
Advances in Differential Equations Volume 7, Number 6, June 2002, Pages 717–742
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Abstract. The initial-boundary value problems describing motion of a
two-dimensional viscoelastic fluid are investigated by using the methods
of variational formulation and inequality estimates. Both the exponen-
tial and power convergence of the solutions to a steady state solution of
the viscoelastic fluid flows are proved under prescribed conditions. The
convergences to a stead state solution of the Navier-Stokes flows is a
special case of the results.

1. Introduction

This paper investigates the convergence of unsteady viscoelastic fluid flows
to a steady state flow as t → ∞. The unsteady viscoelastic fluid flows are
governed by the Oldroyd’s mathematical model. Such a model ( see [9] ) can
be defined by the rheological relation

k0σ + k1
∂σ

∂t
= η0ξ + η1

∂ξ

∂t
, k1σ(x, 0) = η1ξ(x, 0). (1.1)

Here σ is the deviator of the stress tensor and ξ is the strain tensor. Namely,
ξ is an m×m matrix with components

ξij =
1
2

(
∂ui
∂xj

+
∂uj
∂xi

) ,
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where u = u(x, t) = (u1(x, t), · · · , um(x, t)) is the velocity of the fluid motion
and k0, k1, η0, η1 are positive constants, m = 2, 3. If η0k1 = k0η1 in (1.1), we
shall obtain the Newton’s model of incompressible viscoelastic fluid motion.

Relation (1.1) and the motion equation in the Cauchy form leads to the
following initial-boundary value problem

∂u

∂t
− ε∆u+ (u · ∇)u−

∫ t

0
ρ exp{−δ(t− s)}4uds+∇p = f,

div u = 0 (t ≥ 0, x ∈ Ω);
u = 0 (t ≥ 0, x ∈ ∂Ω);
u(x, 0) = u0 (x ∈ Ω);

(p, 1) =
∫

Ω
p(x, t)dx = 0,

(1.2)

where

ε =
η1

k1
, ρ =

1
k2

1

(η0k1 − k0η1), δ =
k0

k1
,

Ω is an open but bounded domain of points x = (x1, · · · , xm) in Rm with
smooth boundary ∂Ω, p = p(x, t) is the pressure of the fluid, f = f(x, t)
is the prescribed external force and u0 = u0(x) is the initial velocity. The
last condition in (1.2) is introduced for the uniqueness of the pressure p.
Problem (1.2) is the generalization of the initial-boundary value problem for
the Navier-Stokes equations.

Problem (1.2) has been investigated by Oskolkov and Kotsiolis [8], where
the Ladyzhenskaja’s methods were applied (see [7]). These investigations
were continued in the articles of Agranovich and Sobolevskii [1, 2, 3], Sobolev-
skii [11, 12], Orlov and Sobolevskii [10] and Cannon et al. [4]. The existence
and uniqueness of the solution of problem (1.2), local in time for m = 3
and global in time for m = 2, were established in [1, 2, 10]. The pair (u, p)
is called the solution of problem (1.2) if their highest derivatives belong
to L2([0, T ];L2(Ω)) for some T > 0 (local results) or for arbitrary T > 0
(global results), and the equations and the initial-boundary conditions are
satisfied weakly. A necessary condition for a such solution to exist is that
f(x, t) ∈ L2([0, T ];L2(Ω)2) and

u0(x) ∈W 2
0 (Ω)2 =

{
v ∈ H2(Ω)2 ∩H1

0 (Ω)2 with div v = 0 in Ω
}
.

An asymptotic series solution is constructed in [12] and the nonlinear Galer-
kin numerical method for the solution in the case of the periodic boundary
condition is studied in [4].
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The steady state flow (ū, p̄) is a solution of the following boundary value
problem. Find (ū(x), p̄(x)) such that −(ε+

ρ

δ
)∆ū+ (ū · ∇)ū+∇p̄ = f̄ ,div ū = 0 (x ∈ Ω) ;

ū = 0 (x ∈ ∂Ω); (p̄, 1) = 0; f̄(x) = lim sup
t→∞

f(x, t) . (1.3)

Recently, the exponential convergence rate of (u(x, t), p(x, t) to the steady
state solution (ū(x), p̄(x)) was shown by Sobelevskii [11]. Also, the conver-
gence to the steady state in the case of the Navier-Stokes motion (or ρ = 0
) in exterior domain was provided by Galdi et al. [5].

To prove the convergence of (u, p) to (ū, p̄), Sobolevskii [11] introduced
the related self-adjoint spectral (or eigenvalue) problem: −ε∆z̄ +

1
2
[
(
∂ū

∂x
) + (

∂ū

∂x
)∗
]
z̄ +∇r̄ = λz̄, div z̄ = 0 (x ∈ Ω);

z̄ = 0 (x ∈ ∂Ω); (r̄, 1) = 0; z̄ ∈W 2
0 (Ω)2, r̄ ∈ H1(Ω),

(1.4)

where (z̄, r̄) is the eigenfunction and λ the eigenvalue.
The exponential convergence can be described by the following theorem

(Sobolevskii [11]).

Theorem 1.1. Let ρ ≥ 0, λ0 > 0, u0(x) ∈ W 2
0 (Ω)2 and for some δ1 ∈

(0,min[λ0, δ]), α ∈ (0, 1), C1 > 0. If the function Φ(x, t) = eδ1t(f(x, t) −
f̄(x)) satisfies

‖Φ(t)‖L2(Ω)2 ≤ C1, ‖Φ(t)− Φ(s)‖L2(Ω)2 ≤ C1|t− s|α, 0 ≤ s ≤ t, (1.5)

then for m = 2, the functions z(x, t) = u(x, t)− ū(x) and r(x, t) = p(x, t)−
p̄(x) satisfy

‖eδ1tz(t)‖H2(Ω)2 + ‖eδ1tzt(t)‖L2(Ω)2 + ‖eδ1tr(t)‖H1(Ω) ≤ C2, (1.6)

for some C2 > 0, where zt = ∂z
∂t and λ0 is the minimal eigenvalue of problem

(1.4).

It was also shown in [11] that the estimates (1.6) are exact with respect
to the rate of exponential convergence.
Remark 1.1. Since ε + ρ

δ > 0, then for an arbitrary vector-function
f̄(x) ∈ L2(Ω)2, problem (1.3) has at least one solution (ū, p̄) such that
ū ∈W 2

0 (Ω)2, p̄ ∈ H1(Ω)/R satisfying

‖ū‖H2(Ω)2 + ‖p̄‖H1(Ω) ≤ c‖f̄‖L2(Ω)2 ,

(see [6, 7, 13]).
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Remark 1.2. If (ε+ ρ
δ ) and f̄ satisfy the uniqueness condition:

N

(ε+ ρ
δ )2
‖f̄‖L2(Ω)2 < 1 and N = c0λ

−1
1 ,

then λ0 > 0 (see [6]), where λ1 > 0 is the minimal eigenvalue of the Laplace
operator −∆ and c0 > 0 is a positive constant defined below in (2.3)-(2.4).
λ0 > 0 is also true for ‖ū‖C1(Ω)2 small or other weaker conditions on f , see
[11] for references.

In this article we shall mainly consider the exponential convergence and
power convergence of (u(x, t), p(x, t)) to (ū(x), p̄(x)) for two-dimensional vis-
coelastic fluid motion, where

α ≥ 0, ρ ≥ 0, λ1 > 0, 0 ≤ δ1 < δ0 <
1
2

min{δ, νλ1},

α0 = δ − δ0, and α1 = δ0 − δ1

are assumed, and where ν > 0 will be defined in (2.6) in Section 2.
Our main results are included in the Theorems 1.2 - 1.4 below.

