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ABSTRACT

This paper provides a systematic procedure for computing the regional average of climate data in a subregion
of the earth surface using the covariance function written in terms of empirical orthogonal functions (EOFs).
The method is optimal in the sense of minimum mean square error (mse) and gives an mse estimate of the
averaging results. The random measurement error is also included in the total mse. Since the EOFs can account
for spatial inhomogeneities, the method can be more accurate than those that assume a homogeneous covariance
matrix. This study shows how to further improve the accuracy of optimal averaging (OA) by improving the
accuracy of the eigenvalues of the covariance function through an extrapolation method. The accuracy of the
authors’ procedure is tested using cross-validation techniques, which simulate past sampling conditions on the
recent, well-sampled tropical Pacific SST and use the EOFs independent to the month being tested. The true
sampling error of the cross-validated tests is computed with respect to the 18 3 18 data for various sampling
conditions. The theoretical sampling error is computed from the authors’ derived formula and compared to the
true error from the cross-validation tests. The authors’ numerical results show that (i) the extrapolation method
can sometimes improve the accuracy of the eigenvalues by 10%, (ii) the optimal averaging consistently yields
smaller mse than the arithmetic averaging, and (iii) the theoretical formula for evaluating the OA error gives
estimates that compare well with the true error.

1. Introduction

The spatial average of a climate field can be a useful
index indicating the change of a climate state. The glob-
al average annual mean of the surface air temperature
in the past 150 years is a well-known example of global
climate change index. It is desirable to have an optimal
averaging method that yields both accurate average and
sampling error since the historical observations were
often sparse. Using EOFs to take account of spatial in-
homogeneity, Shen et al. (1994) developed such an op-
timal method for the average on the entire globe. They
concluded that about 60 well-distributed stations can
yield a global average annual mean surface air temper-
ature with an error less than 10% compared with the
natural variability. Because the spatial average of a cli-
mate quantity over a region is sometimes a more ef-
fective index compared to the global average for some
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important climate phenomena, there is a need of an op-
timal regional averaging method that can also take ac-
count of spatial inhomogeneity. For instance the average
of the eastern equatorial Pacific SST is significantly cor-
related with the ENSO index and hence a good indicator
of the strength of an El Ninõ event (Peixoto and Oort
1992, 412–449).

The objective of this paper is to develop an optimal
and systematic averaging procedure to spatially average
the anomaly of a climate quantity in a region. To in-
crease the accuracy level of the optimal averaging, an
extrapolation method is introduced to refine the eigen-
values of the covariance matrix of the climate anomaly
field. The major procedure here is an extension of that
of Shen et al. (1994) from global averaging to regional
averaging. The extension also includes (i) the use of the
extrapolated eigenvalues, and (ii) the consideration of
the random measurement error when estimating the total
sampling error. The new method improves the accuracy
of averaging and it is important for various kinds of
climate change detection and climate analysis studies.
The extrapolation method used to refine the computa-
tions of the eigenvalues is remarkably effective and also
appears to be new in statistical climatology.
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The method is tested using the optimal interpolation
(OI) sea surface temperature (SST) for the tropical Pa-
cific region (208S, 208N) 3 (1558E, 1058W) as the input
data. The OI SST data are on a 18 3 18 grid (Reynolds
and Smith 1994) from January 1982 to December 1995.
Because of the inclusion of dense satellite observations,
anchored to all available ship and buoy observations,
the OI gives the most accurate SST available. Since one
can never obtain the absolute truth of the SST data in
a region, in this study, the OI SST is used to define the
‘‘truth’’ with quotation marks. The data used for the
cross-validation tests are subsets of the full 18 3 18 grid.
The data distribution of these subsets, that is, the gapped
data, are determined by the historical sampling condi-
tions. The mean square error (mse) of averaging the
gapped data in the cross-validated tests is computed
using the EOFs and eigenvalues obtained from different
subsets of the OI data.

To outline our goals, let T(r̂) be a climate anomaly
field over a region V, let N denote an observation net-
work, and T̃j 5 T̃(r̂ j) 5 T(r̂ j) 1 Ej, j ∈ N be samples
(i.e., data), where Ej is the random measurement error
(instrument error, reading error, and other random ar-
tificial influences), and T(r̂ j) is the error-free value of
the climate anomaly field at the point r̂ i. The systematic
errors are assumed to have been removed from the raw
data, and hence the remaining random error is uncor-
related with the anomaly field and with errors at other
locations:

^EiT& 5 0, ^EiEj& 5 0 when i ± j, (1)

where ^ · & denotes the ensemble average. Our two goals
are (a) to find the best spatial average of the anomaly
field T over V (section 2), and (b) to illustrate an ex-
trapolation method that can improve the accuracy of
eigenvalues (section 3). Computational results are pre-
sented in section 4 to demonstrate the usefulness of our
OA procedure to climate studies. Discussions and con-
clusions are in section 5.

