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A b s t r a c t - - T h i s  paper estimates the size of the stability region around zero for quadratic delay 
difference systems. When the initial disturbance is in the asymptotic stability region, the solution of 
the initial value problem of the quadratic delay difference system approaches zero. Examples are given 
for a three-dimensional system and three one-dimensional equations to demonstrate both stability 
and instability. Examples 2-4 show that when parameters in the systems do not satisfy the stability 
conditions, the zero solutions can be unstable. Three evolution features of initial disturbances are 
shown numerically: decaying to zero, being amplified but bounded, and growing to infinity. Example 3 
further shows that the stable zero solution may not be a global attractor. Numerical results confirm 
the conclusions of the main theorem in this paper and imply that our estimation of the size of the 
stability region are of reasonable accuracy. © 1998 Elsevier Science Ltd. All rights reserved. 
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1 .  I N T R O D U C T I O N  

W h e n  cons ider ing  a d y n a m i c a l  sys tem,  i t  is of ten a ques t ion whe the r  an equ i l ib r ium po in t  is 

s tab le .  T h e  s ame  is t r ue  for de lay  difference sys tems.  Af te r  a coo rd ina t e  t r ans fo rm,  t he  s t ab i l i t y  

ana lys i s  for any  equ i l ib r ium poin t  can be t r ans fo rmed  to the  s t ab i l i t y  p rob l e m of  t he  zero solut ion.  

T h e  pu rpose  of  th is  p a p e r  is to  s t u d y  s t ab i l i t y  p roper t i e s  of  t he  zero so lu t ion  of difference de lay  

sys tems .  

S t a b i l i t y  s tud ies  m a y  be  classified into two categories .  The  first one is qua l i t a t i ve  s t ab i l i t y  

s t u d y  which  assures  t h a t  zero solut ions  are  in pr incip le  s tab le  or  uns tab le .  E layd i  and  Zhang  [1] 

is an  e x a m p l e  of  such a qua l i t a t ive  s t ab i l i t y  s t u d y  and  presen ts  some s t ab i l i t y  c r i t e r i a  for t he  

f inite de l ay  difference sys tems  of  genera l  form in t e r m s  of  the  d iscre te  L iapunov  func t iona ls  and  

L i a p u n o v  funct ions.  T h e  analys is  m e t h o d  in [11 and  in the  presen t  p a p e r  is well s u m m a r i z e d  

in [2], where  one  can  find an  extens ive  t r e a t m e n t  of  the  s t ab i l i t y  t h e o r y  of  difference equa t ions  
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without delay. Zhang [3] extended the results in [1] to the difference systems of infinite delay. 
A relaxed stability condition was found in [4], which is an improvement of the results in [1,3]. 
Despite the above progress in the qualitative stability research, in practical applications, one 
often needs to know what is the maximal tolerance of the perturbation from an equilibrium 
such that the perturbation can still be attracted back to the equilibrium. This requires more 
careful estimation of the functions involved in the proof of the above qualitative stability results 
and numerical simulations for various initial disturbances. We come to the second category of 
stability studies: quantitative description of the size of the stability region of the zero solutions 
and numerical simulation of the evolutions of the initial perturbations from an equilibrium. 

In this paper, we will concretely describe the size of the stability region so that as long as the 
initial disturbances (i.e., initial data) are restricted within this region, the desired uniformly stable 
and/or uniformly asymptotically stable properties are guaranteed. Numerical simulations are 
described for several different systems and three types of evolutions of the initial perturbations are 
shown: stable evolution, unstable but bounded evolution, and unstable and unbounded evolution. 
To our knowledge, both the analytic and numerical results included in the this paper are new 
and they are the first presentation on the quantitative description of the sizes of the stability 
region and asymptotic stability of the zero solution of quadratic delay difference systems. 

The context of this paper is arranged as follows. The preparation materials for describing our 
main stability result of this paper are in the first part of Section 2, and Theorem 2 as the main 
result is stated in the second part  of Section 2. The proof of the main result is in Section 3. Four 
numerical examples are described in Section 4, and Section 5 includes conclusions and discussions. 

2.  M A I N  R E S U L T S  

To describe the main result of this paper, we include some preliminary knowledge on the 
stability of the delay difference systems. For delay difference systems of the following general 
form: 

z(n  + 1) = f(n,  z , ) ,  n e z +, (1) 

where Z + denotes the set of nonnegative integers x E R k (k-dimensional Euclidean space) and 
xn(s)  = x (n  + s), for s = - r , - r  + 1 , . . . , - 1 , 0  with some positive integer r > 0. Assume 
f (n ,  0) = 0 for n E Z +, so that  (1) always has the zero solution x(n) = 0. Clearly, for any given 
no E Z + and a given initial function 

~0 : { - r , - r  + 1 , . . . , - 1 , 0 }  --* R k, 

there is a unique solution of (1), denoted by x(n,  no, ~o), which satisfies (1) for all integers n > no 
and 

x(no + s ,  no,~)  = ~o(s), for s = - r , - r +  1 , . . . , - 1 , 0 .  

Let 

I1~11 = sup{l~(s) l  : s e { - r , - r  + 1 , . . . , - 1 , 0 } } .  

In the sequel, we will always assume that  the variables n, s, i, and j take integer values and all 
the intervals and inequalities are discrete. 

The following definitions and theorems from [1] will be used in the statement and proof of the 
main result. 

