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Combining Rain Gages With Satellite Measurements for Optimal Estimates
of Area-Time Averaged Rain Rates
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The problem of optimally combining data from an array of point rain gages with those from a low
Earth-orbiting satellite to obtain space-time averaged rain rates is considered. The mean square error
due to sampling gaps in space-time can be expressed as an integral of a filter multiplied by the
space-time spectral density of the rain rate field. It is shown that for large numbers of gages or large
numbers of overpasses the two estimates can be regarded as orthogonal in the sense that the optimal
weighting is the same as for independent estimators, i.e., the weights are inversely proportional to the
error variances that would occur in the single-component case. The result involving point gages and
satellite ovérpasses appears to hold under quite general conditions. The result is interesting since most
other design combinations do not exhibit the orthogonality property.

1. INTRODUCTION

Precipitation not only has an important effect at the
Earth’s surface but the corresponding rate of latent heat
release aloft is a major driver of the larger-scale atmospheric
circulation. This is particularly so of the heavy precipitation
in the concentrated convergence zones in the tropics. In
global change calculations involving general circulation
models (GCMs) of the atmosphere there is a critical lack of
such latent heating data for validation and model improve-
ment purposes. Typically, one wants a time series of the rain
rate smoothed over grid boxes whose edges are about 500
km and through about one month. This kind of space-time
averaging volume is shown in Figure 1. This paper examines
the error structure of an observation design relevant to this
kind of application. ,

One never has the luxury of obtaining rain rate data
continuously throughout the given space-time volume, but
must settle for discretized observations that approximate the
space-time integral. For example, an array of rain gages
represents a series of rods that run parallel to the time axis of
the volume (e.g., Figure 2). Another design is that of a
satellite that makes periodic overpasses at a fixed interval of
about 12 hours (e.g., Figure 3). This design consists of
infinitesimally thin slices of space-time volume perpendicu-
lar to the time axis. All of the conceivable designs will have
random sampling errors associated with the inherent gaps. In
this paper we show the optimum weighting that should be
used in combining point surface measurements with those
from an idealized low Earth-orbiting satellite. These results
should provide some guidance in the optimal estimation of
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space-time smoothed rain rates and in the ground truth
issues associated with satellite-based estimation of rain
rates. In the process of solving the problem we find a
remarkable orthogonality property between the two designs.

Issues concerning the estimation of climatological time
series of precipitation from satellites are hardly academic
considering the likelihood of launches of several space-based
observing systems such as the Tropical Rainfall Measuring
Mission (TRMM [Simpson et al., 1988]) and the Earth
Observing System now being studied by NASA [Baker,
1990] in the 1990s. A number of preliminary sampling studies
for satellite estimating designs have been conducted [Laugh-
lin, 1981; McConnell and North, 1987; Bell, 1987; Shin and
North, 1988; Valdés et al., 1990, Bell et al., 1990; Kedem et
al., 1990; North and Nakamoto, 1989]. These studies indi-
cate that at least in the case of tropical convective rain over
the oceans, a system like TRMM can limit the sampling
errors for 500-km boxes over a month to the order of 10%
[Simpson et al., 1988].

We feel that the estimation of space-time averages is
sufficiently complicated and confusing that fundamental
studies that help us to understand the estimation problem are
still useful at this stage. North and Nakamoto [1989] (here-
inafter referred to as NN) have presented a framework for a
large class of studies comparing different measurement de-
signs. Their approach is to make use of the statistical
properties of the rain rate field, and exploit the assumed
homogerieity and stationarity of the field through the use of
the Fourier representation. In this way we can arrive at a
compact formula for the mean square error in terms of the
space-time spectrum of the rain rate field and a separately
factored function which depends only on the design param-
eters.

The purpose of the present paper is to use the technique to
examine a combined sensor problem and explore optimal
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SPACE-TIME AVERAGING BOX
Fig. 1. Schematic diagram of the space-time volume used in the

averaging process.

weighting in the context of the NN formalism. In so doing we
ignore certain factors such as instrument errors and the fact
that the satellite overpasses often only cross a portion of the
grid (averaging) box. These are not essential simplifications
and at this point their inclusion would only obfuscate the
rather clear interpretations that will come from the formula-
tion.

2. REVIEW OF NORTH-NAKAMOTO APPROACH

North and Nakamoto [1989] have presented a rather
general formalism to estimate the mean square errors in-
curred in estimating space-time means of random fields such
as rain rate. They also presented approximate analytical
results for two special isolated cases: (1) a satellite making
flush visits (we mean by ‘“‘flush’’ that the satellite swath
during an overpass overlays the grid box completely) at
discrete intervals (nominally 12 or 24 hours apart and over a
month; the so-called grid (spatial averaging) box is typically
500 km on an edge) and (2) a regular matrix array of rain
gages in the box.