2. Optimal regional averaging and its mse

a. Mse sampling error

The average of the field T over a region V is

1
T 5 T(r̂) dV, (2)EA

V

where A is the area of the region V. Our objective is
to use the sampling data T̃(r̂i) to estimate this quantity
with the maximum accuracy. The method employed in
this paper is referred to as optimal averaging and has
been discussed by Kagan (1979), Vinnikov et al. (1990),
Gandin (1993), Smith et al. (1994), and Shen et al.
(1994). Here the version of OA similar to that of Shen
et al. (1994) is followed, in which EOFs defined on the
entire globe were computed for 40 yr of data (1950–
89) using the series expansion of spherical harmonic

functions. The method of Shen et al. (1994) is extended
in this study from global averaging to regional averaging
where spherical harmonics are no longer an orthonormal
basis. Hence in this paper we do not use spherical har-
monics but instead take an area factor into account when
computing eigenvalues and EOFs. Namely, the EOFs
are computed from area-weighted OI data for the period
of January 1982–December 1995. The effect of random
measurement errors is included in the total sampling
error, as is done in Vinnikov et al. (1990) and Gandin
(1993).

The linear estimator of the average, denoted by , isT̂
ˆ ˜T 5 w T , (3)O j j

jeN

where N denotes the observation network on which the
gapped data are distributed and the weights wj satisfy
a normalization condition:

w 5 1. (4)O j
jeN

This condition is needed because our data contain
trends. So to guarantee that

ˆ ˜^T& 5 w ^T &O j j
jeN

when ^T̃j& 5 ^ &, it is necessary to have the normal-T̂
ization condition (4) as discussed by Kagan (1979). This
will be discussed further in section 4b.

The sampling error is measured by the mean square
error

e2 5 ^(T 2 )2&,T̂ (5)

and we define the covariance function by

r(r̂, r̂9) 5 ^T(r̂)T(r̂9)&. (6)

The following notations are adopted:

rij 5 r(r̂ i, r̂j) 5 ^TiTj& (7)

and

1
r 5 dV^T(r̂)T &. (8)j E jA

V

In terms of data T̃i and measurement errors ^ &, the2E i

covariance matrix rij can be written as

rij 5 ^TiTj& 5 ^T̃iT̃j& 1 ^ &dij,2E i (9)

where dij is the Kronecker delta that is equal to 1 when
i 5 j and 0 otherwise.

The mse can be written as
ˆ ˆ ˆ2 ¯ ¯e 5 ^T T9& 2 2^T T 1 ^T T9&

1
5 dV dV9 r(r̂, r̂9) 2 2 w rOE E j j2A jeNV V

2 21 w w r 1 w ^E &. (10)O Oi j ij i i
i,jeN ieN

To minimize the mse, a Lagrange function is construct-
ed:
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2L (w , · · · , w ) 5 e (w , · · · , w ) 12L w 21 ,O1 N 1 N j1 2jeN

(11)

where L is the Lagrange multiplier and N is the number
of stations in the network N. The partial derivatives

]L
5 0, j 5 1, 2, 3, . . . , N,

]wj

and

]L
5 0,

]L

lead to

2r w 1 ^E &w 1 L 5 r , i 5 1, 2, . . . , N; (12)O ij j i i i
jeN

w 5 1. (13)O j
jeN

The solution of the above set of equations yields the
optimal weights w1, w2, . . . , wN for computing the op-
timal averaging by (3).

