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By asymptotic analysis, it has been demonstrated that there exists a stationary solitary wave 
on the downstream side of a flat shelf when the upstream velocity I!? is greater than 
or equal to Pc > U(O)*‘, where U(O)* ’ IS the propagation speed of shallow-water waves and Ue 
is determined by Eq. ( 12). The solitary wave is found by solving a forced Korteweg-de Vries 
equation. The amplitude of the solitary wave is proportional to the upstream velocity and 
the downstream elevation is inversely proportional to the upstream velocity. A second branch of 
solutions of the forced Korteweg-de Vries equation are also found, which are uniform 
flows both far upstream and far downstream. 

In this Brief Communication, we announce our finding 
of the existence of a stationary solitary wave on a shelf 
when the upstream velocity P is greater than or equal to 

U$ > U(O)*, where U(O)* is the propagation speed of 
shallow-water waves and @  is determined by Eq. ( 12). 
When this condition prevails, the upstream flow is a soli- 
tary wave tail and the downstream flow is a complete sol- 
itary wave whose base is higher than that of the upstream 
solitary wave tail. There is a smooth transition region that 
connects the upstream solitary wave tail and the base of the 
downstream solitary wave (see Fig. 1) . 

The stationary solitary wave illustrated in Fig. 1 is 
different from a solitary wave that surges from an upstream 
deeper water zone to a downstream shelf and disintegrates 
into a train of smaller solitary waves, which is the soliton 
fission problem, as first studied by Madsen and Mei.’ Our 
results are also different from those obtained by King and 
Bloor.” They studied the free surface flows over a step with 
the same fluid flow configuration as that described in the 
present work, except that they restricted themselves to 
only single-layer fluid flows. Instead of finding a solitary 
wave downstream, their results indicate that the down- 
stream flow is uniform. 

The existence of the solitary wave in this announce- 
ment, although not yet rigorously proved mathematically, 
can be intuitively justified. It is well known that at a su- 
percritical speed there exists a stable solitary wave in each 
single-layer free surface flow. A bottom obstruction, such 
as a shelf, only alters the shape of the solitary wave, called 
the free solitary wave, in the flat channel but does not 
completely remove it. The altered solitary wave is consid- 
ered to be a perturbation of the free solitary wave by the 
obstruction, as explained by Vanden-Broecka3 This expla- 
nation is supported by much evidence.’ The solitary wave 
on a shelf in a two-layer flow in a closed channel is a 
perturbation of the interfacial free solitary wave. The ex- 
istence of the free solitary wave was mathematically proved 
by Amick and Turner,’ and was numerically justified by 
Turner and Vanden-Broeck.6 

A second branch of solutions is the perturbation, by 
the shelf, of the unstable uniform flows in the case where 
there is no bottom obstruction. This perturbation is a so- 

lution that is uniform both far upstream and far down- 
stream. Solutions on this branch are supposedly unstable, 
yet the justification of this instability claim seems not triv- 
ial and is deferred to subsequent research. The solutions 
found by King and Bloor’ may be considered as the solu- 
tions on this branch. 

Both of the aforementioned two branches of solutions 
have been found as solutions of a stationary forced 
Korteweg-de Vries equation (sfKdV). This equation was 
derived as the first-order asymptotic approximation of the 
free surface or interface of fluid flows over an obstruction. 
Hence, the sfKdV is a model equation for our problem. 
Next, we describe the meaning of this sfKdV. 

Consider fluid flows in a two-dimensional channel. The 
bottom of the channel has a shelf and is otherwise flat. The 
transition zone from the upstream flat bottom to the down- 
stream flat shelf is so short that when considering long 
waves, the transition is regarded as a step jump. 

If one considers stratified fluid flows in an open chan- 
nel, the first-order approximation of both the free surface 
and interface yields sfKdV equations. Now, as an example, 
we consider two-layer fluid flows in a closed channel: a 
bottom fluid of density p- and depth H- and a lighter top 
fluid of density p+ (i.e., p+ <p-) and depth H,. The two 
fluids are confined in a closed channel by a horizontal lid 
above and a semi-infinite step below with the step height 
S( <H-) (see Fig. 2). The flow is assumed to be two 
dimensional, stationary, and irrotational in each layer. Let 
the x* axis be aligned along the longitudinal direction, and 
the y* axis vertically opposite to the gravitational direc- 
tion. The subscripts “ f ” signify the quantities of the upper 
layer and the lower layer fluid, respectively. The flow po- 
tential functions are a>*,. The upstream uniform velocities 
are P!. The interfacial profile is y*= H- +77*(x*). The 
gravitational acceleration is g. The upper boundary of the 
channel is y*= H- +H+ and the lower boundary is 
y*=Sjt;“(x*), where X(X*) is the Heaviside step func- 
tion defined by 

2iqx*)=( 
1, when x* > 0, 
0, otherwise, 

whose derivative is the Dirac delta function 6(x*). 
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FIG. 1. The solitary wave on a shelf. 