We remark that studies of combining rain gages with
spatially continuous data have been undertaken by Creutin
et al. [1988]. We further note that a spectral approach to the

RAIN GAGE SAMPLING DESIGN

Fig. 2.

Design for point rain gages.
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Fig. 3. Design for low Earth-orbiting satellite.

estimation of sampling errors with rain gages was conducted
by Rodriguez-Iturbe and Mejia [1974].

2.1. Mean Square Error Formula

The NN formalism begins with a random field y(r, ?)
which represents the instantaneous rain rate at a point r =
(x, y) and at time t. We seek a space-time average over this

ﬁeld
‘I’ = IIJ r, ! dzl dt 1
2 L L ( > ) ( )

where the integral is to run over the square —L/2 < x < L/2;
—L/2 <y < L2 and over the interval 0 < ¢ < T; we refer
to the domain

D = (—-L/2, L/2) x (—=L/2, L/2) 2

A schematic of the space-time volume is shown in Figure 1.

All attempts at estimating ¥ in practice are hampered by
sampling considerations. For example, a single low Earth-
orbiting satellite sampling design leads to an estimate given
by

dzr(//(r, t,) 3)

Vs = NL22

where N is the number of visits the satellite makes in the

period T, t, = (n — 1/2)At with the interval At given by
T/N. It can also be written
V5= J dt J d’ry(r, HK(t) 4)
Ks(t) = At 2 8(t — (n — 1/2)A0) (5)
n=1

Similarly, for a rectangular array of rain gages (G), we
have an estimator for the area-time average

1
Vo= f ar f Sri(e, DK (©)
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where
M
Ko(r) = (AD? X, 8(x
nl,n;=l

—(n - UDADS(y — (np,— /2)AL) (D)

and Al is the spacing in the x and y directions of the gages in
the rectangular array. Schematics of the two sampling de-
signs are shown in Figure 2 and 3.

We use as an indicator of error size the mean square
deviation of ¥ and ¥; taken over an ensemble of realizations

e,-2 ={((¥ - ‘I’,-)z), i = S (satellites) or i = G (gages)

(8)

where the angle brackets denote ensemble averaging. Note
that we are evaluating the error squared for a specific month,
say March 1990, but the ensemble average is over a large
collection of realizations of the field. For all of the present
considerations we can adjust the long-term or ensemble
mean so that (¥) = 0.

Most of what follows can be expressed best in terms of the
Fourier representations of the space-time fields. We define
the Fourier transform (FT) :

g(v) = f " gx)e T dx ©)
and its inverse

g(x) = f T gwe T gy (10)

where » is the wave number (wave cycles per unit length)
analogous to frequency f (cycles per unit time).

By inserting the FTs and taking the expectation value, we
quickly arrive at the formula (for details, see NN)

el=0? fff |H(v, £)|°S(v, ) d*v df  (11)

where S(v, f) is the space-time power spectral density of the
rain rate field defined by

28w, I8P —v)8(f—f) = (F*w, NP, ),
(12)

H(v, f) is a complex-valued design-dependent function, and
o = ($*(r, 1)) is the point variance of the average of the
random rain rate field. The space-time power spectral den-
sity S(v, f) is a real-valued function. In the above derivation
we have assumed throughout that the random rain rate field
is statistically homogeneous and stationary.

The formula (11) above neatly separates the problem into
two distinct factors under the integral sign: the space-time
spectral density of the rain rate field and a design-dependent
filter that may be different for each design under consider-
ation. An interesting note is that the formula (11) also tells us
that the mean square error depends only upon second
moment statistics of the field. There is no assumption being
made about the probability density function (pdf) for the
field. A highly nongaussian pdf (and rain rates certainly are)
may make estimation of the spectral density difficult, but it
does not affect the mean square errors in the estimation of
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the space-time mean for a particular month in a particular
grid box once the spectral density is known.