The covariance matrix (rij) can be approximated by
Mg1

2˜ ˜r 5 T (g)T (g) 1 ^E &d . (14)Oij i j i ijM g51g

In this expression it is assumed that the time series
T(r̂ i, t) satisfies an ergodic process [the ensemble av-
erage ^T(r̂ i, t)T(r̂ j, t)& is equal to the temporal average,
which is approximated by the above summation with
respect to the time variable g]. The value Mg is the
maximal length of the data streams to be processed. It
should be pointed out that T̃j(g) may be serially cor-
related, but due to the short length of the data streams
of the recent accurate observation, it is still the best
approximation to estimate the covariance matrix (rij) by
(14) rather than throwing out some data so that the
remaining data is serially independent of each other.
From (14) one can see that the rank of the computed
covariance matrix (rij) is Mg since Mg is usually much
less than the total number of OI grids. Thus the co-
variance matrix (rij) is often not a full rank matrix and
this can cause some errors in computing the EOFs and
variances as discussed in Zwiers and Shen (1997).

To solve (12) and (13), one needs to find r i, the
average of the covariance function around the station
r̂i. Hence, the original problem of averaging T is par-
tially converted into an averaging problem of the co-
variance function. This conversion, although mathe-
matically straightforward, is important since it provides
us a new way of evaluating sampling errors due to the
fact that r i can be computed from the averages of the
EOFs. In this analysis we take advantage of the fact
that the leading EOFs (i.e., characteristic climate pat-
terns) are often stable for several decades and therefore
can be estimated from more recent and relatively more

accurate observations. They can also be estimated from
climate models, such as GCMs (Zwiers and Shen 1997)
or even energy balance models (Kim and North 1993).
The algorithm for computing EOFs from the area-
weighted data and that for computing r i are described
in the next section.

b. Computation of r i and mse

Our method of computing r i is illustrated using the
monthly SST OI data from January 1982 to December
1995. Here these data are regarded as the truth. Anom-
alies of SST are computed with respect to the clima-
tology of Reynolds and Smith (1995). The OI SST
anomalies are gridded on a 18 3 18 grid, denoted by
OI, which is a very dense network for the monthly SST
field. Let MOI denote the length of the data stream (equal
to 168 months). Then (14), with exclusion of the random
error ^ &, is used to compute the covariance matrix2E i

( ) from the OI data. The exact eigenvalue problemOIrij

is

r(r̂, r̂9)c (r̂9) dV9 5 l c (r̂). (15)E k k k

V

Here ck(r̂) is the kth EOF (or mode) and lk is the vari-
ance (eigenvalue) of T(r̂) on the kth mode (k 5 1, 2,
· · ·). The approximate eigenvalues of the above contin-
uum eigenproblem can be estimated by a discretization
procedure given by

(k) (k)r̂ ŷ 5 l̂ ŷ , (16)O ij j k i
jeOI

where

OI(r̂ ) 5 ÏA r ÏA (17)1 2ij i ij j

is the modified covariance matrix,

5 ck(r̂ j) Aj
(k)ŷ Ïj (18)

are the modified eigenvectors satisfying the normaliza-
tion condition

(k) 2(ŷ ) 5 1, (19)O j
jeOI

and Aj is the area associated with the station r̂ j. For
uniform latitude–longitude grid boxes, one has

Aj 5 cosf jDuDf, (20)

where f j is the latitude of r̂ j and the Du and Df are the
zonal and meridional box dimensions, respectively,
which are measured in radians. The linear spatial unit
(i.e., the length unit) is in the radius of earth: R 5 6376
km.

Since the eigenfunctions cn(r̂) form an orthonormal
functional basis, the covariance function can be ex-
panded into an EOF form

`

r(r̂, r̂9) 5 l c (r̂)c (r̂9). (21)O n n n
n51
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The EOF representations of r(r̂, r̂ i) and r i are, re-
spectively,

`

r(r̂, r̂ ) 5 l c (r̂)c (r̂ ) (22)Oi n n n i
n51

and
`

r 5 l c (r̂ )c , (23)Oi n n i n
n51

where cn is defined as

1
c 5 c (r̂) dV, (24)n E nA

V

which is the average of the eigenfunction cn(r̂). In prac-
tice one has to compute an approximate value of this
by numerical integration:

ÏA1 j(n)c ø c (r̂ )A ø ŷ . (25)O On n j j jA AjeOI jeOI

In summary, to compute r i we

1) compute the covariance matrix [ ] according toOIrij

(14) (excluding the term ^ &dij) and the modified2E i

covariance matrix according to (17),r̂ij

2) solve the eigenvalue problem for the modified co-
variance matrix to obtain eigenvalues and nor-ˆr̂ lij k

malized eigenvectors , and(k)ŷ i

3) use (25) to compute c n and (18) to compute cn(r̂ i),
and finally compute r i by

