 1 2 3 4 5 6 

Figure 8 
A subcritical solution of (52-55) as 2 = - 2 . 0  and R = 1.0. The period of cnoidal waves at downstream 
is 3.46. 
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exists a critical value 2a of )~ such that (59-62) has one solution 2 < 2d < 0, 
and no solution for 2 > 2d < 0. 
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Abstract 

Long waves in a current of an inviscid fluid of  constant density flowing through a channel of 
arbitrary cross section under disturbances of pressure distribution on free surface and obstructors on the 
wall of  the channel are considered. The first order asymptotic approximation of  the elevation of  the free 
surface satisfies a forced Korteweg-de Vries equation when the current is near its critical state. To 
determine the coefficients of  the forced Korteweg-de Vries equation, we need to solve a linear Neumann 
problem of  an elliptic partial differential equation, of which analytical solutions are found for constant 
current and rectangular or triangular cross section of  the channel. It is proved that the forced 
Korteweg-de Vries equation has at least two solutions when the current is supercritical and the parameter 
2 is greater than a critical value 2 c > 0. It is also proved that there do not exist solitary waves in a current 
exactly at its critical state. Numerical solutions of  steady state are obtained for both supercritical and 
subcritical currents. 
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