Theorem 1.2. Let u0 ∈ H1
0 (Ω)2 with div u0 = 0 in Ω, f ∈ L2

loc(R
+;L2(Ω)2)

and f̄ ∈ L2(Ω)2 satisfy for some L ≥ 0,

lim sup
t→∞

(
tαeδ1t‖f(t)− f̄‖L2(Ω)2

)
= L <∞, (1.7)

then

lim sup
t→∞

tαeδ1t
[
‖z(t)‖H2(Ω)2 + ‖zt(t)‖L2(Ω)2 + ‖r(t)‖H1(Ω)

]
≤ C2L, (1.8)

holds for some C2 > 0.

Theorem 1.3. Let u0 ∈ H1
0 (Ω)2 with div u0 = 0 in Ω, f ∈ L2

loc(R
+;L2(Ω)2)

and f̄ ∈ L2(Ω)2 satisfy

τα(t)eδ1t‖f(t)− f̄‖L2(Ω)2 ≤ C1, ∀t ≥ 0, (1.9)

then there exists a constant C2 > 0, independent of t, such that

τα(t)eδ1t‖z(s)‖H1(Ω)2 +
(
e−2α1t

∫ t

0
τ2α(s)‖eδ0sz(s)‖2H2(Ω)2ds

)1/2

+
(
e−2α1t

∫ t

0
τ2α(s)‖eδ0szt(s)‖2L2(Ω)2ds

)1/2
(1.10)

+
(
e−2α1t

∫ t

0
τ2α(s)‖eδ0sr(s, x)‖2H1(Ω))ds

)1/2
≤ C2,
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where τ(t) = max{t̄, t}, t̄ = max
{

α
δ−δ0 ,

8α
νλ1

, 8α
ελ1

}
, if α > 0, and τ(t) ≡ 1, if

α = 0.

It is obvious that

τα(t) ≥ τα(0) > 0, ∀t ≥ 0, α ≥ 0.

Theorem 1.4. Let u0 ∈ W 2
0 (Ω)2, f(x, t) ∈ L2

loc(R
+;L2(Ω)2), f̄ ∈ L2(Ω)2

and ft ∈ L2
loc(R

+;H−1(Ω)2), and there exists C1 > 0 such that

τα(t)eδ1t
[
‖f(t)− f̄‖L2(Ω)2 + ‖ft(t)‖H−1(Ω)2

]
≤ C1, ∀t ≥ 0, (1.11)

then there exists C2 > 0 such that

τα(t)eδ1t
[
‖z(t)‖H2(Ω)2 + ‖zt(t)‖L2(Ω)2 + ‖r(t)‖H1(Ω)

]
≤ C2, ∀t ≥ 0. (1.12)

Remark 1.3. A special external force may satisfy

lim sup
t→∞

tαeδ1t‖f(t)− f̄‖L2(Ω)2 = 0.

Then Theorem 1.2 yields

lim sup
t→∞

tαeδ1t
(
‖z(t)‖H2(Ω)2 + ‖zt(t)‖L2(Ω)2 + ‖r(t)‖L2(Ω)

)
= 0, (1.13)

or

‖z(t)‖H2(Ω)2 + ‖zt(t)‖L2(Ω)2 + ‖r(t)‖H1(Ω) = o(t−αe−δ1t), as t→∞. (1.14)

If ρ = 0, the above convergence results (including Theorem 1.1) are degen-
erated to the case for the Navier-Stokes flow.

The main technical difficulty that has been overcome in this paper is the
elimination of Holder continuity of the function Φ(x, t), which makes the
power convergence possible. Our arguments work well for both exponential
and power convergence under assumptions of the external force being expo-
nential or power decay, respectively, with respect to time. Thus, Theorems
1.2–1.4 extend the earlier results summarized by Theorem 1.1.

Another main contribution is the relaxation of the initial data assumptions
in Theorem 1.2. This implies that our techniques allow us to obtain more
general results under a weaker smoothness assumption on data.

The main conclusions are proved by variational approach and by using
various differential inequalities. Section 2 sets up the variational formulation
of the governing equations. Section 3 describes preliminary tools for proofs,
and the main proofs are given in Sections 4–6.
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2. Formulation of the problem

The mathematical setting of problem (1.2) needs the following Hilbert
spaces X = H1

0 (Ω)2, Y = L2(Ω)2, M = L2
0(Ω) = {q ∈ L2(Ω);

∫
Ω qdx = 0}.

The spaces L2(Ω)m, m = 1, 2, 4 are endowed with the L2-scalar product and
L2-norm denoted by (·, ·) and | · |. The space H1

0 (Ω) and X are equipped
with their usual scalar product and norm

((u, v)) = (∇u,∇v), ‖u‖ = ((u, u))1/2.

The subspaces V and H of X and Y are defined by V = {v ∈ X; div v =
0 in Ω}, H = {v ∈ Y ; div v = 0 in Ω and v · n = 0 on ∂Ω}, where n is the
outnormal vector of Ω.

The Laplace operator is

Au = −∆u ∀u ∈ D(A) = H1
0 (Ω)2 ∩H2(Ω)2,

and the bilinear operator is

B(u, v) = (u · ∇)v, ∀u, v ∈ X.
The continuous bilinear forms a(·, ·) and d(·, ·) on X ×X and X ×M are

a(u, v) = ε((u, v)), ∀u, v ∈ X,
d(v, q) = −(v,∇p) = (q, divv), ∀v ∈ X, q ∈M,

and the trilinear form b(·, ·, ·) is

b(u, v, w) =< B(u, v), w >X′,X , ∀u, v, w ∈ X.
The above a, b and d satisfy the following properties (see [6, 13]):

γ|q| ≤ sup
v∈X

d(v, q)
‖v‖ , ∀q ∈M, (2.1)

b(u, v, w) = −b(u,w, v) ∀u, v, w ∈ X , (2.2)

|b(u, v, w)| ≤ c0|u|1/2‖u‖1/2‖v‖|w|1/2‖w‖1/2, ∀u, v, w ∈ X, (2.3)

|b(u, v, w)| ≤ c0|u|1/2‖u‖1/2‖v‖1/2|Av|1/2|w|, ∀u ∈ X, v ∈ D(A), w ∈ Y,
|b(v, u, w)| ≤ c0|v|1/2|Av|1/2‖u‖|w|, ∀u ∈ X, v ∈ D(A), w ∈ Y, (2.4)

where γ > 0 and c0 > 0 are positive constants. In the following we also use
c and c′js to denote generic positive constants.

From λ0 > 0 and (2.2) it follows that for an arbitrary z̄ ∈ W 2
0 (Ω)2, r̄ ∈

H1(Ω) ∩M , the inequality

a(z̄, z̄) + b(z̄, z̄, z̄) + b(ū, z̄, z̄) + b(z̄, ū, z̄) = a(z̄, z̄) + b(z̄, ū, z̄)
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=
(
εAz̄ +

1
2

[(
∂ū

∂x
) + (

∂ū

∂x
)∗]z̄ +∇r̄, z̄

)
≥ λ0|z̄|2 (2.5)

holds. It follows from (2.5), Friedrichs inequality (see [7, 11]) and a(z̄, z̄) =
ε‖z̄‖2, that there is ν > 0 such that

a(z̄, z̄) + b(z̄, z̄, z̄) + b(ū, z̄, z̄) + b(z̄, ū, z̄) ≥ ν‖z̄‖2. (2.6)

The equation (1.3) implies the steady state solution (ū, p̄) in (1.3) satisfies

ūt + εAū+B(ū, ū) + ρ

∫ t

0
e−δ(t−s)Aūds+∇p̄

= f̄(x)− ρ

δ
e−δtAū(x) (t ≥ 0, x ∈ Ω),

divū = 0 (t ≥ 0, x ∈ Ω);
ū = 0 (t ≥ 0, x ∈ ∂Ω);
ū(x, 0) = ū(x) (x ∈ Ω); (p̄, 1) = 0.