Mc

r ø l̂ c (r̂ )c . (26)Oi n n i n
n51

The quantities and r i will be used in (12), which,r̂ij

together with (13), determines the optimal weights w1,
. . . , wN for averaging. The eigenvalues , eigenvectorsl̂n

cn(r̂ i), and their averages c n will be used to calculate
the total sampling error given by (27) below. The sum
in (26) above and (27) below for n in practice runs
through a relatively small number of modes Mc, say 20,
since the higher modes are contaminated by noise and
the inclusion of these modes may increase error. As
discussed by Kagan (1979) it is important to avoid add-
ing more detail to the covariance function than can be
justified by the amount of data available to compute
them. However, this problem is lessened by using EOFs
and the mse formula [(27)] below since each mode is
scaled by its eigenvalue. This forces the first few, most
important modes, to dominate. In practical computa-
tions, one may choose the cutoff mode number Mc ac-
cording to the criterion of 80%–95% variances ex-
plained (by the first Mc modes).

By (10) and (21), the final expression of mse is ob-
tained in terms of Mc EOF modes:

2Mc

2 2 2e ø l̂ c 2 w c (r̂ ) 1 w ^E &. (27)O O On n j n j i i[ ]n51 jeN ieN

Since this formula includes the EOF patterns, if the
observations are along the node lines of an EOF (where
the EOF is equal to zero) or in the fine spatial structure
area of an EOF, the sampling error is large for the cor-
responding mode. Thus this formula is also useful for
future observation network design.

Second, the sampling error formula (27) implies that
the mse is linearly proportional to the eigenvalues and
is in a square relationship with the numerical integration
errors of the eigenfunctions. This is the mathematical
basis of many researchers’ opinion that to estimate the
mse of an OA it is crucial to obtain highly accurate
eigenvalues, and the exact shapes of the eigenfunctions
do not matter as much. Therefore it is desirable to com-
pute the eigenvalues as accurately as possible.

3. Extrapolation method for eigenvalue refinement

The purpose of the extrapolation method presented
here is to increase the accuracy of the eigenvalue es-
timations. For instance, in the test described in section
4, using this method one can use a 58 3 58 network to
get eigenvalues of about the same accuracy as those
obtained from a 28 3 28 network. This is an important
consequence since for many climatological datasets, it
is only possible to interpolate the data onto a coarse
network.

We use h to denote the grid box size (in radians). It
is assumed that if one uses a network of size h to es-
timate the eigenvalues, the accuracy is of second order.
Namely,

,2 4ˆl 2 l 5 Ch 1 O(h ) (28)

where l is the true eigenvalue, is the one estimatedl̂
from the network, and C is a constant of order one. This
assumption, though not proved mathematically, is true
in many practical cases. It is numerically verified for
the OI SST data in a rectangular region (208S, 208N)
3 (1558E, 1058W).

In typical practice, grid sizes are usually smaller than
tens of degrees; in terms of radians, the grid size h 5
several degrees 3 p /180 is a small number (less than
0.3). The square of it is less than 0.1, which is the order
estimation (second-order accuracy) of the error for com-
puting the eigenvalues. Of course one would desire to
have higher-order accuracy, say, O(h4) where h4 , 0.01.
The purpose of the extrapolation method is to raise the
order of accuracy. The idea is to optimally and linearly
combine the eigenvalues computed from different net-
works. Suppose that h1 and h2 are the sizes of two dif-
ferent networks. The assumption of second-order ac-
curacy is

(1) 2 4l 2 l̂ 5 Ch 1 O(h ), (29)1 1

(2) 2 4l 2 l̂ 5 Ch 1 O(h ), (30)2 2

where the superscripts (1) and (2) signify the networks.
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TABLE 1. Eigenvalues (3 1000) of the tropical Pacific SST directly
computed from networks (first 10 eigenvalues and four different net-
work resolutions.