2.2. Satellite Design

Consider now the special case of a periodic satellite
visitor. NN derived the filter H(v, f) for this case:

1 2
\Hs(v, f)]* = G(vlL)zc(vZL)ZGUT)Z(l & fAt))
(13)
where we have adopted the notation
Glx) = sin (7 x) (14)
TX

In the limiting case of a large number of visits the filter
assumes the convenient form

]

1
|Hs(w, NP ~ GD* 6L 3 2

n#0,n = —x

n
fAt

(15)

which is a Dirac comb along the frequency axis (see NN for
graphics). The teeth are at multiples of the satellite revisit
frequency; hence, large values of the spectral density at these
frequencies will lead to large errors. These can be particularly
troublesome for Sun-synchronous satellites which return at the
semidiurnal cycle frequency [cf. Shin et al., 1990].

2.3.

For the periodic rectangular array of rain gages in the large
number of gages limit,

G(fT)? n n
|Hgv, f)|* = e Z 5(»,—;})5(%—5)

n,n 70

Periodic Array of Rain Gages

(16)
which is a two-dimensional Dirac comb (Dirac dog brush) in
the (v, »,) plane. NN were able to show that for a highly
idealized space-time spectral density the random sampling
errors for these designs are of the order of 10% separately.
The idealized spectrum was tuned to data from the Global
Atlantic Tropical Experiment (GATE). The value of 10%
occurred when the spacing of gages was Al = 40 km. The
spectrum shape used seems to be substantiated by compar-
ison of the spectra subsequently estimated directly from rain
rate data [Nakamoto et al., 1990]. On the other hand, rain
rate spectra over land are likely to have characteristics that
lead to larger sampling errors for both satellites and point
gages [e.g., Seed and Austin, 1990].

3. COMBINATION DESIGNS

Now consider the combination of ¥ ¢ and ¥, a situation
that might be called into play in applications over the land
surface where rain gages will be available to combine with
satellite measurements. The combination may be necessary
to reduce the satellite sampling and instrumental errors since
over land the satellite must rely either on radar which has a
narrower swath (and hence larger sampling errors) or on the
use of empirically based methods of rain rate retrieval from
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microwave radiometers which carry a large instrumental
uncertainty. Consider as an estimator the linear combination

‘FA=aS\I’S+aG\I,G (17)
(18)

where the coefficients «; are weights that are to be deter-

mined later by minimizing 2.

Then we can write for the mean square error

l=ag+ ag

g2 =((¥ - ¥y? (19)
el =((as+ ag)¥ — (as¥s+ ag¥e)D)  (20)

which can be written
£2=a§s§+aésé+2asagegc 21

where the £ and e} are the same as before and the new
“‘interference” term has as a factor

sgi(;:crzjdzvfde(v,f)G(VlL)ZG(sz)ZG(fT)Z

1 1
' (1 - G(fAt))(] - G(V]AI)G(val)) @2
After some rearrangements we may write
2 2 1 2
Esg=Ca NM2 dv df S, f)Kss(v, f) (23)
where
sin? (NwfAr)
Ksov. 1) = Simran sin (nfa)
GUAD — 1 sin> (Mmv,Al)
[G(fan = 1] M(mv,Al) sin (wv,Al)
sin? (Mwmv,Al)
M(‘)TVzAl) sin (7TV2AZ)
One can show that
sin? (NwfAr) 1
N . ~—=38(f)
(wfAt) sin (wfAt) At
2 i (-nrt1 n
— z —8'<f——) N —> o,
: n#0,n = —» f At
(25)

The last formula is illustrated in Figure 4 for N = 10 and Ar
= 0.5. This convergence to the Dirac delta function and its
derivatives is seen to be quite rapid. In the practical case, N
is closer to 60 and is already satisfactorily large. It is
important to note that another factor in the kernel K sc(, f)
vanishes at f = 0, namely, [G(fAt) — 1], which is plotted in
Figure S. Hence, when the two factors sin?> (NafAr)/
[N(wfAt) sin (nfAt)] and [G(fAt) — 1] are multiplied, the
product essentially vanishes in intervals (n/At, (n + 1)/A?)
of fforalarge N, n = =1, =2, =3, - - - | At the point n/A¢,
the product is essentially the first derivative of the Dirac
delta function for a large N, n = =1, *2, +3 --.,
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Dirac Factor in the
integrand of the
interference term
for N=10, At=0.5

-10 -5 h v 5 0
Fig. 4. Plot of the function sin® (N afAt)/Nzf sin (mfAr) for N

= 10 and Az = 0.5. This function approaches the Dirac delta
function 8(f) as N — .