DEFINITION I. The zero solution of  (1) is Uniformly Stable (US) ff for each 6 > 0, and any 
no E Z +, there exists a 6(e) > 0 independent of  no such that i f  I1~11 < 6, then 

Ix(n, no, ~)1 < c, for al1 n > no. 
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DEFINITION 2. The zero solution of (1) is Uniformly Asymptotically Stable (UAS) i f  it is US 

and there is a 60 > 0 such that for each "I, > 0, there  exists an integer N(~)  > 0 independent 
of  no such that i f  no E Z + and [[~[[ < 60, then 

Ix(n, no, ~)] < ?,  for a11 n > no + N(?) .  

DEFINITION 3. A strictly increasing continuous function W : [0, oo) --~ [0, ~ ) ,  with W(O) = O, 

W ( u )  > 0 i f  u > 0 is called a wedge. 

DEFINITION 4. The region 12 defined as 

a =  { ~ :  { - r , - r  + 1 , . . . , - 1 , 0 } - - ~  Rk l l i m x ( n ,  n o , ~ ) = 0 }  

is said to be the asymptotic stability region of the zero solution of (1). 

THEOREM 1. Suppose there  exists a Liapunov function V : Z + x Sh --* [0, co), where Sh = {x E 
R k : I x  I < h}, such tha t  

(i) W,(Ix[)  < V ( n , x )  <_ W2([x[), and 
(ii) A V ( n , x ( n ) )  <_ -W3([x(n)[) ,  when 

P [V (n + 1, x (n  + 1))] > V (s, x (s ) ) ,  for n - r < s < n. 

Here  Wi, 1 < i < 3, are  wedges, P : [0, oo) ~ [0, oo) is a continuous function with P(u)  > u 

when u > O, and 

A V  (n, x(n))  -- V (n + 1, x (n  + 1)) - V (n, x(n))  = V (n + 1, f (n ,  xn)) - V (n, x (n ) ) ,  

with x(n)  being a solution of  (1). Then the zero solution of (1) is UAS. 

In this paper ,  we s tudy  the following quadrat ic  delay difference systems: 

x(n  + 1) = Aox(n)  + A l x  (n - T1 (n)) + X (n - T2(n)) Blx (n ) ,  (2) 

where n E Z +, x E R k, Ao,A1 are k x k constant  matrices,  and X ( n )  and B1T (which is the  
t ranspose  of  B1) are k x k 2 matr ices 

X ( n )  = [ X l ( n ) , X 2 ( n ) , . . . , X k ( n ) ] ,  B [  = [ B n , B 2 1 , . . . , B k l ] .  

Here Xi (n )  is a mat r ix  whose ith row is xT(n )  = (x l (n) ,  x 2 ( n ) , . . . ,  Zk(n)) and the o ther  elements 
are all zero, i.e., 

0 0 .. 0 

0 0 .. 0 
X i ( n ) =  x l (n )  x2(n) .. xk(n) 

0 0 .. 0 

0 0 .. 0 

and 
I" h l l  h12 hlk  1 
[ Vil ~'il . . . .  i l  [ 
[ ~12 h22 h2k [ 

B i l  [ Vil ~il . . . .  i l  [ 

[ h lk  h2k hkk l 
L~'il ~'il " '"  ~il J 

where  i = 1 , 2 , . . . , k  and rj  : Z + --* Z + with 0 < rj(n) <_ r, for some positive integer r ( j  = 1,2). 
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For a vector x, its Euclidean norm is defined as 

( k "1 1/2 
, 

and for a matr ix A, its spectral norm is defined as 

IAI = { max (A TA)} 

where and in the sequel, Amax(') is the largest eigenvalue of the corresponding matrix and Amin(') 
is the smallest eigenvalue. With the above choice of norms, it follows that  IX(n)[ = Ix(n)l. 

It  is known from [5] that  if the modulii of all eigenvalues of A0 are less than one (in this case 
we say that  A0 is stable), then for any given positive definite symmetric matrix C, there exists 
a unique positive definite symmetric matrix H such that  

C = H - A~HAo.  (3) 

We take the quadratic form 
V ( z )  = x T H x  

as the Liapunov function, where H is the solution of (3). Then there holds 

Ami.(g) lx l  2 < V(x )  <_ Am~(g) lx l  2. 

Hence, V(n,  x) = V(x )  = x T H x  clearly satisfies Condition (i) in Theorem 1. 
With the above preparation we can now state our main result as a theorem. 

THEOREM 2. Assume that Ao is stable and there holds the following two conditions: 

(i) 1 - ~o(H)IA, I > 0, where ~ ( g )  = X/Amax(H)/Amin(H), and 
(ii) P = Amin(C) - 2#~(H)iAToHAI] - #2~o2(H)Am~x(H)IAI[ 2 > 0, where 

IA01 
# = 1 - ~o(g)[IA1 [ +eolBl[]'  

with some constant e0 : 0 < 60 < 1 and 1 - ~(H)[IA11 + e0iBll] > 0. 