Grid
reso-
lution

Mode

1 2 3 4 5 6 7 8 9 10

1 3 1
2 3 2
5 3 5

10 3 10

270.2
268.5
255.7
217.9

56.3
56.0
54.3
49.4

20.5
20.1
17.9
14.7

15.3
15.1
14.0
11.2

12.9
12.7
11.5

9.5

11.3
11.2
10.5

8.7

8.8
8.7
8.0
5.8

7.1
7.0
6.6
5.7

6.8
6.7
6.1
5.1

4.8
4.7
4.3
3.6

The linear combination of the two estimated eigenvalues
is

,(1,2) (1) (2)ˆ ˆ ˆl 5 w l 1 w l1,2 2,1 (31)

where

w1,2 1 w2,1 5 1. (32)

Multiplying (29) by w1,2 and (30) by w2,1 and adding
the two resulting equations together, we get

.(1,2) 2 2 4ˆl 2 l 5 C(w h 1 w h ) 1 O(h )1,2 1 2,1 2 2

Without loss of generality it has been regarded that h1

# h2 in the above expression. To force the fourth-order
accuracy, one must have

w1,2 1 w2,1 5 0.2 2h h1 2 (33)

This equation and the normalization equation (32) lead
to the optimal weights:

2 2h h2 1w 5 and w 5 . (34)1,2 2,12 2 2 2h 2 h h 2 h2 1 1 2

From these equations one can see that one of the weights
must be negative. This is the reason why the method is
called extrapolation in contrast to interpolation (for
which both weights are positive). If h2 5 2h1, then

4 1
w 5 , w 5 2 . (35)1,2 2,13 3

In general the more dense network renders more ac-
curate eigenvalues. Hence if h2 $ h1, helps with(2) (1)ˆ ˆl l
a correction equal to

,CC (2) (1)ˆ ˆl 5 w (l 2 l )2,1 (36)

and w2,1 is negative. If the network consistently under-
estimates the eigenvalues, then # and the cor-(2) (1)ˆ ˆl l
rection quantity lCC is positive. Otherwise, if the net-
work consistently overestimates the eigenvalues, then

$ and the correction quantity lCC is negative.(2) (1)ˆ ˆl l
For the SST field considered in this paper, networks
consistently underestimate the true eigenvalues and

. 0. See Table 1.CCl̂
In the above, the word consistently is emphasized

because only under this condition can our extrapolation
method be applied. Table 1 shows that the coarser grid
consistently yields lower eigenvalues and hence our ex-
trapolation method can be safely applied. If one network

underestimates the eigenvalues and the other makes
overestimates, then one would expect a more complex
extrapolation method than the one presented here. A
nonsystematic situation may be a consequence of a high-
ly inhomogeneous field with a coarse observation net-
work, since some important finer structures cannot be
captured by a coarse network, and hence there is in-
consistency of over- and underestimations.

Another point is how to choose h1 and h2. When h1

and h2 are too close to each other, |w1,2| and |w2,1| are
very large and lead to computational instability. There-
fore the correction is sometimes highly unreliable. If h1

K h2, then w2,1/w1,2 is too small and hence the correction
amount lCC is too small to be effective. Our experiments
suggest a range of

h2/h1 5 2 6 0.5. (37)

Similarly one can derive the sixth-order accuracy
combination when combining the results of the fourth-
order accuracy and requiring at least three networks.
The higher-order extrapolation makes a finer tuning of
the eigenvalues. The correction amount lCC is usually
small for this finer tuning, and sometimes it is too small
to be noticeable. Our experiments on the SST data in
the region (208S, 208N) 3 (1558E, 1058W) show that
the fourth-order extrapolation renders no significant im-
provement to the eigenvalues, while the second-order
extrapolation does reduce the errors of the eigenvalues
up to 10% for some modes.

4. Computational results

This section describes our computational results on
eigenvalues, eigenfunctions, optimal averaging, and its
mse. First, we present the results of the eigenvalues and
eigenfunctions, which give a rough estimation of the
variance of the spatially averaged SST anomaly.

a. Total variances and eigenvalues

The area-weighted total variance ^∫V T 2(r̂) dV& can
be used as another verification for the eigenvalue com-
putation and a reference quantity to determine the num-
ber of modes used in sampling error calculations. This
variance ^∫V T 2(r̂) dV& can be computed directly from
numerical integration:

1681
2 2 2T (r̂) dV ø T (r̂ , g) cosf (p/180)OOE j j7 8 168 g51 jeOIV

2 25 0.473[8C] R , (38)

where g indicates the time variable in the unit of month,
fj is the latitude of the grid point r̂ j, and cosfj(p /180)2

is the area of the jth 18 3 18 grid box.
Eigenvalues were computed for the SST anomalies

[with respect to the Reynolds and Smith (1995) cli-
matology] over the tropical Pacific region (208S, 208N)
3 (1558E, 1058W) using monthly data from January
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TABLE 2. Extrapolated eigenvalues (3 1000) for the tropical Pacific
SST where the grid labeled r8 3 r8 is the combination of the r8 3
r8 and 2r8 3 2r8 grids.

