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This paper uses the Hilbert–Huang transform (HHT) method to make time–frequency
diagnostic analyses of four monthly time series of the global precipitation: MERG (1900–
2008), REOF (1900–2008), GPCP (1979–2009), and CMAP (1979–2009). All these data
are the global land and ocean average of precipitation anomalies with respect to the
mean of the entire data period. The MERG and REOF are spectral reconstructions
based on historical data. The GPCP and CMAP are based on station gauge data and
satellite remote sensing data. We have made the following analysis of the four datasets:
(a) extract intrinsic mode functions (IMF) by HHT empirical model decomposition
(EMD) sifting, (b) calculate the mean frequency and energy of each IMF, (c) calculate
the Fourier spectra to compare with the IMF spectral properties, (d) calculate the Hilbert
spectra and display the time–frequency variation of the precipitation time series, and
(e) calculate the basic statistics of the four datasets, including mean, standard deviation,
skewness, kurtosis and inter-correlation among the datasets. Our analysis results indicate
the following: (i) IMFs may contain physical signals of MJO (Madden–Julian oscillation),
monsoon, annual cycle, and ENSO (El Nino southern oscillation), (ii) Hilbert spectra
appears to be an effective tool to display the time-frequency change of a precipitation
time series and can help identify critical characteristics for improving data aggregation
method and climate models, (iii) among the four datasets, MERG is the smoothest data
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and has the smallest variance and hence the smallest IMF energies, while the CMAP
has the largest, followed by GPCP and REOF, and (iv) the nonlinear and nonstationary

annual cycle is the IMF3 for all the four datasets, which is modulated by ENSO signals.

Keywords: Hilbert–Huang transform; global precipitation; intrinsic mode function.

1. Introduction

A reliable estimate of the monthly or annual global total precipitation over the
Earth from observations is important for assessing the influence of climate change
on the global hydrologic cycle. Currently, there exist several observational datasets
and over 20 model simulations of global precipitation. Satellite-based datasets began
in 1979 while reconstructed and model data began in 1900 or earlier. These datasets
are useful for understanding climate change and for the improvement of climate
models. Although the observed data share many common characteristics and con-
firm some large-scale climate dynamics, these datasets have significant differences.
The most noticeable difference is that the model simulations consistently yields an
annual global average precipitation around 3.1mm/day, which is about 15% higher
than the observed or reconstructed data of 2.7mm/day [Arkin et al. (2007); Smith
et al. (2008)]. Even among the observed datasets, differences are apparent. Some
have a positive linear trend while others negative. The purpose of this paper is to
introduce the Hilbert–Huang Transform (HHT) method into the analysis of global
precipitation and to provide new perspectives of spectral properties beyond the tra-
ditional Fourier analysis. The HHT analysis will help identify differences in the four
observed datasets of the monthly global average precipitation. These datasets are
(i) CMAP [CPC Merged Analysis of Precipitation, Xie and Arkin (1996), (1997),
(1998); Janowiak and Xie (1999)], (ii) GPCP [Global Precipitation Climatology
Project, Adler et al. (2003); Ebert et al. (1996); Huffman et al. (1997)], (iii) MERG
[merged analysis of the monthly global precipitation, Smith et al. (2010)] and REOF
[Reconstruction by Empirical Orthogonal Functions, Smith et al. (2011); Efthymi-
adis et al. (2005)]. The REOF data used here is the REOF version 2 data REOFv2
[Smith et al. (2011)], an improvement of the original REOF [Smith et al. (2008)].
These global data include areas of both land and ocean as well as ice. There are
other datasets that include land only [Dai et al. (1997)]. Our global monthly data
are displayed in Fig. 1 with CMAP and GPCP starting from 1979 and MERG
and REOF starting from 1900. Five aspects of the HHT time frequency analyses
have been considered: Intrinsic mode functions (IMF) derived from the procedures
of empirical mode decomposition (EMD), IMF energy analysis, IMF mean period
analysis, Hilbert spectral analysis, and Fourier analysis. These diagnostic analyses
indicate clear differences of spectral characteristics of CMAP, GPCP, MERG and
REOF data, which may suggest a need for revisiting the methods of aggregating
the data from stations, satellite remote sensing, and other instruments. The results
may also help improve precipitation simulations in general circulation climate
models.
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Fig. 1. Four monthly global land and ocean average precipitation datasets: CMAP (1979–2008),
GPCP (1979–2008), MERG (1900–2008), and REOFv2 (1900–2008).