Then we have the following conclusions: 

(a) the zero solution of (2) is UAS for arbitrary r > O; 
(b) no solution x(n,  no, ~o) /eaves the ball Se = {x : Ix(n, no, ~o)1 < e}, for all n > no, whenever 

II ll < with 
6(e) = min { (P/Q) ,  e} (4) 

~o(H) ' 

where P as in (ii), 

Q -- 2#~o(H)iBll IHAo[ + 2D2~2(H)iBl[ [HAll + D2~o2(H)Amax(H)iBI]2; 

and 
(c) the asymptotic stability region ~ contains a t  least a ball SR with the radius 

R = min{(Po - ~)/Qo,  eo) 

where Po, Qo, eo, and a will be specified later. 

In the above theorem, three conclusions are given. Conclusion (a) claims that  the zero solution 
is asymptotically stable. This is a qualitative result. Conclusions (b) and (c) give the sizes of 
the uniform stability region and uniform asymptotic stability regions, respectively. They  are 
quantitative results. A proof of the theorem is given in the next section. 
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3. P R O O F  A N D  E X T E N S I O N S  
OF THE M A I N  RESULT 

T h e  p roof  of  the  t heo rem is divided into two steps.  T h e  first s tep is to  show t h a t  we can 
cons t ruc t  a L iapunov  funct ion which is bounded  f rom above, and hence, val idates  Conclusion (a) 
in the  above theorem.  T h e  second s tep affirms Conclusions (b) and (c). 

PROOF. 

STEP I. For any  given e > 0 (e <_ e0), we have 

1 - ~ ( H )  (IAll + ~IBll)  >_ 1 - ~ ( H )  (IAll + ~01Bll) > 0. (5) 

Now choose ~f(e) as in (4). Let  no 6 Z +, II~all < 8, and  x(n) = x(n, no, ~). T h e n  it follows f rom 
Ix(n)[ < ~f for no - r < n < no t h a t  

V(x(n)) <_ ,~max(H)lx(n)[ 2 < )~max(S)~ 2, for no - r < n < no. 

We cla im t h a t  

Y(x(n)) < )~max(g)~ 2, for all n > no. (6) 

Suppose  this  is not  t rue.  T h e n  there  exists some integer n* >_ no such t h a t  

V(x(n)) < Ama~(g)~i 2, for no - r < n < n* and Y (x (n* + 1)) > Amax(H)/5 2. 

T h e  bounds  of  V(x) can  be fur ther  wr i t t en  as 

Amin(H)]x(n)l  2 < V(x(n)) < )~max(H)(~ 2 < )~max(g)¢2 - - ~ 2 ( H )  ' for n o - r < n < n * .  

Th i s  implies  t h a t  

Iz(n)l < E < 1, for no - r < n < n*. (7) 

In  addi t ion,  

)~min(H)lx(n)l 2 <_ Y(x(n)) < )~max(g)(52 _< Y(x(n*  + 1)) _< ~max(H) Ix (n* + 1)12 , 

for no - r < n < n*, 

implies  t h a t  

Ix(n)[ < ~ ( H ) [ x ( n *  + 1)[, for no - r < n < n*. (8) 

F rom (2), we have 

[x(n* + l)[ <_ [Ao[ [x(n*)l + lAll~(H) [x(n* + l)[ +C[Bl[~(H) lx(n* + l)[. (9) 

Th i s  implies t h a t  

IAol I:v (n*)l  _< p, Ix (n*) I , (10) 
I x (n*  + 1)1 <_ 1 - ~ ( H ) [ I A l l  + ~IBll]  

in v i r tue  of  (5). 
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By definition and equations (7), (8), and (10), we now have 

z~v (x (n*)) = v (x (n* + 1)) - v (x (n*)) 

= [ x T ( n * ) 4  4- X T (n* -- 7"1 (n* ) )  A T + x T (n*)  B T x  T (n* - 7" 2 (n* ) ) ]  H 

[Aox (n* )  + A l x  (n* - "/-1 (n* ) )  Jr- X (n* - "/'2 (n* ) )  BlX (n*) ]  - x t (n* )  Hx (n*) 

_< - )~m in (C ) I x  (n* ) l  2 -{- 2 ~ ( H )  [IATHA, I + IB I I  IHAo l  Ix (n*) l  

+ ~ ( H ) I B t l  IHA l l  Ix(n*  + 1)1] Ix (n*)l Ix (n*  + 1)1 

+ , ~m~(H)~2 (H )  [IA~I 2 + IB~I 2 Ix (n*)l =] Ix (n* + 1)[ 2 

__~ - [Amin(C) - 2] . /~(H) IATHA1 [ -- #2w2(H)Am=(H)I A112] I x (n* ) l  = 

+ [2#~ (H) IB ,  I IHAol + 2~ ,2~=(H) IB~I IHA,  I 
+ 6#2~2(H)Amax(H)IBI[ 2] Ix (n*) [  3 

< - P  Ix (n*)l 2 + Q Ix (n*)l 3 • 

Tha t  is, 
A V  (x (n* ) )  _< - (P  - q I z ( n * ) l ) I x ( n * ) l  = • (11) 

F rom 

p2 
Amin(H)lx(n)l 2 <_ V(xCn)) < Amax(H)6 2 _< )~max(H)q2,#2(H), for no - r < n < n*, 

we have 
P 

Ix(n)l < ~ ,  for no - r < n < n*. 

In particular, we have 
P 

Iz(n*)l  < ~ .  (12) 

Substitution of (12) into (11) yields 

AV (x (n*)) _< 0. 