Explicitly, the convergence result of the product is ex-
pressed as follows:

sin? (NwfAD/[N(wfAt) sin (mfADIIG(fAL) — 1]

2 o0
NFZE(I

n#Qn = —»

sin (wfAn)\ (=1)"
C T afAt f

' - 26
<8 f- A7 — (26)
Let A(f) be a smooth function of f. Then,
J © df A(f) sin? (NmfAD/N(mfAL) sin (mfAD)]
‘” ac
(G ~1]=~— >,
N2 n#0,n = —»
.\ 2AtA, n At 2A 2n .
DT At] \n At @27
N— o,

A similar conclusion applies to the factors in the kernel
K¢s(v, f) that depend separately on »; and », when M is

The Function (G-1) in the integrand of the interference term

: v

~1.5+

..z 4

Fig. 5. Plot of the function G(A#f) — 1, which vanishes at f = 0.
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large. Furthermore, the alternation of signs shown in (27)
results in some cancellation. Therefore, for any reasonably
behaved spectral density function S(v, f), the integration

1
EgG:N_M?fdzvjdfs(v’f)KSG(vsf)

is vanishing at a rate at least N ~3M 9 for large N and M.
We refer to this phenomenon of vanishing cross term as
“‘design orthogonality.’”

In actual practical cases, the value of e?; is already
vanishingly small when M = 5 and N = 60. As an example,
let us take L = 500 (km), Al = 100 (km), T = 2 (month), At
= 12 (hour), M = 5 and N = 60. We use the spectral
density function found in NN,

a

dm?rift + (1 +4n’agv?)?

S(v, f) = (28)
where 75 = 12 (hour), Ay = 40 (km) and « is a normalization
constant which satisfies the following condition:

acd?=2rL%03. (29)

Here o} is the variance of the spatial average of the random
field yAr, 1). With these data, (e3¢/o23) "% < 1.0 x 1072,
whereas the noninterference terms (e /o3)""? separately
are of the order of 10 1.

Now consider the values of ag and ag (sum equal to 1)
which minimize the value of the mean square error 2. This
is very easily computed by setting the derivative equal to
zero, leading to the optimal weights

€G
bg= (30)
eé+ e§
ek )
dg=—5—3 (31
eG+ es

In other words, the estimate from each sensor design is
weighted inversely according to the error variance due to
that design alone. A component that has a small error
variance will be weighted very strongly and conversely. This
is a familiar result when one is combining estimates of a
mean from estimators that are independent of one another.
The design orthogonality for the case of satellite-rain gage
combinations is not altogether trivial, since it does not obtain
for most combinations such as combining data from a second
satellite with a different phase or period to data from a given
one. Nor would it occur in augmenting an array of rain gages
by another set intermingled with the first.

4. CONCLUSIONS

We have demonstrated that under rather general condi-
tions the satellite overpass and the dense array point rain
gage designs for estimating area-time averages of rain rate
are orthogonal, i.e., the mean square error for the combina-
tion is just a linear combination of the mean square errors for
the individual estimators with the coefficients inversely
proportional to the error variances that would occur without
the other design being present. This means that the two
estimates are essentially independent or that the random
sampling errors from one design are uncorrelated with those
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from the other (((¥ — ¥ (¥ — ¥y)) = 0) and combining
the two can be done just as well after the fact. Ordinarily, in
combining two sensors such as a second satellite, the ran-
dom sampling errors from one sensor to the other will be
positively correlated, leading to a positive contribution to
the total mean square error for the combination. Adding a
second sensor helps but adding one that is uncorrelated with
the first helps most.

Several assumptions made in the proof above can be
removed. For example, the homogeneity assumption can be
removed by using the Karhunen-Loeve basis set in D instead
of using the Fourier basis. These functions (variously called
empirical orthogonal functions or EOFs in the meteorologi-
cal literature [e.g., North et al., 1982] are the eigenfunctions
of the covariance matrix on a fine grid in the domain.
Clearly, there is also nothing special about the periodicity of
the rain gage or satellite overpasses in the designs used here.
The important point is that the sampling errors due to spatial
gaps are uncorrelated with those due to the temporal gaps. In
our study of the satellite design we have assumed that all
visits are flush. Relaxing this assumption leads to larger
sampling errors for the satellite sampling design but does not
change the design orthogonality conclusion reached here.

It appears that if the separate sampling errors due to the
two designs studied here are comparable, it is desirable to
pool the data and get a significant reduction in the overall
random sampling error. If they are exactly equal there will
be a halving of the mean square error or a reduction of the
rms error of a factor of 1/V2. If the sampling errors for one
system are much larger than for the other, inclusion of the
cruder data will not help very much. The studies by NN for
monthlong averages over 500-km boxes suggest that the gage
separations would have to be of the order of 40 km apart to
achieve this kind of parity based upon tropical oceanic data.
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