(2.7)

The equations (1.2) and (2.7) imply that (z, r) = (u− ū, p− p̄) satisfies

zt + εAz +B(z, z) +B(z, ū) +B(ū, z) + ρ

∫ t

0
e−δ(t−s)Azds

+∇r = F (x, t),
divz = 0 (t ≥ 0, x ∈ Ω);
z = 0 (t ≥ 0, x ∈ ∂Ω);
z(x, 0) = z0 (x ∈ Ω); (r, 1) = 0.

(2.8)

These lead to the following variational formulation for (z, r):

(zt, v) + a(z, v) + b(z, z, v) + b(ū, z, v) + b(z, ū, v) + J(t; z, v)
− d(v, r) + d(z, q) = (F, v),∀(v, q) ∈ (X,M), (2.9)

z(x, 0) = z0 = u0(x)− ū(x) ∈W 2
0 (Ω)2, (2.10)

where

J(t; z, v) = ρe−δt
(∫ t

0
eδτAz(τ)dτ, v

)
= ρe−δt

((∫ t

0
eδτz(τ)dτ, v

))
,

F (x, t) = f(x, t)− f̄(x) +
ρ

δ
e−δtAū(x). (2.11)

According to the assumptions on f(t) and f̄ in §1, there exists a positive
constant κα > 0, independent of t, such that the function F (x, t) defined
above F (x, t) ∈ L2

loc(R
+;Y ), Ft(x, t) ∈ L2

loc(R
+;X ′) satisfies

lim sup
t→∞

τα(t)eδ1t|F (t)| = lim sup
t→∞

τα(t)eδ1t|f(t)− f̄ | (2.12)
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under the assumptions of Theorem 1.2, or satisfies
τα(t)√
νλ1α1

eδ1t|F (t)| ≤ κα, ∀t ≥ 0 (2.13)

under the assumptions of Theorem 1.3, or satisfies

τα(t)√
νλ1α1

eδ1t|F (t)|+
√

2τα(t)√
να1

eδ1t‖Ft(t)‖−1 ≤ κα, ∀t ≥ 0 (2.14)

under the assumptions of Theorem 1.4, where

‖Ft(t)‖−1 = sup
0 6=v∈X

(Ft(t), v)
‖v‖ .

3. Preliminaries

This section is devoted to deriving several basic estimates of the solution
(z, r) of problem (2.8). Hereafter, we always assume that

0 < δ0 <
1
2 min

{
δ, νλ1, ελ1

}
, α0 = δ − δ0 > 0, β = 2α ≥ 0. (3.1)

Moreover, we can derive easily

λ1|v|2 ≤ ‖v‖2, ∀v ∈ X, (3.2)

where λ1 > 0 is the first eigenvalue of (1.4).

Lemma 3.1. Assume that u ∈ L2
loc(R

+;X) and t0 ≥ 0. Then, for all t ≥ t0
and 0 ≤ δ̄ < δ,∫ t

t0

τβ(s) J(s;u, e2δ̄su(s))ds (3.3)

=
1
2
ρτβ(t)e−2(δ−δ̄)t‖

∫ t

0
eδτu(τ)dτ‖2 − 1

2
ρτβ(t0)e−2(δ−δ̄)t0‖

∫ t0

0
eδτu(τ)dτ‖2

+
ρ

2

∫ t

t0

(
2(δ − δ̄)τβ(s)− d

ds
τβ(s)

)
e−2(δ−δ̄)s‖

∫ s

0
eδτu(τ)dτ‖2ds.

Moreover, if u ∈ L2
loc(R

+;D(A)), then for all t ≥ t0 and 0 ≤ δ̄ < δ,∫ t

t0

τβ(s) J(s;u, e2δ̄sAu(s))ds (3.4)

=
1
2
ρτβ(t)e−2(δ−δ̄)t|

∫ t

0
eδτAu(τ)dτ |2 − 1

2
ρτβ(t0)e−2(δ−δ̄)t0 |

∫ t0

0
eδτAu(τ)dτ |2

+
1
2
ρ

∫ t

t0

(
2(δ − δ̄)τβ(s)− d

ds
τβ(s)

)
e−2(δ−δ̄)s|

∫ s

0
eδτAu(τ)dτ |2ds.
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Proof. The proofs are carried out by integration by parts in a straight
forward manner and are hence omitted here. ¤

Lemma 3.2. Under the assumptions of Theorem 1.2, the solution (z, r) of
the system (2.8) satisfies the following estimates: For ∀t ≥ 0, β ≥ 0, the
following holds

τβ(t)|eδ0tz(t)|2 +
ν

4

∫ t

0
τβ(s)‖eδ0sz(s)‖2ds+ ρτβ(t)e−2α0t‖

∫ t

0
eδτz(τ)dτ‖2

+ ρ

∫ t

0

(
2α0τ

β(s)− d

ds
τβ(s)

)
e−2α0s‖

∫ s

0
eδτz(τ)dτ‖2ds

≤ τβ(0)|z0|2 +Gβ(t), (3.5)

where

Gβ(t) =
2
νλ1

∫ t

0
τβ(s)|eδ0sF (s)|2ds.

Moreover, the estimate

lim sup
t→∞

τβ(t)|eδ1tz(t)|2 +
ν

8α1
lim sup
t→∞

τβ(t)‖eδ1tz(t)‖2

≤ 1
νλ1α1

lim sup
t→∞

τβ(t)|eδ1tF (t)|2, (3.6)

holds.

Proof. Take (v, q) = e2δ0t(z(t), r(t)) in (2.9). Then

1
2
d

dt
|eδ0tz|2 + a(z, z) + b(z, z, z) + b(ū, z, z) + b(z, ū, z)

+ J(t; z, e2δ0tz(t)) = δ0|eδ0tz|2 + (eδ0tF, eδ0tz) . (3.7)

From (3.1)-(3.2) and (2.6), one has

(eδ0tF, eδ0tz) ≤ λ−1/2
1 |eδ0tF |‖eδ0tz‖ ≤ ν

4
‖eδ0tz‖2 +

1
νλ1
|eδ0tF |2,

ν‖z‖2 ≤ a(z, z) + b(z, z, z) + b(ū, z, z) + b(z, ū, z),

δ0|eδ0tz(t)|2 ≤
νλ1

2
|eδ0tz(t)|2 ≤ ν

2
‖eδ0tz(t)‖2.

Hence, (3.7) impels that for all t > 0

d

dt
|eδ0tz|2 +

ν

2
‖eδ0tz‖2 + 2J(t; z, e2δ0tz(t)) ≤ 2

νλ1
|eδ0tF |2, (3.8)
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which in turn implies that

d

dt
(τβ(t)|eδ0tz|2)− dτβ(t)

dt
|eδ0tz(t)|2 +

ν

2
τβ(t)‖eδ0tz‖2

+ 2τβ(t)J(t; z, e2δ0tz(t)) ≤ 2
νλ1

τβ(t)|eδ0tF |2 . (3.9)

Let t̄ ≥ 4β
νλ1

, the following holds for τβ(t):

d

dt
τβ(t) = 0, ∀t ≥ 0 for β = 0;

d

dt
τβ(t) = 0, ∀0 ≤ t < t̄ for β > 0;

d

dt
τβ(t) = βτβ−1(t) ≤ νλ1

4
t̄τβ−1(t) ≤ νλ1

4
τβ(t), t ∈ (t̄,∞). (3.10)

From (3.2) and (3.10) it follows that

dτβ(t)
dt
|eδ0tz(t)|2 ≤ νλ1

4
τβ(t)|eδ0tz(t)|2 ≤ ν

4
τβ(t)‖eδ0tz(t)‖2.