This contradicts the assumption V(x(n* + 1)) _> Amax(H)~f 2 > V(x(n*)). 
Therefore, (6) holds, which implies that  

[x(n)l < e, for all n _> no. 

Hence, the zero solution of (2) is US and the solution x(n, no, ~o) does not leave the ball S~, for 
all n _> no, when I1~11 < ~(~) with 5(e) as in (4). 

STEP II. Next we assert that  the zero solution is UAS and we give an estimate of the asymptotic 
stability region. Let ~ = e0. Then we may choose suitable p > 1 such that  

1 - p ~ p ( H )  ( IAl l  + eolBll)  > 0. 

Let  

I A o l  

#o - 1 - ~ ( H )  (IAzl + eolSz I)' 
P0 -~ ~min(C) -- 2 # 0 p ~ ( H ) I A T o H A ~ [  - #2p292(H)Am=(H)IAI[ 2, 

and 

Qo - 2~op~(H)IBll  InAol + 2~p2~2(H)IBll IHAll + eo#~p2~2(H)Am~(H)IBll 2. 
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I t  is easy  to  see tha t  we m a y  assume p > 1 is sufficiently close to  1 so t h a t  #0P > #, and they  are 

so close to  each other  t ha t  P0 > 0. 

Now choose an arbi t rar i ly  small number  a > 0 such tha t  0 < P0 - a < P and let 

~o = min {(Po - a)/Qo, ¢o} 
~ ( H )  (13) 

T h e n  for any solution x(n) = x(n, no, ¢p) with no E Z + and I1~11 < 6o, by the same a rguments  as 

in Step I, we can derive tha t  

A v ( x ( n ) )  <_ - (Po - Q o l z ( n ) l )  I (n)lL (14) 

whenever  p2V(x(n + 1)) > V(x(s)) for n - r < s < n. This implies 

Iz(s)l < pv(H)lx(n + 1)1, for n - r < s < n. 

We remark  here t h a t  under  the assumpt ion p2V(x(n + 1)) > V(x(s)) for n - r < s < n, it 

follows from (2) t ha t  Ix(n + 1)[ _< #olx(n)[. 
On the  o ther  hand,  as in Step I, we have t h a t  

Amin(H)[x(n)l 2 < V(x(n)) < Amax(g)5o 2 < Amax(g) (Po  - a )  2 _ _ Q02~2(H), for all n >_ no, 

and thus,  
P 0 - a  

[x(n)[ < Q----~, for all n > n0. 

Hence, (14) turns  out  to  be 

AV(x(n))  <_ -alx(n)[ 2, when P (V (x(n + 1))) > Y(x(s)) for n - r < s < n, 

where P(u) = p2u is as required in (ii) in Theorem 1. 

Therefore,  the  zero solution of  (2) is UAS by Theorem 1. Moreover, the asympto t ic  stabil i ty 

region contains  at  least the ball SR with R = 60 as given in (13). The  proof  is now complete.  

I t  m a y  happen  t h a t  A0 is not  a stable matr ix  required by Theorem 2, but  A = A0 + 0A1 with 
some cons tant  0 : 0 < ~ < 1 is stable. Then  we can still establish a similar theorem to  Theorem 2. 

For any given positively definite symmetr ic  matr ix  C, there exists a positively definite sym- 
metr ic  ma t r ix  H such tha t  

C = H - ATHA. (15) 

As in Theo rem 2, we define 

V(x) = zTHx,  

then  an extension of  Theorem 2 can be obtained.  

THEOREM 3. Assume that A is s table and there holds the fo]lowing two conditions: 

(i) 1 - qa(H)[Al[ > 0, where ~p(H) = V / A m a x ( g ) / A m i n ( H ) ,  and 
(ii) P -- Ami.(C) - 2(/2~o(H) + 8)IAT HAI[ - (#¢p(H) + O)2Amax(H)[Al[ 2 > O, where 

[Aol + ]Bll 
P = 1 - ¢p(H)[AII" 
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Then we have following three conclusions: 

(a) the zero solution of (2) is UAS for arbitrary r > O; 
(b) any solution x(n, no, ~) does not leave the ball Se = {x : Ix(n, no, ~)1 < 6}, for all n >_ no, 

whenever II(pll < ~(~) with 

~(~) = min {(P/Q), 6} 
~(H)  ' (16) 

where P as in (ii) and 

Q = 2p~o(H)lBx I [HA I + 2p~o(H) ( p ~ ( g )  + 0)]Bll [HAl[ + f~2~o2(H)Amax(H)[Bll2; 

and 
(c) the asymptotic stability region ~ contains at least a bail Sn with the radius 

rain {(P0 - a)/Qo, 1} 
R = ~(H)  ' (17) 

where Po, Qo, and a will be specified later. 

The proof of this theorem is almost identical to that  of Theorem 2, and it is hence, omitted. 

4. E X A M P L E  

In this section, we present four interesting example which demonstrate the usage of our stability 
results and stability/instability behavior of the considered systems. The first example is in 
three dimensions and gives an estimation of the sizes of the stability region and asymptotic 
stability region. The other three examples are in one dimension. Both the sizes of the stability 
regions and the numerical solutions are calculated, and the instability numerical results are 
particularly interesting. For one-dimensional equations, the stability problem becomes more 
transparent, and hence, our intuition can play a better role. In Example 2, we show the following 
two features in a system: 

(i) the initial disturbance vanishes as n --* oo (i.e., asymptotically stable), and 
(ii) the initial disturbance is amplified but  bounded for all n (i.e., unstable but  bounded). 