Data and method are described in Sec. 2. Results are in Sec. 3. Conclusions and
discussion are in Sec. 4.

2. Data and Method

2.1. Data

The four observed global average precipitation datasets CMAP, GPCP, MERG and
REOF are depicted in Fig. 1. The main features of these four datasets are briefly
described below.

CMAP is a monthly 2.5◦ × 2.5◦ latitude–longitude gridded global precipita-
tion dataset from January 1979 to current. The global average CMAP data used
here is the area-weighted spatial average of this gridded data from 1979 to 2008.
CMAP is a blended product of the data from several satellites and the ground
rain gauges. Thus, CMAP is an observed dataset processed with specific blending
algorithms. CMAP satellite-based product is adjusted monthly over low and mid-
latitude oceans according to the average of rain gauge observations at atolls and
low islands in the tropical Pacific. Since precipitation over the atolls and low islands
is heavier than the adjacent oceanic satellite-derived estimates, the adjustment led
to an increase in oceanic precipitation. Although those atolls and islands are in the
central and western part of the tropical Pacific, this adjustment was applied to the
global tropics and subtropics. More satellite sensors joined the dataset in the 1990s
[Simpson et al. (1996); Wentz and Spencer (1998)]. An interpolation-type blending
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produces a weighted average of all the satellite sensors and the ground gauges. The
blending also smoothens the data being interpolated.

GPCP is also a global observed precipitation dataset and has several temporal
and spatial resolutions. The one used here is the area-weighted average of the 2.5◦×
2.5◦ monthly global precipitation data from January 1979 to current. GPCP also
uses both satellite data and the ground gauge data but with different aggregation
algorithms. Instead of using the weighted average of all the satellite products as
CMAP does, GPCP uses the best estimate from a single satellite.

The MERG reconstruction dataset merges a monthly regional reconstruction
with an annual global reconstruction [Smith et al. (2010)]. This global monthly
data has a 5◦ resolution and covers from January 1900 to current. The monthly
reconstruction used for MERG fits the available land and island gauge data to a
set of spatial modes in order to produce reconstructions separately in the northern
extra tropics, the tropics, and the southern extra tropics. Those three regional
analyses are then combined. The annual ocean-area reconstruction used for MERG
is based on canonical correlation analysis (CCA), which predicts historical annual
precipitation anomalies from the annual sea-surface temperature (SST) and sea-
level pressure (SLP) anomaly data. The CCA was judged to be more reliable for
resolving multi-decadal variations over oceans, and therefore the ocean-area multi-
decadal component of the combined regional analysis was replaced by the CCA
component. Since the CCA prediction has a smoothing effect, the variance of the
MERG data is smaller than the variances of CMAP and GPCP.

The REOF is another reconstructed dataset also at 5◦ resolution from January
1900 to current. The reconstruction based entirely on empirical orthogonal function
(EOF) modes was computed as an alternative to the MERG reconstruction. The
selected EOF modes are anchored on the historical gauge data using a least square
approach. Computationally, a set of 20 global-annual EOFs is computed. Annual-
average gauge data is analyzed by fitting to this set of modes, upon screening
to remove modes not adequately sampled. Next a set of 40 monthly increment
modes is computed to analyze the increment between the monthly and annual
averages. Monthly gauge increments are analyzed using this set of modes. The sum
of the annual and monthly increment components forms the REOF gridded data.
Compared to the MERG data, the REOF data has less smoothing, and thus has
larger variance (see Table 1).

The linear trend and the first four statistical moments of the datasets are shown
in Table 1. For the 1979–2008 period, this table indicates the following. (a) CMAP
has the largest positive mean (0.87mm/day) mostly attributed to the 1980s large
positive anomalies, and REOF has the smallest negative mean (−0.10mm/day).
(b) CMAP has the largest standard deviation (2.81mm/day), and MERG has the
smallest standard deviation (0.74mm/day) and hence is the temporally smoothest
time series. (c) CMAP is skewed right, but the other three skewed left. (d) The kur-
tosis for each dataset is positive and hence the probability distribution is leptokurtic,
i.e. more peaked than the normal distribution. (e) The REOF yields the strongest
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Table 1. Statistical moments and linear trends of the CMAP, GPCP, MERG, and REOFv2 data.