Hence, (3.9) yields that for all t > 0,

d

dt
(τβ(t)|eδ0tz(t)|2) +

ν

4
τβ(t)‖eδ0tz(t)‖2 + 2τβ(t)J(t; z, e2δ0tz(t))

≤ 2
νλ1

τβ(t)|eδ0tF (t)|2. (3.11)

Integrating (3.11) for t from 0 to t and using Lemma 3.1 with δ̄ = δ0, we
obtain that for all t ≥ 0

τβ(t)|eδ0tz(t)|2 +
ν

4

∫ t

0
τβ(s)‖eδ0sz(s)‖2ds+ ρτβ(t)e−2α0t‖

∫ t

0
eδτz(τ)dτ‖2

+ ρ

∫ t

0

(
2α0τ

b(s)− dτβ(s)
ds

)
e−2α0s‖

∫ s

0
eδτz(τ)dτ‖2ds

≤ τβ(0)|z0|2 +Gβ(t). (3.12)

Multiplying (3.5) by e−2α1t and taking the limits for the resultant expression
by L’Hopital rule as t→∞, we then obtain (3.6) since

lim sup
t→∞

e−2α1tGβ(t) =
1

νλ1α1
lim sup
t→∞

τβ(t)|eδ1tF (t)|2.

The proof is now complete. ¤
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Lemma 3.3. Under the assumptions of Theorem 1.2, the solution (z, r) of
the system (2.8) satisfies the following for all β ≥ 0, t ≥ 0,

τβ(t)‖eδ0tz(t)‖2 +
ε

4

∫ t

0
τβ(s)|eδ0sAz(s)|2ds+ ρτβ(t)e−2α0t|

∫ t

0
eδτAz(τ)dτ |2

+ ρ

∫ t

0

(
2α0τ

β(s)− d

ds
τβ(s)

)
e−2α0s|

∫ s

0
eατAz(τ)dτ |2ds (3.13)

≤ (1 + η)τβ(0)‖z0‖2 + (η +
3ν
ε

)λ1Gβ(t) +
∫ t

0
g(s)τβ(s)‖eδ0sz(s)‖2ds,

where

η =
96c2

0

ενλ
3/2
1

‖ū‖|Aū| and g(t) = 2
(6
ε

)3
c4

0|z(t)|2‖z(t)‖2.

Proof. From (2.8) it follows that

1
2
d

dt
‖eδ0tz‖2 + ε|eδ0tAz|2 + J(t; z, e2δ0tAz(t)) + b(z, eδ0tz, eδ0tz) (3.14)

+ b(ū, eδ0tz, eδ0tAz) + b(eδ0tz, ū, eδ0tAz) = δ0‖eδ0tz‖2 + (eδ0tF, eδ0tAz) .

Then (3.1)-(3.2) and (2.4) imply that

(eδ0tF, eδ0tz) ≤ ε

12
|eδ0tAz|2 +

3
ε
|eδ0tF |2,

ε

2
|eδ0tAz(t)|2 ≥ ελ1

2
‖eδ0tz(t)‖2 ≥ δ0‖eδ0tz(t)‖2,

|b(ū, z, Az)|+ |b(z, ū, Az)| ≤ 2c0λ
−1/4
1 ‖ū‖1/2|Aū|1/2‖z‖|Az|

≤ ε

12
|Az|2 +

12

ελ
1/2
1

c2
0‖ū‖|Aū|2‖z‖,

|b(z, z, Az)| ≤ c0|z|1/2‖z‖|Az|3/2 ≤
ε

12
|Az|2 + (

6
ε

)3c4
0|z|2‖z‖4.

Hence, (3.14) becomes

d

dt
‖eδ0tz‖2 +

ε

2
|eδ0tAz|2 + 2J(t; z, e2δ0tAz(t))

≤ ν

4
λ1η‖eδ0tz(t)‖2 +

6
ε
|eδ0tF |2 + g(t)‖eδ0tz(t)‖2. (3.15)

From (3.15) it follows that for t > 0,

d

dt
(τβ(t)‖eδ0tz‖2)− dτβ(t)

dt
‖eδ0tz(t)‖2 +

ε

2
τβ(t)|eδ0tAz|2
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+ 2τβ(t)J(t; z, e2δ0tAz(t))

≤ ν

4
λ1ητ

β(t)‖eδ0tz(t)‖2 +
4
ε
τβ(t)|eδ0tF |2 +

∫ t

0
g(s)‖eδ0sz(s)‖2ds . (3.16)

Let t̄ ≥ 4β
ελ1

and β > 0, then it follows from a similar estimate to (3.10):

d

dt
τβ(t) ≤ ελ1

4
τβ(t), ∀t ≥ 0, β ≥ 0. (3.17)

Equations (3.2) and (3.17) lead to that for all t > 0

dτβ(t)
dt
‖eδ0tz(t)‖2 ≤ ελ1

4
τβ(t)‖eδ0tz(t)‖2 ≤ ε

4
τβ(t)|eδ0tAz(t)|2. (3.18)

Hence, (3.16) and (3.18) yield

d

dt
(τβ(t)‖eδ0tz(t)‖2) +

ε

4
τβ(t)|eδ0tAz(t)|2 + 2τβ(t)J(t; z, e2δ0tAz(t))

≤ ν

4
λ1ητ

β(t)‖eδ0tz(t)‖2 +
4
ε
τβ(t)|eδ0tF (t)|2 + g(t)τβ(t)‖eδ0tz(t)‖2. (3.19)

Integrating (3.19) for t from 0 to t and using Lemma 3.2, we obtain that for
all t ≥ 0

τβ(t)‖eδ0tz(t)‖2 +
ε

4

∫ t

0
τβ(s)‖eδ0sz(s)‖2ds

+ ρτβ(t)e−2α0t|
∫ t

0
eδτAz(τ)dτ |2 + ρ

∫ t

0
2α0e

−2α0s|
∫ s

0
eδτA(τ)dτ |2ds

≤ τβ(0)‖z0‖2 +
ν

4
λ1η

∫ t

0
τβ(s)‖eδ0sz(s)‖2ds (3.20)

+
6
ε

∫ t

0
τβ(s)|eδ0sF (s)|2ds+

∫ t

0
g(s)τβ(s)‖eδ0sz(s)‖2ds .

Applying Lemma 3.2, one obtains

ν

4
λ1η

∫ t

0
τβ(s)‖eδ0sz(s)‖2ds+

6
ε

∫ t

0
τβ(s)|eδ0sF (s)|2ds

≤ ητβ(0)‖z0‖2 + (η +
3ν
ε

)λ1Gβ(t), (3.21)

which together with (3.20) implies (3.13). ¤



on the convergence of viscoelastic fluid flows 729

4. Proof of Theorem 1.2

The variational formulation (2.9)-(2.10) implies

|eδ0tzt|2 +
ν

2
d

dt
‖eδ0tz‖2 + b(ū, eδ0tz, eδ0tzt) + b(eδ0tz, ū, eδ0tzt) (4.1)

+ b(z, eδ0tz, eδ0tzt) + J(t; z, e2δ0tzt(t)) ≤ δ0‖eδ0tz‖2 + (eδ0tF, eδ0tzt),

and also from (2.4) and (3.1)-(3.2) it follows that

(eδ0tF, eδ0tzt) ≤
1
6
|eδ0tzt|2 +

3
2
|eδ0tF |2,

|b(ū, eδ0tz, eδ0tzt)| + |b(eδ0tz, ū, eδ0tzt)|
≤ 2c0λ

−1/4
1 ‖ū‖1/2|Aū|1/2‖eδ0tz‖|eδ0tzt|2

≤ 1
6
|eδ0tzt(t)|2 + 6c2

0λ
−1/2
1 ‖ū‖|Aū|‖eδ0tz‖2

|b(z, eδ0tz, eδ0tzt)| ≤ c0e
δ0t|z|1/2‖z‖|Az|1/2|eδ0tzt|

≤ 1
6
|eδ0tzt|2 +

3
2
c2

0|z|‖z‖‖eδ0tz‖|eδ0tAz|.

Hence, it follows from (4.1) that

|eδ0tzt|2 + ν
d

dt
‖eδ0tz‖2 + 2e2δ0tJ(t; z, zt(t)) (4.2)

≤ 2(δ0 + 4c2
0λ
−1/2
1 ‖ū‖|Aū|)‖eδ0tz‖2 + 2|eδ0tF |2 + 3c2

0|z|‖z‖‖eδ0tz‖|eδ0tAz|.