Grid
reso-
lution

Mode

1 2 3 4 5 6 7 8 9 10

1 3 1
2 3 2
5 3 5

270.7
270.9
268.3

56.3
56.3
56.0

20.6
20.6
18.9

15.3
15.3
14.9

13.0
13.0
12.2

11.4
11.4
11.1

8.9
8.8
8.7

7.1
7.1
6.9

6.8
6.8
6.5

4.8
4.8
4.5

1982 to December 1995. Table 1 shows the eigenvalues
computed from different grid sizes and Table 2 shows
the extrapolated eigenvalues. Table 1 clearly demon-
strates that the more sparse grid consistently yields low-
er estimation of the eigenvalues and hence the extrap-
olation method described in section 3 can be safely ap-
plied. The combination of the 18 3 18 and 28 3 28 grids
yields the most accurate eigenvalues one can obtain and
that are thus regarded as the truth. The summation of
the first 50 of these eigenvalues is

50

l̂ 5 0.464.O n
n51

Because of

`

2 2^T (r̂)& 5 l c (r̂),O n n
n51

and the normalization condition for (r̂), one has2cn

` 50

2 2A^T & 5 T (r̂) dV 5 l ø lO O(m) E n n7 8 n51 n51V

2 25 0.464 [8C] R ,

where R is the radius of earth and ^ & is the mean2T (m)

value of the SST variance. The total variance
0.464[8C]2R2 computed from the summation of the ei-
genvalues is in a good agreement with 0.473[8C]2R2

computed from the direct numerical integration shown
in (38), and this is an independent verification for the
eigenvalue computation. The area of V is A 5 1.194
R2. Hence

0.464
2 2^T & ø 5 0.389[8C] .(m) 1.194

The standard deviation is

2Ï^T & 5 0.624[8C]. (39)(m)

The first 50 extrapolated eigenvalues from the 18 3 18
grid explains 98% (50.464/0.473) of the total variance,
while the first 20 eigenvalues already explains 93%
(50.442/0.473). Considering that the high modes con-
tains much noise, it was determined to take the first 20
modes in our sampling error estimation, that is, Mc 5
20 in (26), (27), and the pertinent equations in the rest
of this paper.

b. Average temperature

The strong correlation between the SST and the evap-
oration–precipitation in the tropical Pacific requires ac-
curate assessment of various types of SST characteris-
tics, one of which is the spatial average. A possible
strong correlation between the El Ninõ and the tropical
Pacific average SST motivates us in the present careful
study of optimal averaging and its error estimation
(Peixoto and Oort 1992, 412–449). The optimal aver-
aging method developed here makes use of the most
accurate estimation of variances by an extrapolation and
the EOFs derived from the recently available OI data
of Smith et al. (1996). Our results include not only the
spatial average of the historical data from 1856 to 1995
but also the statistical sampling error. The sampling er-
ror is computed from both the theoretical formula (27)
and cross validation for various 14-yr periods.

The historical sampling conditions, that is, the num-
ber and locations of the sampling points, are considered
for six 14-yr periods in the tropical Pacific region (208S,
208N) 3 (1558E, 1058W). The sampling locations are
at the center of each 58 3 58 box with the following
four boundary sampling points: 17.58S, 157.58E;
17.58N, 157.58E; 17.58S, 107.58W; and 17.58N,
107.58W. Thus the maximal number of sampling points
is 20 3 8 5 160. See Figs. 1 and 2 for illustrations.
The sampled data are the 14-yr OI data between January
1982 and December 1995, for the SST characteristics
of the OI data are known and hence can be used to
examine the goodness of the the historical sampling
conditions by estimating the sampling errors. This test
of using the historical sampling condition on the more
recent data is in the category of cross validation. The
six historical periods tested are 1882–95, 1912–25,
1932–45, 1952–65, 1972–85, and 1982–95. Data used
to define the locations of the OI data for each cross-
validation test network are from an updated version of
the atlas of Bottomley et al. (1990), provided by the
U.K. Meteorological Office. These data are on a 58 3
58 grid with special values to mark where there are no
data for a certain month. The sampling conditions for
October 1938 and January 1979 are shown in Figs. 1a
and 1b, respectively. The total number of sampling
points as a function of time from 1865 to 1995 is shown
in Fig. 2.