Mean
(mm/day)

Standard
deviation
(mm/day)

Skewness
(dimensionless)

Kurtosis
(dimensionless)

Trend
((mm/day)/decade)

1979–2008

MERG −0.08 0.74 −0.30 1.17 0.1624
REOFv2 −0.10 1.47 −0.06 −0.01 0.3193
GPCP −0.01 1.73 −0.10 0.69 0.0958
CMAP 0.87 2.81 0.43 0.42 −1.5153

1900–2008

MERG −0.36 0.94 −0.21 0.16 0.0895
REOF −0.49 1.62 −0.10 −0.11 0.1126

positive trend of 0.3193 (mm/day)/decade, while CMAP yields the strongest neg-
ative trend of −1.5153 (mm/day)/decade. The negative trend might be attributed
to the large positive anomalies in the early 1980s.

For the period of 1900–2008 and for MERG and REOF data, the means
(−0.36mm/day for MERG and −0.49mm/day for REOF) are smaller than the
1979–2008 period (−0.08mm/day for MERG and −0.10 for ROEF). The standard
deviations are about 20% larger than the 1979–2008 period. The skewness and
kurtosis maintain the same sign, although the kurtosis of MERG in 1900–2008 is
much smaller. The trends of 1900–2008 (0.0895 (mm/day)/decade for MERG and
0.1126 (mm/day)/decade for REOF) are much weaker than those of 1979–2008
(0.1624 (mm/day)/decade, and 0.3193 (mm/day)/decade).

The inter-correlations of the four datasets in the period of 1979–2008 are shown
in Table 2 and have very small values. These low correlations may be due to strong
noise and weak signal in each of the datasets.

2.2. Method

The HHT analysis method used here follows that of Huang et al. [1998], a time
domain analysis using EMD, and a frequency domain analysis using Hilbert spec-
tra [Huang and Shen (2005); Shen et al. (2005)]. The time–frequency analysis can
identify instantaneous frequency and its associated amplitude of a time series. The
HT (Hilbert transform) is an effective tool for calculating phase and amplitude, but

Table 2. Inter-correlations of the CMAP, GPCP, MERG, and REOFv2 data,
and energy of mode R.

MERG REOFv2 GPCP GPCP
Mode R energy

(mm/day)2

MERG 1 0.1961
REOFv2 0.2144 1 0.3423
GPCP 0.2870 0.2355 1 1 0.0124
CMAP 0.0539 −0.0051 0.2127 0.2127 3.0355
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it often cannot be directly applied to a time series. For example, when the HT was
applied to the analysis of the nonlinear vibrations [Feldman (1997)], the instanta-
neous frequency could not be calculated from the original time series. One problem
is the non-differentiable phase function, which leads to nonphysical instantaneous
frequency as a temporal derivative of the phase. HHT attempts to overcome this
difficulty by sifting the original time series by the EMD procedure and leads to
the intrinsic mode functions (IMF). The original time series is decomposed into a
finite number of IMFs, each of which are either quasi-periodic and quasi-symmetric,
or quasi-monotone and have a properly defined temporal derivative of the phase
function. Thus, the IMFs allow the depiction of high-resolution Hilbert-spectra for
nonlinear and nonstationary data. Mathematically, the phase functions and their
numerical derivatives are well defined for these IMFs, which satisfy the following
two conditions:

(i) In the temporal domain of the data, the number of extrema and the number
of zero-crossings must either be equal or differ at most by one, and

(ii) at any point, the mean value of the envelope defined by the local maxima and
the envelope defined by the local minima is zero.

With these requirements, each IMF oscillates in a narrow frequency band, a
reflection of quasi-periodicity and weak nonlinearity. Of course, the nonconstant
frequency means nonstationarity. When an IMF c(t) is found, its HT, H{c(t)}, can
be found. Then

c(t) + iH{c(t)} = a[t] exp[iθ(t)] (1)

is well defined for a given t. This equation yields the instantaneous frequency
ω(t) = dθ/dt and its associated amplitude a(t). The triplet (t, ω, a) forms the Hilbert
spectral power [Shen et al. (2005)].

3. Results

3.1. MERG data diagnostics

The MERG dataset (1900–2008) yields 8 IMFs and a nonlinear trend, denoted as
mode R (Fig. 2). The largest variations are in the first two modes. The main vari-
ations of the data are in IMF1, 2, 3 and R. Mode R is a nonlinear trend and also
shows a clear nonstationarity. The periods of IMF1, 2 and 3 are approximately 1/4,
1/2 and 1.0 year (Fig. 3(a)). Thus, IMF1 may be contributed mainly by the trop-
ical ocean precipitation associated with Madden–Julian Oscillation (MJO) whose
period is around 2–3 months. IMF2 may be attributed to the tropical monsoon
precipitation which typically peaks twice a year due to a seasonal wind reverse.
This semi-annual cycle might be the consequence of the strong boreal summer and
winter monsoon precipitation in the near tropical areas over the ocean. The two
rainy seasons in Malaysia belong to this type of monsoon precipitation.