Multiplying (4.2) by τβ(t) we find easily that

τβ(t)|eδ0tzt|2 + ν
d

dt
(τβ(t)‖eδ0tz‖2) + 2τβ(t)e2δ0tJ(t; z, zt(t)) (4.3)

≤ d

dt
τβ(t)‖eδ0tz(t)‖2 + 2(δ0 + 4c2

0λ
−1/2
1 ‖ū‖|Aū|)τβ(t)‖eδ0tz‖2

+ 2τβ(t)|eδ0tF |2 + 3c2
0|z|‖z‖τβ(t)‖eδ0tz‖|eδ0tAz|.

Thus (3.10) and (4.3) yield that for all β ≥ 0 and t > 0,

τβ(t)|eδ0tzt|2 + ν
d

dt
(τβ(t)‖eδ0tz‖2) + 2τβ(t)e2δ0tJ(t; z, zt(t))

≤ (1 +
8δ0

νλ1
+ εη)

νλ1

4
τβ(t)‖eδ0tz‖2 (4.4)

+ 3τβ(t)
[
|eδ0tF |2 + 3c2

0τ
β(t)|z|‖z‖‖eδ0tz‖|eδ0tAz|

]
.
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Integration of (4.4) from 0 to t yields that for ∀t ≥ 0,∫ t

0
τβ(s)|eδ0szt(s)|2ds+ ντβ(t)‖eδ0tz(t)‖2 + 2

∫ t

0
τβ(s)e2δ0sJ(s; z, zt(s))ds

≤ ντβ(0)‖z0‖2 + (1 +
8δ0

νλ1
+ εη)

νλ1

4

∫ t

0
τβ(s)‖eδ0sz(s)‖2ds (4.5)

+
3
2
νλ1Gβ(t) + 3c2

0

∫ t

0
|z|‖z‖τβ(s)‖eδ0sz‖|eδ0sAz|ds.

The integration by parts leads to that

2
∫ t

0
τβ(s)e2δ0s J(s; z, zt(s))ds

= 2ρ
∫ t

0
(τβ(s)e−(δ−2δ0)s

∫ s

0
eδτAz(τ)dτ, zt(s))ds

= 2ρτβ(t)e−(δ−2δ0)t
((∫ t

0
eδτz(τ)dτ, z(t)

))
− 2ρ

∫ t

0
τβ(s)‖eδ0sz(s)‖2ds

+ 2ρ
∫ t

0

(
2α0τ

β(s)− d

ds
τβ(s)

)
e−α0s

((∫ s

0
eδτz(τ)dτ, eδ0tz(t)

))
ds (4.6)

− ρδ
∫ t

0
τβ(s)e−2α0s d

ds
‖
∫ s

0
eδτz(τ)dτ‖2ds = I1(t) + I2(t) + I3(t) + I4(t),

the Cauchy and Young inequalities, together with integration by parts, imply
that

|I1(t)| ≤ 2ρτβ(t)e−α0t‖
∫ t

0
eδτz(τ)‖ ‖eδ0tz(t)‖

≤ ρτβ(t)e−2α0t‖
∫ t

0
eδτz(τ)‖2 + ρτβ(t)‖eδ0tz(t)‖2,

I2(t) = −2ρ
∫ t

0
τβ(s)‖eδ0sz(s)‖2ds,

|I3(t)| ≤ 2ρ
(∫ t

0

(
2α0τ

β(s)− d

ds
τ b(s)

)
e−2α0s‖

∫ s

0
eδτz(τ)dτ‖2ds

)1/2

×
(∫ t

0

(
2α0τ

β(s)− d

ds
τβ(s)

)
‖eδ0sz(s)‖2ds

)1/2

≤ ρ
∫ t

0

(
2α0τ

β(s)− d

ds
τβ(s)

)
e−2α0s‖

∫ s

0
eδτz(τ)‖2ds
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+ ρ

∫ t

0

(
2α0τ

β(s)− d

ds
τβ(s)

)
‖eδ0sz(s)‖2ds

≤ ρ
∫ t

0

(
2α0τ

β(s)− d

ds
τβ(s)

)
e−2α0s‖

∫ s

0
eδτz(τ)dτ‖2ds

+ 2α0ρ

∫ t

0
sβ‖eδ0sz(s)‖2ds,

I4(t) = −ρδ
∫ t

0
τβ(s)e−2α0s d

ds
‖
∫ s

0
eδτz(τ)dτ‖2ds

= −ρδτβ(t)e−2α0t‖
∫ t

0
eδτz(τ)dτ‖2

− ρδ
∫ t

0

(
2α0τ

β(s)− d

ds
τβ(s)

)
e−2α0s‖

∫ s

0
eδτz(τ)dτ‖2ds.

From the above inequalities it follows that

2|
∫ t

0
τβ(s)J(s; z, e2δ0szt(s))ds| ≤ |I1(t)|+ |I2(t) + |I3(t)|+ |I4(t)|

≤ ρτβ(t)‖eδ0tz(t)‖2 + 2ρ(1 + α0)
∫ t

0
τβ(s)‖eδ0sz(s)‖2ds

+ ρ(1 + δ)τβ(t)e−2α0t‖
∫ t

0
eδτz(τ)dτ‖2 (4.7)

+ ρ(1 + δ)
∫ t

0

(
2α0τ

β(s)− d

ds
τβ(s)

)
e−2α0s‖

∫ s

0
eδτz(τ)dτ‖2ds.

2
∫ t

0
τβ(s)J(s; z, e2δ0szt(s))ds ≤ |I1(t)|+ |I3(t)|

≤ ρτβ(t)‖eδ0tz(t)‖2 + 2ρα0

∫ t

0
τβ(s)‖eδ0sz(s)‖2ds

+ ρτβ(t)e−2α0t‖
∫ t

0
eδτz(τ)dτ‖2 (4.8)

+ ρδ

∫ t

0

(
2α0τ

β(s)− d

ds
τβ(s)

)
e−2α0s‖

∫ s

0
eδτz(τ)dτ‖2ds.

Combining (4.5) with (4.7) and using Lemma 3.2 and Lemma 3.3, it follows∫ t

0
τβ(s)|eδ0szt(s)|2ds ≤ c

[
τβ(t)‖eδ0tz(t)‖2 +

∫ t

0
τβ(s)‖eδ0sz(s)‖2ds
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+ ρ

∫ t

0

(
2α0τ

β(s)− dτβ(s)
ds

)
‖
∫ s

0
eδτz(τ)dτ‖2ds

+Gβ(t) + ρτβ(t)e−2α0t‖
∫ t

0
eδτz(τ)dτ‖2

]
+ 3c2

0

∫ t

0
τβ(s)|z|‖z‖‖eδ0sz‖|eδ0sAz|ds,

≤ c
[
τβ(0)‖z0‖2 +Gb(t)

]
+ 3c2

0

∫ t

0
τβ(s)|z|‖z‖‖eδ0sz‖|eδ0sAz|ds.

This inequality and Lemma 3.3 yields ∀t ≥ 0

2α1e
−2α1t

[ ∫ t

0
τβ(s)|eδ0szt(s)|2ds+

∫ t

0
τβ(s)|eδ0sAz(s)|2ds

]
≤ 2α1ce

−2α1t
[
τβ(0)‖z0‖2 +Gβ(t) +

∫ t

0
g(s)τβ(s)‖eδ0sz(s)‖2ds

]
. (4.9)

If the assumptions of Theorem 1.2 are true, we can take the limits for (4.9)
as t→∞. By using (2.12) and Lemma 3.2 together with the L’Hopital’s rule,
we then derive that

lim sup
t→∞

τβ(t)|eδ1tzt(t)|2 + lim sup
t→∞

τβ(t)|eδ1tAu(t)|2

≤ c
[

lim sup
t→∞

g(t)τβ(t)‖eδ1tz(t)‖2 + lim sup
t→∞

τβ(t)|eδ1tF (t)|2
]

(4.10)

≤ c lim sup
t→∞

τβ(t)|eδ1t(f(t)− f̄)|2.

