
Citation of this work: Shen, S.S.P., 2017: R Programming for Climate Data Analysis

and Visualization: Computing and plotting for NOAA data applications. The first

revised edition. San Diego State University, San Diego, USA, 152pp.

R Programming for Climate Data Analysis
and Visualization:

Computing and plotting for NOAA data applications

SAMUEL S.P. SHEN

Samuel S.P. Shen

San Diego State University, and

Scripps Institution of Oceanography, University of California, San Diego

USA

Contents

Preface page vi

Acknowledgements viii

1 Basics of R Programming 1

1.1 Download and install R and R-Studio 1

1.2 R Tutorial 2

1.2.1 R as a smart calculator 3

1.2.2 Define a sequence in R 4

1.2.3 Define a function in R 5

1.2.4 Plot with R 5

1.2.5 Symbolic calculations by R 6

1.2.6 Vectors and matrices 7

1.2.7 Simple statistics by R 10

1.3 Online Tutorials 12

1.3.1 Youtube tutorial: for true beginners 12

1.3.2 Youtube tutorial: for some basic statistical summaries 12

1.3.3 Youtube tutorial: Input data by reading a csv file into R 12

References 14

Exercises 14

2 R Analysis of Incomplete Climate Data 17

2.1 The missing data problem 17

2.2 Read NOAAGlobalTemp and form the space-time data matrix 19

2.2.1 Read the downloaded data 19

2.2.2 Plot the temperature data map of a given month 20

2.2.3 Extract the data for a specified region 22

2.2.4 Extract data from only one grid box 23

2.3 Spatial averages and their trends 23

2.3.1 Compute and plot the global area-weighted average of

monthly data 23

2.3.2 Percent coverage of the NOAAGlobalTemp 24

2.3.3 Difference from the NOAA NCEI monthly mean global

averages 25

2.3.4 Which month has the strongest trend? 26

2.3.5 Spatial average of annual data 28

2.3.6 Nonlinear trend of the global average annual mean data 29

iii

2.4 Spatial characteristics of the temperature change trends 30

2.4.1 20th century temperature trend 30

2.4.2 20th century temperature trend computed under a relaxed

condition 32

2.4.3 Trend pattern for the four decades of consecutive warming:

1976-2016 34

References 36

Exercises 36

3 R Graphics for Climate Science 37

3.1 Two dimensional line plots and setups of margins and labels 37

3.1.1 Plot two different time series on the same plot 37

3.1.2 Figure setups: margins, fonts, mathematical symbols, and

more 38

3.1.3 Plot two or more panels on the same figure 42

3.2 Contour color maps 43

3.2.1 Basic principles for an R contour plot 43

3.2.2 Plot contour color maps for random values on a map 44

3.2.3 Plot contour maps from climate model data in NetCDF files 45

3.3 Plot wind velocity field on a map 52

3.3.1 Plot a wind field using arrow.plot 52

3.3.2 Plot a sea wind field from netCDF data 54

3.4 ggplot for data 56

References 58

Exercises 58

4 Advanced R Analysis and Plotting for Climate Data 59

4.1 Ideas of EOF, PC and variances from SVD 59

4.2 2Dim spatial domain EOFs and 1Dim temporal PCs 60

4.2.1 Generate synthetic data by R 60

4.2.2 SVD for the synthetic data: EOFs, variances and PCs 62

4.3 From climate data download to EOF and PC visualization 66

4.3.1 Download and visualize the NCEP temperature data 66

4.3.2 Space-time data matrix and SVD 68

4.4 Area-weighted average and spatial distribution of trend 77

4.4.1 Global average and PC1 77

4.4.2 Spatial pattern of linear trends 78

References 80

Exercises 80

5 Climate Data Matrices and Linear Algebra 81

5.1 Matrix as a data array 81

5.2 Matrix algebra 82

5.2.1 Matrix equality, addition and subtraction 83

5.2.2 Matrix multiplication 84

5.3 A set of linear equations 88

5.4 Eigenvalues and eigenvectors of a square space matrix 89

5.5 An SVD representation model for space-time data 92

5.6 SVD analysis of Southern Oscillation Index 96

5.6.1 Standardized SLP data and SOI 96

5.6.2 Weighted SOI computed by the SVD method 99

5.6.3 Visualization of the ENSO mode computed from the SVD

method 103

5.7 Mass balance for chemical equations in marine chemistry 106

5.8 Multivariate linear regression using matrix notations 107

References 111

Exercises 111

6 Basic Statistical Methods for Climate Data Analysis 114

6.1 Statistical indices from the global temperature data from 1880 to

2015 115

6.2 Commonly used statistical plots 119

6.2.1 Histogram of a set of data 119

6.2.2 Box plot 119

6.2.3 Scatter plot 120

6.2.4 QQ-plot 123

6.3 Probability distributions 124

6.3.1 What is a probability distribution? 124

6.3.2 Normal distribution 128

6.3.3 Student’s t-distribution 130

6.4 Estimate and its error 132

6.4.1 Probability of a sample inside a confidence interval 132

6.4.2 Mean of a large sample size: Approximately normal

distribution 133

6.4.3 Mean of a small sample size: t-test 141

6.5 Statistical inference of a linear trend 145

6.6 Free online statistics tutorials 146

References 148

Exercises 149

Author index 151

Subject index 152

Preface

This book is the instruction manual used for a short-course on R programming for

Climate Data Analysis and Visualization first taught at the U.S. National Center

for Environmental Information (NCEI), Asheville, North Carolina, 30 May- 2 June

2017. The purpose of the course is to train NCEI scientists and the personnel from

the the Cooperative Institute for Climate Science (CICS) -North Carolina to write