1250018-6



March 14, 2013 11:45 WSPC/1793-5369 244-AADA 1250018

HHT Analysis of the Global Average Monthly Precipitation Data

Fig. 2. IMFs and the nonlinear trend of MERG (1900–2008) data. The top panel shows the
global average monthly precipitation anomaly data. The last panel is the nonlinear trend of the
data. The middle panels are the IMFs of the data.

IMF3 is the annual cycle. Although the data are the anomalies and the global
precipitation does not have a strong annual cycle, the year-after-year repeat pattern
is still in the data. This annual oscillation is much weaker compared to the quarter-
year or semi-year oscillations. The IMF energies and periods in Fig. 3 show the
relative energy magnitude of the IMFs and their corresponding periods. Here the
energy of an IMF is defined as

En =
1
T

T∑

t=1

h2
n(t) (2)

which is the variance if the IMF has a zero mean.
The IMF energy decays roughly exponentially with base 2 from mode 1 to

mode 5, suddenly increases with mode 6 and decreases exponentially again to
mode 8, and finally has a large surge at mode R to 0.2 [mm/day]2 due to the large
positive trend (Fig. 3(b) and Table 3). Figure 3 does not show this energy since the
trend mode does not have a period. The trend energies are shown in the last column
of Table 3. The energies of the first three modes are approximately 1

2 , 1
7 , 1

15 , respec-
tively. The mean period of the IMFs increases exponentially in base 2 from mode 1
to mode 7. Period doubling is a property of white noise in EMD analysis [Wu and
Huang (2004)] and is often presented in the EEMD, perhaps due to the addition of
white noise to the data although the white noise’s magnitude may be small. For all
the eight modes, the period doubling is almost strictly followed: 1/4, 1/2, 1, 2, etc.
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Fig. 3. Mean period and energy of IMFs, and Fourier spectra of the MERG data. The top two
panels use the logarithmic scale.

(see Fig. 3(a)). IMFs 4–6 have periods of 2–8 years and may correspond to El Nino
Southern Oscillations (ENSO). These three IMFs’ energy is small compared with
the first mode and R mode, and hence IMFs 4–6 may be regarded as a minor mod-
ulation of the high frequency global precipitation’s variation. IMF3 is regarded as
the residual of the seasonal cycle that was removed when anomalies were computed,
and thus has a small energy as well. Further, like the global average temperature,
the global average precipitation has a small annual cycle. When considering pre-
cipitation over a region with a strong annual cycle, the annual cycle IMF will have
large energy. The last two modes’ periods are greater than 16, indicating very slow
oscillations as depicted by the IMFs in Fig. 2.

The trend of the MERG precipitation data is positive, with an increase about
1.0 [mm/day] per century. This trend is not linear and is not a regression result.
The positive direction of the trend is consistent with that of GPCP, AR4 models,
and REOF analysis.

Fourier spectra of the MERG data are shown in Fig. 3(c), which has a frequency
range [0, 6]. The maximum frequency limit 6 is due to our use of monthly data
(12 data points in a year) and a necessity of a maximum and a minimum per
cycle (12/2=6 cycles per year). Figure 3(c) indicates a dominant power peak at
frequency 3 (3 cycles per year) and a major peak at frequencies 5 (Fig. 3(c)). These
two peaks may be related to the first IMF’s energy in Fig. 3 and may be attributable
to MJO precipitation. The distribution of one IMF’s power into several Fourier
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spectral power may be due to the nature of Fourier spectra’s linear dispersion,
while nonlinear data analysis using HHT can retain energy in a single mode.

Another major Fourier spectral peak is at frequency 2, i.e. the semi-annual cycle,
corresponding to the second IMF whose mean frequency is approximately 2. This
semi-annual signal may be attributable to the monsoon precipitation which has a
strong semi-annual cycle in most locations around the globe.