Moreover, from (2.8) and (2.4) it follows that

τβ(t)|eδ1t∇r(t)|2 ≤ c
[
τβ(t)|eδ1tzt(t)|2 + τβ(t)|eδ1tAz(t)|2 (4.11)

+ ρe−2(δ−δ1)tτβ(t)|
∫ t

0
eδτAz(τ)dτ |2 + g(t)τβ(t)‖eδ1tz(t)‖2 + e−2α1tGβ(t)

]
.

The application of (2.1) and (3.2) leads to

γτα(t)|eδ1tr(t)| ≤ sup
v∈X

d(v, τα(t)eδ1tr(t))
‖v‖

= sup
v∈X

−
(
v, τα(t)eδ1t∇r(t)

)
‖v‖ ≤ λ−1/2

1 τα(t)|eδ1t∇r(t)|.
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This and (4.11) imply

τβ(t)‖eδ1tr(t)‖2H1(Ω) ≤ c
[
(τβ(t)|eδ1tzt(t)|2 + τβ(t)|eδ1tAz(t)|2 (4.12)

+ τβ(t)e−2(δ−δ1)t|
∫ t

0
eδτAz(τ)dτ |2 + g(t)τβ(t)‖eδ1tz(t)‖2 + e−2α1tGβ(t)

]
.

Next, by using Lemmas 3.2–3.3, (2.12) and (1.7), we find

lim sup
t→∞

g(t)τβ(t)‖eδ1tz(t)‖ ≤ c lim sup
t→∞

τβ(t)‖eδ1tz(t)‖2

≤ c lim sup
t→∞

τβ(t)|eδ1tF (t)|2,

lim sup
t→∞

e−2α1tτβ(t)e−2α0t|
∫ t

0
eδτAz(τ)dτ |2 (4.13)

≤ c lim sup
t→∞

e−2α1t
(
τβ(0)‖z0‖2 +Gβ(t)

)
≤ c lim sup

t→∞
τβ(t)|eδ1tF (t)|2.

Hence, taking the limits for (4.11) as t→∞ and using (4.9) and (4.12), one
can obtain

lim sup
t→∞

τβ(t)‖eδ1tr(t)‖2H1(Ω))ds

≤ c
[

lim sup
t→∞

τβ(t)|eδ1tzt(t)|2 + lim sup
t→∞

τβ(t)|eδ1tAz(t)|2

+ lim sup
t→∞

g(t)τβ(t)‖eδ1tz(t)‖2 + lim sup
t→∞

τβ(t)|ed1tF (t)|2
]

≤ c lim sup
t→∞

τβ(t)|eδ1t(f(t)− f̄)|2. (4.14)

Combining (4.10) and (4.14) completes the proof of Theorem 1.2.

5. Proof of Theorem 1.3

A similar argument to the ones in Section 3 yields the following estimates.

Lemma 5.1. Under assumptions of Theorem 1.3 there hold for all t, β ≥ 0,

τβ(t)|eδ0tz(t)|2 +
ν

2

∫ t

0
τβ(s)‖eδ0sz(s)‖2ds+ ρτβ(t)e−2α0t‖

∫ t

0
eδτz(τ)dτ‖2

+ ρ

∫ t

0

(
2α0τ

β(s)− d

ds
τβ(s)

)
e−2α0s‖

∫ s

0
eδτz(τ)dτ‖2ds ≤ τβ(0)|z0|2 +Gβ(t),

(5.1)
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τβ(t)‖eδ0tz(t)‖2 +
ε

4

∫ t

0
τβ(s)|eδ0sAz(s)|2ds+ ρτβ(t)e−2α0t|

∫ t

0
eδτAz(τ)dτ |2

+ ρ

∫ t

0

(
2α0τ

β(s)− d

ds
τβ(s)

)
e−2α0s|

∫ s

0
eατAz(τ)dτ |2ds (5.2)

≤ (1 + η)τβ(0)‖z0‖2 + (η +
3ν
ε

)λ1Gβ(t) +
∫ t

0
g(s)τβ(s)‖eδ0sz(s)‖2ds,

d

dt
(τβ(t)|eδ0tz|2)+

ν

4
τβ(t)‖eδ0tz‖2+2τβ(t)J(t; z, e2δ0tz(t))≤ 2

νλ1
τβ(t)|eδ0tF |2

(5.3)
and
d

dt
(τβ(t)‖eδ1tz(t)‖2) +

ε

4
τβ(t)|eδ1tAz(t)|2 + 2τβ(t)J(t; z, e2δ1tAz(t))

≤ ν

4
λ1ητ

β(t)‖eδ1tz(t)‖2 +
4
ε
τβ(t)|eδ1tF (t)|2 + g(t)τβ(t)‖eδ1tz(t)‖2. (5.4)

Proof. The proof of this lemma is similar to that of Lemmas 3.1–3.3 and is
hence omitted. ¤

Next, The following estimates needs to be established: There exists c2 > 0,
independent of t, such that

τβ(t)‖eδ1tz(t)‖2 ≤ c2, ∀t, β ≥ 0. (5.5)

From (5.1) and (2.13) it follows that

τβ(t)|eδ1tz(t)|2 ≤ τβ(0)|z0|2 + e−2α1tGβ(t) ≤ τβ(0)|z0|2 + κ2
α,∀t ≥ 0, (5.6)

since

e−2α1tGβ(t) ≤ 2
νλ1

e−2α1t

∫ t

0
τβ(s)|eδ0sF (s)|2ds ≤ κ2

a. (5.7)

It follows from (5.3) that

d

dt
|eδ1tz|2 +

ν

4
‖eδ1tz‖2 + 2J(t; z, e2δ1tz(t)) ≤ 2

νλ1
|eδ1tF |2. (5.8)

Integrating (5.8) from 0 to t and using Lemma 3.1 with t0 = 0, β = 0 and
δ̄ = δ1 imply

ν

4

∫ t

0
‖eδ1sz(s)‖2ds ≤ |z0|2 +

2
νλ1

∫ t

0
|eδ1sF (s)|2ds ≤ |z0|2 + 2α1κ

2
0t, ∀t ≥ 0.

(5.9)
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Combination of (5.9) and (5.6) yields∫ t

0
g(s)ds ≤ 2(

6
ε

)3c4
0

∫ t

0
|z(s)|2‖z(s)‖2ds ≤ c3(1 + t),∀t ≥ 0. (5.10)

Let

y(t)=τβ(t)‖eδ1tz(t)‖2, h(t)=(
2η
ν

+
6
ε

)τβ(t)|eδ1tF (t)|2, C=(1+η)τβ(0)‖z0‖2.

We have from (5.2) that

y(t) ≤ C +
∫ t

0
h(s)ds+

∫ t

0
g(s)y(s)ds,∀t ≥ 0. (5.11)

The general Gronwall lemma (see [4]) is applied to (5.11) to obtain

τβ(t)‖eδ0tz(t)‖2 = y(t) ≤
(
C +

∫ t

0
h(s)ds

)
exp

∫ t

0
g(s)ds (5.12)

≤
(
C + (

2η
ν

+
6
ε

)
∫ t

0
τβ(s)|eδ1sF (s)|2ds

)
exp(

∫ t

0
g(s)ds)

≤
(
C + (

2η
ν

+
6
ε

)
∫ t

0
τβ(s)|eδ1sF (s)|2ds

)
exp(c3(1 + t)), ∀t ≥ 0.