In Example 3, a much longer delay is imposed. Besides the two features in Example 2, we show 
a third feature: the initial disturbance is amplified and eventually goes to infinity (i.e., unstable 
and unbounded). Example 4 shows a system with variable delays. All the above three evolution 
features of an initial disturbance are displayed. 

EXAMPLE 1. Consider the following three-dimensional system of delay difference equations: 

x(n + 1) = Aox(n) + A lx  (n - ~'x(n)) + X (n - T2(n)) Btx(n).  

The three matrices Ao, A1, and Bt are 

[0.8 0.0 0.0] [0.011 0.000 0.000] 
A o =  0.0 0.7 0.0 , A t =  /0.000 0.010 0 . 0 0 0 / ,  

0.0 o.0 -o.6 L0.000 0.000 -0.010J 

and 

0.025 -0 .017 0.008 0.052 -0.025 0.062 0.000 -0.102 0.043] 7 
Bt  = -0 .017 -0.003 0.019 -0.025 -0.004 0.031 -0.102 0.063 -0.026 / , 

0.008 0.019 0.015 0.062 0.031 -0.072 0.043 -0.026 -0 .007J  

respectively. Estimate the size of the stability region. 
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The first step in applying Theorem 2 is to solve the matrix equation 

C = g - AToHAo, (19) 

for H to any given positively definite symmetric matrix C. 
The matrix C is chosen as 

3.0 1.0 1.2] 
C =  1.0 2.0 0.4 . 

1.2 O.4 1.0 

Then we can obtain from (19) that  

[8.3333 2.2727 0.8108] 
H = !2.2727 3.9216 o.2s17/ ,  

[0.8108 0.2817 1.5625J 

and the eigenvaiues of H are 9.3884, 2.9623, and 1.4667. 
Thus, 

/Ama.(H) 
~(H)---- V ~  = 2.5301, 

and by the definition of the spectral norm of matrix, we have 

JAo[ =0 .8 ,  [AI[ =0.011, and ]B1] =0.0292. 

Clearly, Condition (i) in Theorem 2, i.e., 1 - ~p(H)IA11 > 0 is satisfied. 
Now, if we let e0 = 0.6849, then we can calculate # as follows: 

IAol = 0.8681. G - -  l - c p ( H ) [ I A l I + 6 o l B 1 N = O . 9 1 2 6  and # =  G 

For convenience, we denote 
~/-_- ~a(H)IA1] , 

and obviously, there holds 

P > )~min(C) - -  2 IATo HI "7 -- )~max(H)lAll 2. (20) 

Now we compute the following: 

Amin(C) = 0.4347, [A-~H] = 7.3615, "y = 0.0242, Amax(g) = 9.3884, and ]A1] = 0.011. 

Substituting these into the right-hand side of (20), we obtain 

P > 0.0717 > 0. 

Hence, Condition (ii) in Theorem 2 is also satisfied. (Note that  here e0 = 0.6849 < 1 and 
G = 1 - ~ ( H ) [ I A l l  + 601Bll] = 0.9216 > 0.) 

Therefore, the zero solution of system (18) is UAS. In addition, upon obtaining Q, P0, and 
Q0, we can derive that  

~(6)=  6 60 
- - = 0 . 3 9 5 2 6  and R = - - = 0 . 2 7 0 7 .  
~(H) ~(h) 

Here, 6(¢) and R correspond to the Conclusions (b) and (c) of Theorem 2, respectively, where ~f(e) 
gives an estimate of the size of the stability region. Namely, as long as the norm of the initial 
disturbance is less than ~f = 0.39526, the norm of the solution is always less than e. An estimate 
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of the asymptotic stability region is given by R = 0.2707. As long as the norm of the initial 
disturbance is less than 0.2707, the norm of the solution approaches zero as n --* oo. 

EXAMPLE 2. Consider the scalar delay difference equation of the form 

x ( n  T 1) ---- -0 .60x(n)  + a l x ( n  - 2) + 0.15x(n - 3)x(n), n >_ 0, (21) 

and the associated initial conditions 

x ( - 3 ) = 0 . 8 ,  x ( - 2 ) = 0 . 2 ,  x ( - 1 ) = - 0 . 4 ,  x ( 0 ) = - 0 . 7 .  (22) 

Now k -- 1. We leave al  as the tuning parameter for stability studies and denote 

A 0 = a 0 = - 0 . 6 0 ,  A l = a l ,  B 1 = b l = 0 . 1 5 ,  H = h ,  and C = c .  

Then  (2) turns out to be 

c = h - ao ), 

which implies 
c 

h =  
1 - a~" 

For convenience, choose c = 1 to obtain h -- 1.5625. We discuss two cases as follows. 

THE STABLE CASE. Let al  = 0.1 and G0 = 0.9. Then, it can be verified that  

(i) 1 - ~(H)[AI[ = 1 - [al] = 0.9 > 0; 
(ii) G = 1 -~o(H)[[AI[ + e0[Bl[] = 1 - [[al[ + ~0[bl[] = 0.765 > 0, 

la°[ = 0.7843, 
# =  G 
P = Amin(C) - 2#~(g)]AToHAI[ - l z2~2(H)Amax(g)[Al[  2 

= Icl - 2#laohal[ - #2Ihl lall 2 = 0.8433 > o, 

and 

Q = 21~p(H)IBIIIHAo[ + 2#2~v2(H)IBIIIHAll +/~2~2 (H)Amax(H)IB1 [ 2 

= 2#lb11 ]haol + 2#21bil ]hail + #21hi ]bl[ 2 = 0.2704. 