The Hilbert spectra help depict the time-frequency variations of a time series.
A given time, t, corresponds to a frequency, ω[t], and an amplitude, a[t]. Thus, on
the (t, ω) plane, each point corresponds to an amplitude that is a function of both
time, t, and frequency, ω, but the time and frequency are not independent; rather,
they are related by a function ω[t]. The triplet (t, ω[t], a[t]) determines a point in
three-dimensional space (t, ω, a) [Shen et al. (2005)]. For a given time and a given
IMF mode we can find a frequency by the Hilbert transform ω[t], hence a point on
the (t, ω) time–frequency plane, and find the corresponding amplitude, a[t]. One
can find this a[t] for all IMFs except the last one which is a nonlinear trend. For
any other grid point on the (t, ω) plane which does not correspond to an IMF,
the amplitude is assigned to be zero. These amplitudes form the discrete Hilbert-
spectra. For practical calculation, we define a grid over the (t, ω) plane. The time
resolution is monthly, and hence the t-axis has 1308 (= 109 year times 12 months)
points for the MERG and REOF data. For monthly data, the maximum frequency
in the units of cycles/year is 12/2 = 6, which is both the range of the instantaneous
frequency ω and the range of Fourier power spectra. This range is divided into
1308/2 grid points. Thus, the (t, ω) domain is January 1900 to December 2008 and
0 to 6 cycles/year. This rectangular domain has 1308× (1308/2) uniformly divided
grid points. If the grid point (t, ω) corresponds to an IMF, then a(t) is possibly
nonzero. Otherwise it is zero. Since most points do not correspond to IMFs, the
(t, ω, a) values are dominated by zeros and are difficult to analyze visually. To better
visualize the spectra, we apply a Gaussian filter to the triplet (t, ω, a) to depict the
amplitude variations on the time–frequency domain (see Fig. 4). Modes 1 to 8 are
displayed in the Hilbert spectra. Each mode follows a trace of bright dots. The
dots of Mode 1 scatter around over the top half of the plot. Mode 2 traces the
dots around a frequency of 2 cycles/year. Mode 3 is the annual cycle and has a
clear trace around the frequency of 1 cycle/year. The dots of Modes 4, 5 and 6
stack together because of low frequency oscillations. Because they stack together,
the discrete Hilbert spectra of the low frequency modes are almost continuous over
the time–frequency plane after the Gaussian smoothing. The Hilbert spectra shown
in Fig. 4 indicate the following: (a) The frequency domain of the first two modes
has a large range from 2 to 6 cycles/year, (b) the annual cycle mode IMFs has a
range of 0.3–1.5 cycles/year, (c) the IMF4, . . . , 8 have a narrow frequency range
0–1 cycles/year since they represent very slow oscillations, (d) the amplitude of
IMF1, 2, and 3 varies little according to time, and hence the nonstationarity of the
first three modes is very weak, (e) the variation of the amplitude of IMF4, . . . , 8 is
apparent and manifests both nonstationarity and nonlinearity, and (f) the strongest
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Fig. 4. Hilbert spectra of the MERG data (1900–2008). The vertical frequency axis has units
[cycle/year].

nonlinearity is reflected in the nonlinear trend mode R which is not shown in the
Hilbert spectra.

3.2. REOF (1900–2008) data diagnostics

REOF reconstructed data were generated from global EOFs by a linear regression.
Both REOF and MERG use EOFs based on GPCP, and much of the variance
in each reconstruction is from fitting gauge-analysis anomalies to a set of EOF
modes. Thus, the characteristics of the REOF data and the MERG data have
many similarities. REOF data also have eight IMFs and a positive nonlinear trend
(see Fig. 5). Figure 6 indicate that the mean periods between REOF and MERG
data are very similar: The mean period of the first IMF is also about 1/4 year,
those of IMF2 and 3 are 1/2 and 1, respectively. So the IMF3 is the annual cycle.
The IMF2 is the semi-annual cycle. IMFs 4–8 have little variation and contain little
energy. The IMF energies decay exponentially from mode 1 to mode 4, and from
mode 6 to mode 8 at a faster rate. However, there are differences between the REOF
and MERG modes. The annual cycle IMF3 of the REOF has a much stronger
modulation, which is shown in both IMF3 time series of Fig. 5 and the Hilbert
spectra of Fig. 7. In addition, REOF has a stronger nonlinear trend, with an increase
of about 1.6mm/day from 1900 to 2008. This is consistent with Sec. 2’s linear
trend results which are 0.1126 (mm/day)/decade for ROEF and 0.0895 (mm/day)/
decade for MERG. The REOF IMFs have stronger energies. The total energy of all
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Fig. 5. IMFs and trend of the REOFv2 data (1900–2008).

the 8 IMFs and mode R is about 3.0 (mm/day)2 while that of MERG is only about
1.0 (mm/day)2. This means that ROEF is less smoothed than MERG and retains
more variations of global precipitation. In particular, the ROEF trend contains an
energy of 0.34 (mm/day)2 and thus shows a strong nonlinear upward trend that
might be correlated with a SST warm trend in the same period.