Cross validation employs a separate set of EOFs for
each month averaged, as well as a sparse grid from
historical sampling. The EOFs for each month are com-
puted using all monthly data except for the averaging
month and eight months on either side of it. This pro-
cedure gives a set of EOFs for each month that are
approximately independent of the month, to better sim-
ulate the accuracy that one may expect in historical
periods. The cross validation is explained in more detail,
in a different context, in Smith et al. (1996).

The error associated with each cross-validation period
is estimated. Since the OI anomalies are regarded as the
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FIG. 1. Observation data: (a) October 1938 and (b) January 1979. Gray shadings indicate grids with data.

truth, one can use the 18 3 18 OI to directly compute
the true average and the true error of each cross-vali-
dation estimate. The cross-validation process here con-
sists of (a) using a set of EOFs computed excluding the
month in question and 8 months on either side of the
month, for a total of excluded 17 months, and (b) re-
ducing the grid of the OI data to the observational net-
works of several historical periods and averaging the
anomaly field using the reduced grid and cross-validated
EOFs for each month.

The averaged OA root-mean-square error for cross
validation tests is defined by

1/2M1
2rmse 5 [OA(m) 2 T (m)] , (40)OOA OI5 6M m51

where OA(m) is the optimal average of the SST anomaly
computed by the scheme described in section 2 using
the OI data at the historical sampling points, TOI(m) is
the area-weighted average computed from the 18 3 18
OI, and m is the month index, from 1 to M 5 152 (i.e.,
from September 1982 to April 1995) because we have
to exclude the eight months from the beginning and the
end of the data stream to fit our cross-validation process
mentioned above. The quantity, rmseOA is called the true
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FIG. 2. The total number of observations as a function of time t (month) for our 58 3 58 network of Pacific SST
anomalies (208S–208N, 1558E–1058W).

OA error since it comes from the comparison with the
OI SST field, which is regarded as the truth as discussed
in section 1. For every cross-validation period of 14 yr,
one can use (40) to compute rmseOA, the ‘‘True Error:
OA,’’ and put the value in the upper-right corner of
Figs. 3a–d. The error rmseOA may also be estimated as
a function of time by fixing the historical observation
network, say that of January 1919, throughout the pe-
riod. This would yield the rmseOA for the observation
network of January 1919. However, we still choose to
compute (40) since the observation network generally
do not change rapidly and our purpose in computing
rmseOA is simply to show that the theoretical error is
comparable to the true error.

The true rmseAA for the arithmetic averaging (AA) is
computed in a similar way. One only needs to replace
OA(m) in (40) by the arithmetic average AA(m) of the
SST anomaly. It is similar to the OA case that for every
cross-validation period of 14 yr, one can use (40) to
compute rmseAA, the ‘‘True Error: AA,’’ and put the
value in the upper-right corner of Figs. 3a–d.

Theoretical OA rsme is computed from the square
root of (27), in which ^ & 5 0.38C (Reynolds and2EÏ i

Smith 1994; Parker et al. 1994). An estimate of the
theoretical error from AA rmse is obtained by replacing
the optimal weights wi by the uniform weights 1/N in
the OA error estimation (27). This theoretical rmse is
computed for every month in the cross-validation pe-
riods indicated on the frame titles of Fig. 3. The nu-
merical results for the rmse curves are shown in Fig. 3.
It can be seen that OA rmse is systematically smaller
than AA rmse, as one would expect. The difference
becomes smaller as the sampling becomes more dense.
For the full 58 3 58 grid, the two are the same.

Comparing the true OA rmseOA with the theoretical

OA rmse and AA rmse shows the advantage of using
the optimal weights (Fig. 3). The number of sampling
points as a function of time is shown below the rmse
curves. From Fig. 3 one clearly sees that, compared to
the uniform weights, the optimal weights effectively
reduce the sampling error when the sampling is poor.
When the sampling is dense, that is, Fig. 3d, it makes
little difference whether one uses the optimal average
or arithmetic average. One can also see that when the
sampling is sparse, that is, Fig. 3b, the theoretical OA
rmse is about the same as the true OA rmseOA, while
the theoretical OA rmse slightly overestimates the rmse
when the sampling is dense. In the latter case the sam-
pling error is small. Therefore, we conclude that our
theoretical sampling formula (27) gives a reasonable
assessment of sampling errors.