Hence, by applying Theorem 2, we can conclude that  the zero solution of (21) is UAS, and 

5(e) = rain { ( P / Q ) , 6 }  = min { 0.8433 ] ~o(H) 0.--~-~,e]  = min {3.1125, e} = 6 ,  w i t h e < G o  < 1, 

while the asymptotic stability region ~t contains at least a ball S~o with Go = 0.9. 

1 .0  . . . . . . . . . . . .  

0"5 / 

A £ o ¢ " - -  - 

- 0 . 5  

- 1 . 0  . . . . . . . . . . . . .  , , , , , 
0 5 i0 15 20 

n 

F i g u r e  1. T h e  n u m e r i c a l  s o l u t i o n  o f  (21)  w i t h  i n i t i a l  c o n d i t i o n  (22) ,  w h e r e  a l  = 
0;1 .  T h i s  s o l u t i o n  i m p l i e s  t h a t  t h e  ze ro  s o l u t i o n  o f  (21)  is s t a b l e  s i n c e  t h e  i n i t i a l  
d i s t u r b a n c e  d e c a y s  t o  ze ro .  
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Using Mathematica, the unique numerical solution of the initial value problem of this example 

is found. The solution is depicted in Figure 1, which shows that  the solution approaches zero as 
n --* oo. This agrees with the conclusion of Theorem 2. 

THE UNSTABLE BUT BOUNDED CASE. We increase al from 0.1 to 0.9 and choose eo -- 0.1. 
Then 

(i) 1 - ¢p(H)IA11 = 0.1 > 0; 
(ii) G = 0.085 > 0, # = 7.0588, but P = -73.9736 < 0. 

Hence, Condition (ii) in Theorem 2 is not satisfied, and we are not able to assert that  the zero 

solution of (21) is UAS. 

The numerical solution of (21) is found for the following initial conditions: 

x ( - 3 ) = 0 . 0 5 ,  x ( - 2 ) = 0 . 0 7 ,  x ( - 1 ) = - 0 . 0 4 ,  x ( 0 ) = - 0 . 0 6 ,  

as shown in Figure 2. This solution does not go to zero as n --* oo and the zero solution of (21) 

is unstable. 

2 

A 

0 
)4 

-2 

0 50 100 150 200 250 

n 

Figure 2. The numerical solution of (21) with initial condition (22), where al = 0.9. 
This  solut ion is bounded but  does  not go to zero, and hence,  it implies that the  zero 
solution of (21) is unstable  s ince the initial disturbance does  not decay  to  zero. 

This example reveals an important fact that  even though Conditions (i) and (ii) in Theorem 2 

are sufficient, but not necessary for the zero solution being UAS, the obtained stability conditions 

are of reasonable accuracy. In other words, if these conditions are not satisfied, then the zero 
solution is very likely unstable at least for the scalar case (k = 1). 

It  is worth to notice that  h is proportional to c, so are P and Q. Hence, our conclusions are 
independent of the choice of the value of c > 0. 

EXAMPLE 3. Consider the scalar difference equation with larger delay as follows: 

x(n + 1) = -0 .6x(n)  + alx(n  - 10) + 0.15x(n - 3)x(n), n > 0. (23) 

Again, we choose c = 1 and then h = 1.5625. Consider two cases. 

THE STABLE CASE. Let al = 0.4 and e0 = 0.9. Then, 

G = 0 . 4 6 5 > 0 ,  # = 0 . 8 6 0 2 ,  and P = 0 . 1 6 9 9 > 0 .  

Hence, all the conditions in Theorem 2 are satisfied, and thus, the zero solution of (23) is UAS. 
Let us examine the numerical solution now. Choose a set of initial conditions, say, as follows: 

x ( -10 )  = 0.8, x ( - 9 )  -- 0.2, x ( - 8 )  -- -0 .4 ,  x ( - 7 )  = -0 .7 ,  

x ( - 6 )  = -0 .3 ,  x ( - 5 )  = 0, x ( - 4 )  = -0.8,  x ( - 3 )  = -0 .3 ,  (24) 

x ( - 2 )  = 0.1, x ( - 1 )  = -0 .1 ,  x(0) --- 0.8. 
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1 .0  . . . . . . . . . . . . . . . . . .  

0 . 5 .  

- . . . . . .  . . . . . . . . . . . .  = . . . .  

- 1 . 0  
0 i00 200 300 400 500 

n 

Figure 3. The numerical solution of (23) with initial condition (24), where al ---- 0.4. 

The  graph  of  the  corresponding numerical  solution is shown in Figure 3. I t  indicates t h a t  the  
solution approaches  zero as n --* oo and agrees with the conclusion of  Theorem 2. 

THE UNSTABLE BUT BOUNDED CASE. Let al  = 0.5 and 60 = 0.1. Then,  

G = 0 . 4 8 5 > 0 ,  # = 1 . 0 3 0 9 ,  and P = - 0 . 3 8 1 6 < 0 .  