Figure 7 demonstrates that the REOF annual cycle has a frequency band from
0.6 to 1.3, which is narrower than that of MERG. The strong modulation of the
annual cycle has about 10 peaks from 1900–2008 and may be related to PDO
(Pacific Decadal Oscillation).

The Fourier spectra of the REOF data have very different properties from those
of the MERG data. The REOF data show a strong peak at frequency 2, a second
strong peak at frequency 1, and a third peak at frequency near 0. The first peak
may be related to IMF2 (semi-annual cycle), the second peak to IMF3 (annual
cycle), and the third peak to mode R (the trend).

3.3. Monthly GPCP global average precipitation data (1979–2009)

Compared to the MERG and REOF data, the GPCP data are smoother and have
some apparent low-frequency modulation. The GPCP data have 7 IMF modes and
a positive nonlinear trend, i.e. mode R, shown in Fig. 8. The first IMF has some
intermittency, a mixture between different frequencies. The variance of this mode
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Fig. 8. IMFs of the monthly GPCP global average precipitation data from 1979–2009.

was obviously larger in the 1990s than in the 1980s, and became smaller in the
last decade. IMF3 and 4 have stronger variations in the late 1980s and the 1990s.
The third mode is the annual cycle, which is nonstationary. The slow modulation
at a period of 2–12 years is in IMF4–7. Whether these modulations are related to
ENSO, PDO, or some other defined climate mode requires further investigation. On
the other hand, these modulations may have been caused by the methods of data
processing and changes of satellite sampling, and hence these slow modulations may
have no clear physical implications. If so, the data aggregation algorithms may need
to be re-visited.

Figure 9 shows mean periods and energies of the GPCP IMFs, as well as the
GPCP Fourier spectra. The GPCP IMF energies do not decay exponentially accord-
ing to the mode number as the MERG and REOF IMF energies. Instead, the ener-
gies decay sharply from IMF1 to mode 2. The energies of IMF2, 3, 4, 6 and 7
are nearly flat and constrained within 1/4 and 1/2 [mm/day]2. The slow-decaying
behavior of the energy indicates the strong low-frequency variations in the range
of 2–12 years, which are not well represented in REOF and MERG data perhaps
because of the use of EOFs that do not retain the low frequency oscillations well.
The EOF and CCA reconstruction in MERG and REOF data depend on the base
data for the EOFs. The MERG and REOF reconstructions used the same base
dataset GPCP that may not have sufficiently long history to effectively reflect this
low-frequency variation.
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Fig. 9. Mean period and energy of the GPCP IMFs and the Fourier spectra of the GPCP data.

The mean period for IMF1 is about 1/4 year and increases via an approximate
period-doubling relation to 15 years for IMF7. This is similar to that of MERG and
REOF data. Because the GPCP IMF energies do not decay exponentially, the ener-
gies are thus not from white noise, and hence the low-frequency variations may be
physically meaningful assuming that they are not generated from data aggregation
algorithms [Wu and Huang (2004)]. The total energy is about 3.0 (mm/day)2, which
is about the same as that of REOF and more than MERG. Nonlinearity must play
a very important role here in the low-frequency variation since the main peak of
the Fourier spectra (see Fig. 9(c)) is near zero frequency. This strong low-frequency
modulation is different from that of the MERG and REOF data. An explanation
for this is that the MERG and REOF data were a result of linear regression and can
focus energy on some specific modes, while the GPCP are from a fusion of satellite
retrieval and in situ gauges, which can more effectively reflect the intrinsic nonlin-
earity of the Earth climate processes. The above implies that each IMF has strong
intermittency, and the global precipitation does not possess a persistent linear and
stationary cycle at a fixed frequency.

The strong nonlinearity and nonstationarity are also clearly depicted in the
Hilbert spectra of the GPCP data (Fig. 10). The Hilbert spectra for the four IMFs
clearly indicate strong energy in the 1990s with variation frequencies between 0 and
2 cycles/year. Whether these strong IMF energies in the 1990s are due to physical
processes or to changes in observational methods or to the data processing methods
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Fig. 10. Hilbert spectra of the monthly GPCP global precipitation data (1979–2009).

is to be investigated. Using conventional Fourier analysis, one cannot detect the
interdecadal signal with 30 years of data. An advantage of EMD method is that
EMD can extract a low frequency signal with a short section of data [Huang et al.
(1998); Huang and Shen (2005)]. However, this is only an empirical conclusion
and has not been mathematically proven yet. Nonetheless, it cannot be ruled out
that the slow variation is due to instrument change rather than a real physical
phenomenon.