simple R programs for the climate data managed by the U.S. National Oceanic

and Atmospheric Administration (NOAA), so that the NOAA data can be easily

accessed, understood, and utilized by the general public, such as school students

and teachers. NOAAGlobalTemp is the primary dataset used for examples of this

book.

R is an open source programming language and software environment, originally

designed for statistical computing and graphics first appeared in 1993. In the first

10 years, R was more or less used only in the statistics community, but now, R has

become a top 20 most popular computer programming languages in 2017, ranked

by Cleveroad, Techworm and others, R and its interface R Studio are free and have

become a very popular tool handling big data: to make calculations and to plot.

R programs are often shorter due to its sophistication of design and mathematical

optimization. R calculation and plotting codes can be incorporated with the readme

file of a NOAA dataset. A data user can easily use the R code in the readme file

to read the data, change the data format, make some quick calculations, and plot

critical figures for his applications. R maps and numerous visualization functions

make R programming a convenient tool for not only NOAA data professionals, cli-

mate research scientists, and business applicants, but also to teachers and students.

Thus, R programming is a convenient tool for climate data’s delivery, transparency,

accuracy check, and documentation.

This course is divided into six chapters, which are taken from the book entitled

“Climate Mathematics with R” authored by Samuel Shen and Richard Somerville

to be published by the Cambridge University Press. Chapter 1 describes R basics,

such as arithmetic, simple curve plotting, functions, loops, matrix operations, do-

ing statistics, if-else syntax, and logic variables. Chapter 2 is to use R for observed

data which are often space-time incomplete due to missing data. NOAAGlobalTemp

dataset is used as an example and is analyzed extensively. We show area-weighted

spatial average, polynomial fitting, trend calculation with missing data, efficient

extraction a subset of the data, data formating, and data writing. Chapter 3 dis-

cusses more advanced R graphics, including maps, multiple curves on the same

figure, and margin setup and font change for publication. Chapter 4 shows how to

vi

handle large datasets in different formats, such as .nc, .bin, .csv, .asc, and .dat. It

uses NCEP/NCAR reanalysis’ monthly mean temperature data in .nc format as an

example to show data reading, data conversion into a standard space-time data ma-

trix, writing the matrix into a .csv file, plotting the temperature maps, calculating

empirical orthogonal functions (EOFs) and principal components (PCs) efficiently

by the singular mode decomposition (SVD) method, and EOF and PC plotting.

Chapters 5 and 6 are on basics of linear algebra and statistics using R. They can

be omitted in formal teaching and used as reference materials for the previous four

chapters.

The book is intended for a wide range of audience. A high school student with

some knowledge of matrices can understand most of its materials. An undergraduate

students with two semesters of calculus and one semester of linear algebra can

understand the entire book. Some sophisticated R programming tricks and examples

are useful to climate scientists, engineers, professors, and graduate students.

Finally, a layman user can simply copy and paste the R codes in this book to

produce some desired graphics, as long as he can spend 10 minutes to install R and

R Studio following a Youtube instruction.

The book is designed for a one-week course total 20 hours. Half the time is used

teaching and demonstration, and another half is for students practice guided by

an instructor. Each student is recommended to produce an R code for her/his own

work or interest with the instructor’s help.

The book’s typeset follows a Cambridge University Press LaTex template.

SSPS at San Diego, California, USA

May 2017

The first revised version in October 2017

Acknowledgements

The project was supported in part by the U.S. National Oceanographic and At-

mospheric Administration (Award No. 13342-Z7812001). The students in the U.S.

National Center for Environmental Information (NCEI), Asheville, North Carolina,

30 May- 2 June 2017 helped clarify some R codes and correct some typos.

1 Basics of Computer Program R

It is popular in today’s applied mathematics books to use computing tools for

complex and tedious algebras so that students can focus on correct usage of the

mathematical tools with accurate statement of assumptions and precise interpreta-

tion of the results. Among many software packages used in climate community, R’s

popularity has dramatically increased in the last a few years due to its enormous

power of handling big data. We thus have chosen to use R in this book. This chapter

shows installation of R and R Studio, and some very basic mathematical operations

and plotting by R. A student who has mastered the R examples used in this book

should have sufficient skills to develop R projects independently.