From Lemma 3.2 and (1.9), we have

lim sup
t→∞

τβ(t)‖eδ1tz(t)‖2 ≤ 8
ν2λ1

lim sup
t→∞

τβ(t)|eδ1tF (t)|2 ≤ 8α1

ν
κ2
α. (5.13)

Hence, there exists a finite time T > 0 such that

τβ(t)‖eδ1tz(t)‖2 ≤ 16α1

ν
κ2
a, ∀t ≥ T. (5.14)

Combining (5.12) with 0 ≤ t ≤ T and (5.14) give (5.5).
From (5.5)-(5.7), we derive from (4.9) and Lemma 3.2 that

2α1e
−2α1t

[ ∫ t

0
τβ(s)|eδ0szt(s)|2ds+

∫ t

0
τβ(s)|eδ0sAz(s)|2ds

]
(5.15)

≤ 2α1c
[
e−2α1t[τβ(0)‖z0‖2 +Gβ(t) +

∫ t

0
τβ(s)‖eδ0sz(s)‖2ds

]
≤ c5, ∀t ≥ 0.

Moreover, from (2.8) and (2.4) it follows that

τβ(t)|eδ0t∇r(t)|2 ≤ c
[
τβ(t)|eδ0tzt(t)|2 + τβ(t)|eδ0tAz(t)|2

+ ρe−2α0tτβ(t)|
∫ t

0
eδτAz(τ)dτ |2 + g(t)τβ(t)‖eδ0tz(t)‖2 +Gβ(t)

]
. (5.16)
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Again using (2.1) and (3.2), we obtain

γτα(t)|eδ1tr(t)| ≤ sup
v∈X

d(v, τα(t)eδ1tr(t))
‖v‖

= sup
v∈X

−(v, τα(t)eδ1t∇r(t))
‖v‖ ≤ λ−1/2

1 |τα(t)eδ1t∇r(t)|,

which together with (5.16) gives

τβ(t)‖eδ0tr(t)‖2H1(Ω) ≤ c
[
(τβ(t)|eδ0tzt(t)|2 + τβ(t)|eδ0tAz(t)|2

+ τβ(t)e−2α0t|
∫ t

0
eδτAz(τ)dτ |2 + g(t)τβ(t)‖eδ0tz(t)‖2 +Gβ(t)

]
. (5.17)

By using (5.5)-(5.6) and Lemma 3.2, we find

τβ(t)e−2α0t|
∫ t

0
eδτAz(τ)dτ |2

≤ c
[
τβ(0)‖z0‖2 +Gβ(t) +

∫ t

0
g(s)τβ(s)‖eδ0sz(s)‖2ds

]
≤ c
[
τβ(0)‖z0‖2 +Gβ(t) +

∫ t

0
τβ(s)‖eδ0sz(s)‖2ds

]
. (5.18)

Combining (5.17) with (5.18) and using (5.7) give

τβ(t)‖eδ0tr(t)‖2H1(Ω) ≤ c
[
(τβ(t)|eδ0tzt(t)|2 + τβ(t)|eδ0tAz(t)|2

+ ‖z0‖2 + e2α1tκ2
α + g(t)τβ(t)‖eδ0tz(t)‖2

]
. (5.19)

Integrating (5.19) and using (5.15), we obtain∫ t

0
τβ(s)‖eδ0sr(s)‖2H1(Ω)ds ≤ c

[
e2α1t +

∫ t

0
g(s)τβ(s)‖eδ0sz(s)‖2ds

]
.

This and (5.5) lead to∫ t

0
τβ(s)‖eδ0sr(s)‖2H1(Ω)ds ≤ c

[
e2α1t +

∫ t

0
τβ(s)‖eδ0sz(s)‖2ds

]
. (5.20)

From Lemma 3.2 and (5.20) it follows that

e−2α1t

∫ t

0
τβ(s)‖eδ0sr(s)‖2H1(Ω)ds ≤ c6,∀t ≥ 0. (5.21)

From (5.5), (5.15) and (5.21), Theorem 1.3 follows.
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6. Proof of Theorem 1.4

The proof of Theorem 1.4 needs the following results.

Theorem 6.1. Under the assumptions of Theorem 1.4, the solution (z, r)
of the system (2.8) satisfies the following estimates:

τβ(t)|eδ1tzt(t)|2 ≤ c7, ∀t ≥ 0, (6.1)

for some c7 > 0.

Proof. Recalling (2.9)-(2.10), we can obtain

(ztt, v) + (1 +
ρ

ε
)a(zt, v) + b(ū, zt, v) + b(zt, ū, v)

+ b(zt, z, v) + b(z, zt, v)− d(v, rt) + d(zt, q) (6.2)

= (Ft, v) + δJ(t;Az, v)∀(v, q) ∈ (X,M),

zt(0, x) = lim
t→0

zt(x, t) = zt0(x), (6.3)

where

|zt0| ≤ (ε+
ρ

δ
)|Az0|+ 2c0λ

−1/2
1 ‖ū‖|Az0|+ |f(0, x)− f̄(x)|+ ρ

δ
|Aū(x)|.

Taking (v, q) = e2δ0t(zt, rt) in (6.2) and using (2.2) and (2.6), we then find

1
2
d

dt
|eδ0tzt|2 + (ν + ρ)‖eδ0tzt‖2 + b(eδ0tzt, z, eδ0tzt)

= δJ(t; z, e2δ0tzt(t)) + δ0|eδ0tzt|2 + (eδ0tFt, eδ0tzt) (6.4)

From (3.1)-(3.2) and (2.3), one can derive

(eδ0tFt, eδ0tzt) ≤
ν

8
‖eδ0tzt‖2 +

2
ε
‖eδ0tFt‖2−1,

ν

2
‖eδ0tzt(t)‖2 ≥

νλ1

2
|eδ0tzt(t)|2 ≥ δ0|eδ0tzt(t)|2,

|b(eδ0tzt, z, eδ0tzt)| ≤
ν

8
‖eδ0tzt‖2 +

2
ν
c2

0‖z‖2|eδ0tzt|2.

Hence, (6.4) and the above inequalities imply that

d

dt
|eδ0tzt|2 + (ρ+

ν

2
)‖eδ0tzt‖2 (6.5)

≤ 2δe2δ0tJ(t; z, zt(t)) +
4
ν
‖eδ0tFt‖2−1 +

4
ν
c2

0‖z‖2|eδ0tzt|2, ∀t ≥ 0.
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From (6.5) it follows that for all β ≥ 0 and t > 0,
d

dt
(τβ(t)|eδ0tzt|2)− d

dt
τβ(t)|eδ0tzt(t)|2 + (ρ+

ν

2
)τβ(t)‖eδ0tzt‖2 (6.6)

≤ δτβ(t)e2δ0tJ(t; z, zt(t)) +
4
ν
τβ(t)‖eδ0tFt‖2−1 +

4
ν
c2

0τ
β(t)‖z‖2|eδ0tzt|2.

By using (3.10) and (3.2), we have
d

dt
τβ(t)|eδ0tzt|2 ≤

νλ1

4
τβ(t)|eδ0tzt|2 ≤

ν

4
τβ(t)‖eδ0tzt(t)‖2, for β ≥ 0, t ≥ 0.