The anomaly as a function of time is shown in Fig.
4. The thick solid line is the area-weighted average from
the 18 3 18 OI. The thin solid line is the optimal average
using the historical sampling conditions between 1952
and 1965: (t) 5 S jeN wjT̃j(t). There is little differenceT̂
between the two lines. The theoretical error bounds
computed from (27) are shown by short dashed lines:

(t) 6 3 3 rmse. The spatially averaged anomaly byT̂
OA from 1856 to 1995 is shown in Fig. 5, with theo-
retical error bounds 3 3 rmse.

Another point concerning the OA is the necessity of
normalizing weights by (13). To justify this, we com-
puted the true rsmeOA by (40) with and without the
normalization of weights and compared the results. The
comparison shows that the rmseOA without normaliza-
tion of weights is sometimes larger. For example, for
the historical networks in 1932–45, the true rmseOA with
normalized weights is 0.0775 and the true rmseOA with-
out the normalization of weights is 0.1009. This implies
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FIG. 3. The theoretical rmse of OA (solid line) and theoretical rmse of arithmetic average (AA, dashed line) for samplings in different
periods of time: (a) 1882–95, (b) 1912–25, (c) 1932–45, and (d) 1972–85. Also shown is the number of sampling points N for each reduced
grid (max 5 160 observations). The ‘‘True Error: OA’’ and ‘‘True Error: AA’’ were computed from (40).

that the optimal averaging without the normalization of
weights has significantly distorted the trend signal of
the true average.

5. Conclusions and discussions

We have described an optimal averaging method with
error estimates, eigenvalue extrapolation, and a test us-
ing tropical Pacific SST data. The optimal averaging
method is an improvement over that of Shen et al.
(1994), using the EOFs to treat the spatial inhomoge-
neities. The improvements include (i) a more accurate
computation of eigenvalues of the covariance matrix by
an extrapolation method, (ii) an extension of the OA on
the entire globe to the OA over a part of the earth’s
surface, and (iii) the inclusion of random observation
errors.

The tropical OI monthly SST data were used to com-
pute the EOFs and test the reliability of the improved
methods of averaging and gridding. For the OA, when
there are more than 30 observations, the OA results
agree with the true average with an error less than about
0.158C. The mse computed from (27) gives a good es-

timate of the sampling error although it overestimates
the error slightly when sampling is dense.

It is concluded that the regional averaging procedure
developed in this paper is reliable and accurate, and
takes into account the spatial inhomogeneity. However,
our method cannot deal with nonstationarity even
though the normalization of the weights in the OA pro-
cedure minimizes the distortion of the trends in the data.
Further development of the optimal methods may con-
sider the nonstationarity of data (Kim et al. 1996) and
application of these methods to other fields.

Finally we wish to discuss the applicability of the
method. First, the extrapolation method to refine the
eigenvalues can be used if a given network consistently
yields an underestimate or overestimate. This can be
easily tested by comparing the eigenvalues computed
from the networks of different observation densities like
Table 1. Second, the averaging method can be applied
to different climate quantities other than SST anomalies,
such as precipitation and 500-hPa height. The crucial
part in applying the method to various climate quantities
is the EOF properties including both variances and EOF
patterns. For instance, for precipitation the variances are
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FIG. 4. The spatially averaged tropical Pacific monthly anomaly from September 1982 to April 1995 and the error estimates. The
thick solid curve is the area-weighted average of the full grid OI data. The thin solid curve is the cross-validated OA result, which
was computed from the data on the historical observation networks from September 1952 to April 1965. The dotted lines are the
3 s error bounds centered around the thin solid line.

FIG. 5. Optimally averaged tropical Pacific monthly SST anomaly from 1856 to 1995 (solid) and its 3 s error bound (dashed).
A 15-point binomial smoother has been applied to the curves. Also shown is the 5-yr running average of the OA (thick curve).
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usually very large and the EOF patterns are relatively
more complex with respect to SST, and hence it reflects
the facts of shorter length scales. Consequently a more
dense observation network is needed. Third, the method
can also be applied to different regions of the globe. In
certain regions, a climate field might be highly inho-
mogeneous and the condition for extrapolation is not
satisfied, but one can still use the optimal averaging
formulas (3), (12), (13), and the minimum error formula
(27) without refining the eigenvalues, for the refinement
of eigenvalues further increases the accuracy of the av-
eraging without increment of observation data, but it is
not a necessary step in the optimal averaging procedure.
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