3.4. Monthly CMAP global average precipitation data (1979–2009)

CMAP is a commonly used global precipitation dataset that is anchored by over
20000 ground stations whose data are blended with satellite data. The CMAP
IMFs in Fig. 11 also show some low-frequency modulation, as shown in the GPCP
IMFs, but with different modulation properties. The first four modes all show an
apparent amplitude decrease around 1995. The amplitudes in the last decade are
comparable to those of GPCP in the same period. This means that the CMAP
anomaly amplitudes in the 1980s are much bigger than those of GPCP in the
same period. This can even be clearly seen from the data themselves. CMAP data
oscillate between −6 and 10mm/day in the 1980s, while the GPCP data oscillate
only between −5 and 4mm/day. This leads to a question as to which dataset
overestimates or underestimates the global precipitation in the 1980s.

A dramatic feature of the CMAP IMFs is that CMAP has a decreasing nonlinear
trend. This is in contrast to those increasing trends of MERG, REOF, and GPCP,
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Fig. 11. IMFs and trend of the CMAP data (1979–2009).

but is consistent with CMAP’s negative linear trend in Table 1. Land observations
and climate models all support an increasing trend or a positive linear trend [Held
and Soden (2006); IPCC (2007); Wentz et al. (2007)]. The CMAP’s decreasing
trend might have been caused by large variance at the beginning of the data period
and the adjustment based on the gauges on atolls and low islands, as discussed
in Sec. 2, and may not be a physical reality. These asymmetric and large positive
values of CMAP in the 1980s have led to this decreasing trend. The consistent
negative global precipitation anomalies in the last decade enhanced the decreasing
trend. The consistently smaller variation after the mid-1990s might be due to the
over-smoothing in the method of blending multiple sources of data, particularly
more satellite data. It is to be determined whether these two apparent asymmetric
distributions of the global precipitation in the 1980s and the last decade are a
physical manifestation of the oceanic precipitation or nonphysical biases caused by
the data aggregation methods.

IMF2 has a mean frequency around 2 cycles/year. This semi-annual cycle exists
in all the four global precipitation datasets, and may be the manifestation of the
winter and summer monsoon precipitation. The exact mechanism is still to be
validated by climate models and tropical precipitation data.

The IMF mean periods and energies, and the Fourier spectra of the CMAP
data are shown in Fig. 12. CMAP’s IMF1 has energy 3.5 [mm/day]2, which is much
larger than that of IMF1 from REOF, GPCP, and MERG data. The energies have
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Fig. 12. Mean period and energy of the CAMP IMFs, and the Fourier spectra of the CMAP
data.

a sharp decay from IMF1 to IMF2, and turn to a much slower decay from IMF2
to IMF5, and then change to an increase from IMF5 to IMF6. This behavior is
similar to that of GPCP. The total energy from all the six IMFs plus that from
mode R is about 9 [mm/day]2, which is more than twice of that of REOF and GPCP
(3 [mm/day]2) and nine times of that of MERG (1.0 [mm/day]2). The unusually
large energy, the decreasing trend, and obvious reduction of the CMAP variance
since the mid 1990s are subject to further analysis. GPCP seems more consistent
with the results of climate modeling and reconstruction. The similarities between
REOF reconstruction and GPCP may be due to the use of GPCP EOF basis in
the REOF reconstruction [Smith et al. (2010)].

The mean frequencies of the six IMFs are comparable to those of the first 5 IMFs
of the other three datasets and follow the rule of period doubling. As discussed
earlier, the 3 months, 6 months, 12 months, and other periods may be related to
MJO, monsoon, annual cycle, El Nino, and PDO, respectively.

The Fourier spectra of the CMAP data behave similarly to those of GPCP.
The major peak is near zero frequency, which corresponds to the nonlinear trend,
i.e. mode R. Due to strong nonlinearity inherited from the station data, the pure
harmonics do not exist in CMAP, and thus they are not reflected in the IMFs. So,
three minor peaks between frequencies 4 and 5 cycles/year may be the result of a
strong linear dispersion from IMF5 and 6.
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Fig. 13. Hilbert spectra of the CMAP data (1979–2009).