Hence, (6.6) yields that for all β ≥ 0 and t > 0,
d

dt
(τβ(t)|eδ0tz(t)|2) ≤ δτβ(t)e2δ0tJ(t; z, zt(t)) +

4
ν
τβ(t)‖eδ0tFt(t)‖2−1

+
4
ν
c2

0τ
β(t)‖z‖2|eδ0tzt|2 . (6.7)

Integration of (6.7) for t from 0 to t leads to that for all t ≥ 0

τβ(t)|eδ0tzt(t)|2 ≤ τβ(0)|zt0|2 + 2δ
∫ t

0
τβ(s)e2δ0sJ(s; z, zt(s))ds

+
4
ν

∫ t

0
τβ(s)‖eδ0tFt(s)‖2−1ds+

4
ν
c2

0

∫ t

0
τβ(s)‖z‖2|eδ0szt(s)|2ds. (6.8)

By using (4.8), Lemma 3.2-Lemma 3.3, we can derive from (6.8) that for all
t ≥ 0

τβ(t)|eδ0tzt(t)|2 ≤ (1 + η)τβ(0)|zt0|2 + ρδτβ(t)‖eδ0tz(t)‖2

+ ρδ

∫ t

0

(
2α0τ

β(s)− d

ds
τβ(s)

)
e−2α0s‖

∫ s

0
eδτz(τ)dτ‖2ds

+ ρδτβ(t)e−2α0t‖
∫ t

0
eδτz(τ)‖2 + 2ρδα0

∫ t

0
τβ(s)‖eδ0sz(s)‖2ds

+
4
ν

∫ t

0
τβ(s)‖eδ0sFt(s)‖2−1ds+

4
ν
c2

0

∫ t

0
‖z‖2τβ(s)|eδ0szt(s)|2ds (6.9)

≤ c
[
τβ(0)(‖z0‖2 + |zt0|2) +Gβ(t) +

4
ν

∫ t

0
τβ(s)‖eδ0sFt(s)|2ds

]
+

4
ν
c2

0

∫ t

0
τβ(s)‖z‖2|eδ0szt(s)|2ds.

From (6.9), (5.7), (2.14) and Theorem 1.3 it follows that for all β ≥ 0, t ≥ 0

τβ(t)|eδ0tzt(t)|2 ≤ c
[
τβ(0)(‖z0‖2 + |zt0|2) +Gβ(t)
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+
4
ν

∫ t

0
τβ(s)‖eδ0sFt(s)‖2−1ds+ e2α1t

]
≤ c
[
‖z0‖2 + |zt0|2 + e2α1t

]
. (6.10)

This completes the proof of Theorem 6.1. ¤
Theorem 6.2. The solution (z, r) of the system (2.8) satisfies the following
estimates:

τβ(t)|eδ1tAz(t)|2 ≤ c, ∀t ≥ 0, β ≥ 0, (6.11)
for some c8 > 0.

Proof. From (2.8) it follows that

(eδ0tzt, eδ0tAz) + ε|eδ0tAz|2 + J(t; z, e2δ0tAz(t)) + b(z, eδ0tz, eδ0tAz)

+ b(ū, eδ0tz, eδ0tAz) + b(eδ0tz, ū, eδ0tAz) (6.12)

= (eδ0tF, eδ0tAz) ≤ ε

4
|eδ0tAz|2 + ε−1|eδ0tF (t)|2 .

From (2.4) one can derive that

|b(ū, eδ0tz, eδ0tAz)|+ |b(eδ0tz, ū, eδ0tAz)|

≤ c0λ
−1/4
1 ‖ū‖1/2|Aū|1/2‖eδ0tz‖|eδ0tAz| ≤ ε

8
|eδ0tAz|2 +

ν

4
λ1η‖eδ0tz‖2,

|b(z, eδ0tz, eδ0tz)| ≤ c0|z|1/2‖z‖1/2‖eδ0tz‖1/2|eδ0tAz|3/2

≤ ε

8
|eδ0tAz|2 + (

2
ε

)3c4
0|z|2‖z‖2‖eδ0tz‖2.

Hence, we have

2(zt, Az) + ε|eδ0tAz(t)|2 + 2J(t; z, e2δ0tAz(t))

≤ ν

2
ηλ1‖eδ0tz‖2 +

2
ε
|eδ0tF |2 + g(t)‖eδ0t‖z‖2, ∀t ≥ 0. (6.13)

Note

2|(zt, Az)| ≤
ε

4
|Az|2 +

1
ε
|zt|2,

2|J(t; z, e2δ0tAz(t))| ≤ ε

4
|eδ0tAz|2 +

ρ2

ε
e−2α0t|

∫ t

0
eδτAz(τ)dτ |2.

For all t ≥ 0, β ≥ 0,

ε

2
τβ(t)|eδ0tAz(t)|2 ≤ 8

ε
τβ(t)|eδ0tzt(t)|2 +

8
ε
ρ2τβ(t)e−2α0t|

∫ t

0
eδτAz(τ)dτ |2

+
2
ε
τβ(t)|eδ0tF (t)|2 + g(t)τβ(t)‖eδ0tz‖2, ∀t ≥ 0.
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Or, by using Lemma 3.3, one can obtain another estimate
ε

2
τβ(t)|eδ0tAz(t)|2

≤ 8
ε
τβ(t)|eδ0tzt(t)|2 +

2
ε
τβ(t)|eδ0tF (t)|2 + g(t)τβ(t)‖eδ0tz‖2

+ c
[
τβ(0)‖z0‖2 +Gβ(t)

]
+

8ρ
ε

∫ t

0
τβ(s)g(s)‖eδ0sz(s)‖2ds

≤ c
[
τβ(t)|eδ0tzt|2 + ‖z0‖2 + τβ(t)|eδ0tF (t)|2 (6.14)

+ g(t)τβ(t)‖eδ0tz(t)‖2 +Gβ(t) +
∫ t

0
g(s)τβ(s)‖eδ0sz(s)‖2ds

]
,

for all t ≥ 0. From Lemma 3.2, (5.5)-(5.7) and (2.13) it follows that

τβ(t)|eδ0tF (t)|2 + g(t)τβ(t)‖eδ0tz(t)‖2 +Gβ(t) (6.15)

+
∫ t

0
g(s)τβ(s)‖eδ0sz(s)‖2ds ≤ ce2α1t,∀t ≥ 0, β ≥ 0.

Combining (6.14)-(6.15) with (6.1) yields (6.11). ¤

Theorem 6.3. Under the assumptions of Theorem 1.4, the solution (z, r)
of problem (2.8) satisfies that for all t ≥ 0

τβ(t)‖eδ1tr(t)‖2H1(Ω) ≤ c9, ∀β ≥ 0, t ≥ 0 (6.16)

for some c9 > 0.

Proof. From (2.8), Lemma 3.3 it follows that

τβ(t)|eδ0t∇r(t)|2 ≤ cτβ(t)
[
|eδ0tzt(t)|2 + |eδ0tAz(t)|2 + g(t)‖eδ0tz‖2

+ e−2α0t|
∫ t

0
eδτAz(τ)dτ |2 + |eδ0tF (t)|2

]
≤ cτβ(t)

(
|eδ0tzt|2 + |eδ0tAz(t)|2

)
+ cτβ(t)|eδ0tF (t)|2 + cτβ(t)g(t)‖eδ0tz(t)‖2

+ c
(
‖z0‖2 +

∫ t

0
g(s)τβ(s)‖eδ0sz(s)‖2ds

)
. (6.17)

Moreover, by using (2.1) and (3.2), we obtain

γτα(t)|eδ0tr(t)| ≤ sup
v∈X

d(v, τα(t)eδ0tr(t))
‖v‖ ≤ λ−1/2

1 τα(t)|eδ0t∇r(t)|,
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which and (6.17) have given

τβ(t)‖eδ1tr(t)‖2H1(Ω) ≤ cτβ(t)
(
|eδ1tzt|2 + |eδ1tAz(t)|2

)
+ cτβ(t)|eδ1tF (t)|2 + cτβ(t)g(t)‖eδ1tz(t)‖2 + ce−2α1t‖z0‖2 + cGβ(t) (6.18)

+ ce−2α1t

∫ t

0
g(s)τβ(s)‖eδ0sz(s)‖2ds.

From Theorem 6.1, Theorem 6.2, (6.18) and (2.13) it follows that

τβ(t)‖eδ1tr(t)‖2H1(Ω) ≤ c
[
1 +Gβ(t) + τβ(t)g(t)‖eδ1tz(t)‖2

+ e−2α1t

∫ t

0
g(s)τβ(s)‖eδ0sz(s)‖2ds

]
, (6.19)

which and (6.15) yield (6.16). ¤
Finally, Theorem 1.4 is the consequence of Theorems 6.1–6.3.
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