Hence, Condi t ion  (ii) in Theorem 2 is not  satisfied. 
Moreover,  we note  t h a t  no mat te r  how small the  chosen 60 > 0 is, even if 60 = 0, we still ob ta in  

P < 0 .  
For numerical  solution, we choose the  initial condit ions 

x ( - 1 0 )  = 0.08, x ( - 9 )  = 0.02, x ( - 8 )  = -0 .04 ,  x ( - 7 )  = -0 .07 ,  

x ( - 6 )  = -0 .03 ,  x ( - 5 )  = 0, x ( - 4 )  = -0 .08 ,  x ( - 3 )  = -0 .03 ,  (25) 

x ( - 2 )  = 0.01, x ( - 1 )  ---- -0 .01 ,  x(0) = 0.08. 

The  corresponding solution is shown in Figure 4, which demonst ra tes  t h a t  it is unstable  bu t  it 
does no t  seem to  become unbounded.  

4 t  ' . . . , , . . . . , . . , , 
/ 

2.  

~ 0 - 
x 

-2  

- - 4  " 

0 200 400 600 800 i000 

n 

Figure 4. The same as Figure 3, except al = 0.5. 

THE UNSTABLE BUT BOUNDED CASE. Let a l  = 0.6 and 60 = 0.1. Then ,  

G = 0 . 3 8 5 > 0 ,  # = 1 . 5 5 8 4 ,  and P = - 2 . 1 1 9 3 < 0 .  

Again,  no ma t t e r  how small 60 > 0 is (even if 60 -- 0), we still have P < 0. 
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Hence, Condition (ii) in Theorem 2 is not satisfied. Now the numerical solution of the de- 
lay difference equation with the initial conditions (25) shows tha t  the solution is unstable and 

unbounded. See Figure 5. 

10 

0 

x 

-5 

-i0 ~ 
0 50 i00 150 200 250 300 

n 

Figure  5. The s a m e  as F igure  3, except a l  = 0.6. 

EXAMPLE 4. Finally, we consider a scalar difference equation with variable delays as follows: 

x(n  + 1) = -0 .6x (n )  + alx  (n - r l (n))  + 0.15x (n - r2(n)) x(n),  n > O, (26) 

where 

r l ( n ) = l + [ s i n n ]  and r 2 ( n ) = 2 + ( - 1 )  n, n > 0 ,  

with [-] denoting the greatest  integer function. 

Note tha t  0 < r i(n)  < 3, for n > 0 and i = 1,2. Clearly, al  > 1 violates our Condition (i): 
1 - %o(H)IA, I = 1 - lall > 0. Thus, the conclusions of Theorem 2 do not apply. However, 
as mentioned above, the conditions of Theorem 2 are only the sufficient but not the necessary 
conditions for the zero solution to be UAS. Therefore, we may still have stable zero solutions 
when the conditions of Theorem 2 are not satisfied. Three cases are presented below. 

THE STABLE CASE. a l  = 1.6 and e0 = 0.9. The numerical solution of (26) with the initial 
conditions (22) shows tha t  the solution tends to zero as n --* oo. See Figure 6. 

1 . 0  • • . . . . . . . . . .  . • • . 

0.5  

0 

- 0 . 5  

- 1 . 0  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
0 200 400 600 800 I000 1200 

n 

Figure  6. T h e  numer ica l  so lu t ion  of  (26) wi th  initial condi t ion  (22), where  a l  = 1.6. 
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2 • - - - - - . . . .  • . . . . . . .  • . . . .  • . . . .  • 

_i 
- 5  

0 200 400 600 800 i000 1200 
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Figure 7. The same as Figure 6, except al  = 1.915. 

THE STABLE CASE. a l  = 1.915 and  e0 = 0.9. T h e  numer ica l  so lu t ion  of  (26) wi th  the  same  

in i t ia l  cond i t ions  (22) shows t h a t  t he  so lu t ion  does  not  t end  to  zero b u t  r ema ins  b o u n d e d  as  

n --* oo. See F igu re  7. 

THE UNSTABLE BUT BOUNDED CASE. We now increase  a l  by  a ve ry  smal l  n u m b e r  0.002 f rom 

1.915 to  1.917 and  assign e0 = 0.9. T h e  cor respond ing  so lu t ion  wi th  t he  same  in i t ia l  cond i t ions  

as used above  is unbounded .  See F igure  8. 

i0 5 . . . .  

x 

- 5  

===b 

-10 0 50 i00 150 200 
n 

Figure 8. The same as Figure 6, except al = 1.917. 

It is noted that in the variable delay case, the stability of the zero solution of the equation is 

very sensitive to the coefficient al of the linear term with delay. With only a little bit change 

in a,, while keeping all the other parameters unchanged, the behavior of the solution of (26) may 

vary drastically. 