The first-order approximation of the interface profile 
yields a sfKdV: 

m,~~1)+m2~(‘)~~1)+m3~(1) - xrx-m4NxA (1) 
where the coefficients mk (k= 1,2,3,4) are given by 

ml=2 p/z 
( 

U(“‘+L-lJ~’ 
CT + + 1 

f 

m2=3 
( 

5 uy=- p” ) 
1 

(2) 

(3) 

m3= -f(apUf)‘2+ Uc_O’2), 

m4= @I’, 

and 

(4) 

(5) 

E=(H-/L)~~~, 2=S/H- (small step assumption), 

u=H+/H-, p=p+/p-, y= rr*,/v*-, 

17, = F&/(gH._ ) 1/2 

= Uc,O) + e/z * (near critical velocities), 

(x,y) = (~“~x*y*)/H+ , (long wave assumption), 

~=~*/H-=ET+~)+~(.?), 

where * signifies quantities with dimension. The critical 
velocities U$)) are determined by 
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FIG. 2. The internal wave of a two-layer fluid over a shelf in a closed 
channel. 

u(o)*==*( l-p)/(a+yp), u~‘=yuLO’.~ (6) 
We use the sfKdV ( 1) as our model equation, which is 

an accurate model equation for near critical flows over a 
semicircular bump for a large range of E values (such as 
0<~<0.7)~, but omit its derivation in this work. In the 
following, when y=l, we present two branches of solu- 
tions of boundary-value problems (BVP) for the sfKdV 
(1): 

a?+” +2cq(‘b+‘) +p?7(1) =PS(x) x x x.xX , - co <x-c co, 
(7) 

r]“‘(-co)=O, 7p(co)=a, (8) 

p( f co ) =Tp( f co) =o. x xx (9) 
In the above, n=m,/(2fil) CO, B=rnd& ~0, and 
P=m4/E, > 0 are determined by the density ratio and the 
depth ratio of the two fluids, Gil =m,/jl, and A > 0 signifies 
supercritical flows, and since the far downstream interface 
is an elevation, a is positive. Integrating the sfKdV (7) 
from - CO to CO with respect to x, we obtain a relationship 
among P, 1, and a: 

ila+cra2=P. (10) 
We can solve this equation to obtain two solutions for a, 

a&= [ -1~ (/22+4arP)“2]/2a, (11) 
when 

A>2( --aP)‘%&= (PC- U’“‘*)/e(gH-) ‘12. (12) 

Here, U$= ( U(O) $ E&) (gH_ ) 1’2 and U(O)* = U(O) 
xkH_) . 

Integrating twice the BVP (7)-(9) results in an initial 
value problem (IVP) 

(3p/2~r)(rl~‘)~=Q,(rl(‘)), x>O, (13) 

p(0) =A *7 (14) 
where 

Q,(rl(1))=(W,--T](1))(r](1)-a,)2, (15) 

A,=a,(4P-/Za,)/6P (16) 

w”=-&[ 1*2( l+4$)1’2]. (17) 

Since Q-(~(‘)) <0 when W- <r](‘)<a the IVP (13) 
and (14) does not have a bounded solutiz. Thus, we take 
only a+ in ( 11) to search for the two branches of solutions. 

Solitaly wave branch. The solitary wave on the shelf is 

P(x) =a+ + ( W+ --a+ 1 

(18) 
It seems difficult to determine the phase shift x8 analyti- 
cally since Eq. (13) becomes singular when n(‘)=a+. 
Thus, we used the ordinary differential equation (ODE) 
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FIG. 3. Solitary wave solutions of (7)-(9) with Q= -3/4, p=  - l/6, 
and  P=l for n=l/f, 1.80, 1.85, and  1.90. 

solver in MATHEMATICA called NDSolve to obtain our sol- 
itary wave solutions. Some solutions are shown in Fig. 3. 

Uniform flow branch. The analytic expression for the 
solutions on this branch is 

#1)(x) = -E sech” 

.[x--(-$)lnarcsech( -gq+)ln]] 

(19) 
when x < 0 and 

g”)(x) =a+ + (a+ - W+)csch2 I( ~~ X 

+arccoth ( $+l&) “ii (20) 

when x)0. Graphics of solutions on this branch are shown 
in Fig. 4  which qualitatively agree with numerical solutions 
shown in Fig. 2  in Ref. 2. In terms of quantity, when the 

FIG. 4. Uniform flow solutions of (7)-(9) with 01= -3/4, p=--l/6, 
and  P=l for /1=~3, 1.80, 1.85, and  1.90. 

upstream Froude number is 2 and the step height is 0.2H 
for a single-layer fluid ilow, the downstream free surface 
height is 1.27H according to Ref. 4  and 1.11 H according to 
the present sfKdV theory. Although the sfKdV asymptotic 
approximation systematically underestimates the down- 
stream elevation, it successfully demonstrates the existence 
of two branches of solutions: a shelf solitary wave and a 
shelf uniform flow. 
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