The nonstationarity is clearly reflected in the Hilbert spectra (Fig. 13). Strong
variations with large amplitudes are in the time–frequency domain of the late 1980s
and early 1990s in time and 0 to 2 cycles/year and 4 to 6 cycles/year in frequency.
The amplitudes have an apparent decrease in the last 15 years. The oscillation
frequencies in IMF2 and 3 also decreased in the last 15 years. What has caused this
red shift of the two IMFs is still to be found out.

4. Conclusions and Discussion

We have carried out an HHT analysis for the four time series of the monthly global
average precipitation: MERG (1900–2008), REOF (1900–2008), GPCP (1979–
2008), and CMAP (1979–2008). EMD sifting procedure has been used to decompose
the precipitation time series into IMF modes, plus a trend, i.e., mode R, that carries
the main signal of nonlinearity and nonstationarity. The mean period and energy
of each IMF, Fourier spectra, and Hilbert spectra for each IMF have been calcu-
lated and displayed. MERG and REOF reconstructed data yielded 8 IMFs while
the GPCP and CMAP observed data yielded 6 IMFs. The IMFs seem providing
a way to display some physical signals carried the precipitation data, including
MJO, monsoon, annual and ENSO. The Hilbert spectra can clearly display the
time–frequency changes in a precipitation time series and may help extract crit-
ical information for improving the aggregation method for observed data and for
improving climate model parameterizations. However, rigorous statistics inference
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has not been made to verify the existence of the weak signals in the global pre-
cipitation time series. We conclude that HHT may be a useful tool for global
precipitation data diagnostic studies and may provide new perspectives in addi-
tion to those of traditional Fourier spectral analysis and other time–frequency
analyses.

Some simple statistics of the datasets have also been calculated, including mean,
standard deviation, skewness, kurtosis, and linear trend. CMAP has the largest
standard deviation due to its adjustment by atolls and low island stations’ positive
bias. These overestimate biases also cause the right skewness of CMAP data, while
the other three data are skewed left. MERG has the smallest standard deviation,
indicating that CCA analysis yields a smooth field compared to other methods. The
kurtosis of each dataset is positive, indicating a more peaked distribution of global
precipitation than a normal distribution. MERG and REOF have a positive linear
trend for both periods of 1979–2008 and 1900–2008. The REOF trend is stronger.
The GPCP linear trend is positive but weak, while the CMAP linear trend is
negative and strong. Again, the strong negative CMAP trend may be caused by
the overestimate from the adjustment in the 1980s by the stations on atolls and
low islands. The inter-correlations of the four datasets are very small, implying that
more effort needs to be made to synchronizing the observations by using climate
dynamics when aggregating the observed data together by various interpolation or
reconstruction methods [Mariotti and Arkin (2006)].

Although the data studied are the anomaly time series of global precipitation,
the annual cycle signal still exists and is the third IMF mode in all the four datasets.
CMAP has the largest energy. This is consistent with its largest standard deviation:
2.8mm/day, four times of that of the MERG data for the same period 1979–2008.
All the modes in each dataset approximately follow the rule of period doubling.
The energy decays very fast from IMF1 to IMF2. The energy decay slows down
from IMF2 in the GPCP and CMAP data. Thus, the annual cycle signal, as the
third IMF mode, has some substantial physical signal.

There are many diagnostic and data uncertainty problems to be resolved. For
example, it is understood that CMAP has an overestimate of the global precipi-
tation in the 1980s mainly because of the adjustment based on the gauge data on
atolls and low islands. It would be useful to study the observed precipitation data
from the gauges on these atolls and low island stations and compare the gauge
data with the data from satellites, such as TRMM, in the last 10 years. This may
quantify the bias introduced to CMAP in the 1980s.

Another problem is the large difference between the trends of MERG and REOF
despite the fact that both of them are EOF based reconstructions. MERG is a
smoother dataset than ROEF. Then, what is the appropriate and physically mean-
ingful energy for each IMF mode? A new reconstruction for REOF uses CCA for the
oceanic precipitation and use EOFs for the global land precipitation. The merge of
the two products becomes the new GHCN (Global Historical Climatology Network)
based global precipitation dataset [Smith et al. (2011); Vose et al. (1998)]. We plan
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to analyze this dataset with the data from different reanalysis and from different
climate models [Compo et al. (2006); Onogi et al. (2007); Uppala et al. (2005)].

The cycles of the first four modes and their corresponding climate dynamic
implications may be further tested and explained by considering the signals of
the regional average precipitation data. The land and ocean precipitations can be
analyzed separately to extract more clear precipitation signals corresponding to
MJO, monsoon, annual cycle and ENSO.
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