5. CONCLUSIONS AND DISCUSSIONS 

We have carried out a quantitative study on the stability of zero solutions of the quadratic 

delay difference systems. Our goal was to estimate the sizes of the stability region and asymptotic 

stability region of the zero solution. When the initial disturbance is in the asymptotic stability 

region, the corresponding solution of the initial value problem of the quadratic delay difference 
system approaches zero. Examples are given for a three-dimensional system and three one- 

dimensional equations. Numerical results of these examples confirm the conclusions of the main 

theorem proved in this paper. Examples 2-4 show that when parameters in the systems are 

chosen so that the zero solution is unstable, when the stability conditions are not satisfied. 
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A curious question is: in an asymptotically stable case if the initial disturbance falls outside of 
the stability region, would the solution of the corresponding initial value problem still go to zero? 
This question was investigated numerically. We considered (23) in Example 3 with al = 0.5. 
Hence, it is a stable case. But  now choose the initial data  far outside of the ~f ball: 

x ( - 10 )  = 7.8, x ( - 9 )  = 4.2, x ( - 8 )  = -7.4,  x ( - 7 )  = -3 .7 ,  

x ( - 6 )  = -9 .3 ,  x ( - 5 )  = 7.0, x ( - 4 )  = -5.8,  x ( - 3 )  = -9 .3 ,  (27) 

x ( - 2 )  = 16.6,  x ( - 1 )  = - 9 . 1 ,  x (o )  = 3.8.  

40 

2O 

o A ̂ A. Â  ;;A/IM 
V" V V v v i 

\ -20 

-40 

-10 " " " () . . . .  1'0 " 2 " 0  . . . .  3"0 " " 4 ' 0  " 

n 
Figure 9. The  numerical solution of (23) with large initial da ta  (27), where 04 ---- 0.4. 
This  solution demonst ra tes  tha t  the  zero solution is not a global at t ractor .  

The numerical solution is shown in Figure 9 and is unbounded. This example demonstrates 
tha t  although the zero solution is stable, there are some large initial disturbances which can be 
amplified and become infinity (instead of going to zero) as n --~ oo. Thus, the zero solution 
of (23), although asymptotically stable, may not be a global attractor.  We hence conclude that  
our quantitative s tudy of the stability criteria and estimation of the size of the stability region 
are of reasonable accuracy. 

Another question is the relative importance of the first delay term measured by the matrix AI 
and the nonlinear term measured by the matrix BI. In our numerical experiments for the above 
examples, when the disturbance is small, the coefficient AI of the first delay term plays a more 
important  role than the nonlinear term. It remains an interesting question when the system's 
stability becomes more sensitive to Bt  than At. 

As for the technical details of this paper, we wish to make the following discussions. It is easy 
to see that  for a given system of the form (2), one may choose an arbitrary positively definite 
symmetric matr ix C to get the corresponding matrix H satisfying (3) or (16). Then under 
Conditions (i) and (ii) in Theorems 2 or 3, one can find the corresponding number ~(e) in the 
US for each sufficiently small number ~ > 0; moreover, one can calculate the radius R of the 
ball inscribed in the asymptotic stability region. It is clear that  for different choices of C, the 
corresponding values of ~(e) and R are different. Hence, it remains to be solved that  what is the 
best possible choice of C so that  the ~(~) or R attains the maximum. 

The values P and Q in Theorems 2 or 3 are independent of ¢. Hence, for any given ~ > 0 with 
<_ P/Q, it follows from (4) that  

g 
= 

which gives us the immediate relationship between e and 5(6). 
The required parameter 0 in Theorem 3 is not unique. It should be regarded as one of the 

distinct advantages of our results. Because we have much freedom to suitably choose 0 to obtain 
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bet ter  estimates for the size of the asymptotic stability regions. If the matrix A0 itself is stable, 
then one may apply Theorem 2; while if A0 is not stable, then one may t ry  to choose a 0 value 
so that  A = A0 + 8A1 is stable and then apply Theorem 3. Even if A0 is stable and Theorem 2 
applies, one can still use Theorem 3 with a proper choice of 0. Then the question is what is the 
best choice of 8 to optimally estimate the asymptotic stability regions, or whether such a choice 
of 8 will help an optimal estimation of the asymptotic stability regions at all. 

The  results obtained in this work are independent of the length of the delay r > 0. Hence, our 
results are a kind of unconditional stability for quadratic delay difference systems. 

The arguments used in this work can be extended to the following quadratic delay difference 
systems of the general form: 

x (n  + 1) = Aox(n)  + A l x  (n - r l (n) )  + X(n )Bo x (n )  

+ X (n - 7-2(n)) Blx (n )  ÷ X (n - "r3(n)) S2x  (n - n ( n ) ) ,  

where n E Z +, x • R k, Ao, A1, X ( n )  are the same as in (2), B f  (j = 0,1,2) are all k x k 2 
matrices with the same form as B1 in (2), and rj  : Z + --* Z + with 0 < r j (n)  _ r for some 
positive integer r, (j  = 1, 2, 3, 4). Numerically there is no essential difference in calculating the 
values of ~(e) and R between the simple form of (2) and the general form as above. 

Elaydi [6] also described certain quantitative results on stability but  for autonomous delay 
differential equations. The authors used a geometric argument to demonstrate their results. 
Our current work benefited much from Elaydi [6] in terms of motivation, yet we have taken a 
different approach when demonstrating our results and our working objective is delay difference 
equations. Our proof is an analytic one which makes Conclusions (b) and (c) in Theorem 2 more 
transparent.  In addition, the system (2) is not autonomous since the delays r i(n)  may not be 
constants. Hence, the results obtained in this paper are more general than those in [6]. 

At the end, we may conclude that  it is feasible to carry out meaningful quantitative studies 
on the stability of the delay difference systems. We feel that  our method will have applications 
in the numerical methods for solving continuous dynamical systems, automata  lattice, and other 
areas of natural sciences and engineering. 
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