1.1 Download and install R and R-Studio

For Windows users, visit the website

https://cran.r-project.org/bin/windows/base/

to find the instructions of R program download and installations.

For Mac users, visit

https://cran.r-project.org/bin/macosx/

If you experience difficulties, please refer to online resources, Google or Youtube.

A recent 3-minute Youtube instruction for R installation for Windows can be found

from the following link:

https://www.youtube.com/watch?v=Ohnk9hcxf9M

The same author also has a youtube instruction about R installation for Mac (2

minutes):

https://www.youtube.com/watch?v=uxuuWXU-7UQ

When R is installed, one can open R. The R Console window will appear. See

Fig. 1.1. One can use R Console to perform calculations, such as typing 2+3 and

hitting return. However, most people today prefer using RStudio as the interface.

To install RStudio, visit

https://www.rstudio.com/products/rstudio/download/

This site allows to choose Windows, or Mac OS, or Unix.

1

tFig. 1.1
R Console window after opening R.

After both R and RStudio are installed, one can use either R or RStudio, or

both, depending on his interest. However, RStudio will not work without R. Thus,

always install R first.

When opening RStudio, four windows will appear as shown in Fig. 1.2: The top

left window is called R script, for writing the R code. The green arrow on top of

the window can be clicked to run the code. Each run is shown in the lower left

R Console window, and recorded on the upper right R History window. When

plotting, the figure will appear in the lower right R Plots window. For example,

plot(x,x*x) renders the eight points in the Plots window, because x=1:8 defines

a sequence of numbers from 1 to 8. x*x yields a sequence from 12 to 82.

1.2 R Tutorial

There are many excellent tutorials for a quick learn of R programming, using a few

hours or a few evenings, are available online and in Youtube, such as

tFig. 1.2
R Studio windows.

http://ww2.coastal.edu/kingw/statistics/R-tutorials/.

You can google around and find your preferred tutorials.

It is very hard for the beginners of R to navigate through the official, formal,

detailed, and massive R-Project documentation:

https://www.r-project.org/

1.2.1 R as a smart calculator

R can be used like a smart calculator that allows fancier calculations than those

done on regular calculators.

1+4

[1] 5

2+pi/4-0.8

[1] 1.985398

x<-1

y<-2

z<-4

t<-2*x^y-z

t

[1] -2

u=2 # "=" sign and "<-" is almost equivalent

v=3 # The text behind the "#" sign is comments

u+v

[1] 5

sin(u*v) # u*v = 6 is considered radian

[1] -0.2794155

R programming uses assignment operator a¡- b+ to assign b to a. Often the equal

operator a=b can do the same job or vice versa. The two operators are equivalent

in general. However, certain R formulas have specific meanings for = and cannot be

replaced by <-+. Most veteran R users use <-+ for assignment and = for defined

R formulas.

1.2.2 Define a sequence in R

Directly enter a sequence of daily maximum temperature data at San Diego Inter-

national Airport during 1-7 May 2017 [unit: ◦F].

tmax <- c(77, 72, 75, 73,66,64,59)

The data are from the United States Historical Climatology Network (USHCN)

www.ncdc.noaa.gov/cdo-web/quickdata

The command c() is used to hold a data sequence and is named tmax. Entering

the tmax command will render temperature data sequence:

tmax

[1] 4.5 4.1 -2.1 3.4 2.5 6.0 4.3

You can generate different sequences using R, e.g.,

1: 8 #Generates a sequence 1,2,...,8

Here the pound sign # begins R comments which are not executed by R calcula-

tions. The same sequence can be generated by different commands, such as

seq(1,8)

seq(8)

seq(1,8, by=1)

seq(1,8, length=8)

seq(1,8, length.out =8)

The most useful sequence commands are seq(1,8, by=1) and seq(1,8, length=8)

or seq(1,8, len=8). The former is determined by a begin value, end value, and

step size, and the latter by a begin value, end value, and number of values in the

sequence. For example, seq(1951,2016, len=66*12) renders a sequence of all the

months from January 1951 to December 2016.

1.2.3 Define a function in R

The function command is

name <- function(var1, var2, ...) expression of the function.

For example,

samfctn <- function(x) x*x

samfctn(4)

[1] 16

fctn2 <- function(x,y,z) x+y-z/2

fctn2(1,2,3)

[1] 1.5

1.2.4 Plot with R

R can can plot all kinds of curves, surfaces, statistical plots, and maps. Below are a

few very simple examples for R beginners. For adding labels, ticks, color, and other

features to a plot, you learn them from later parts of the book and can also google

R plot to find the commands for the proper inclusion of the desired features.

R plotting is based on the coordinate data. The following command plots the

seven days of San Diego Tmax data above:

plot(1:7, tmax)

The result figure is shown in Fig. 1.3.

tFig. 1.3
The daily maximum temperature during 1-7 May 2017 of the San Diego International

Airport.

plot(sin, -pi, 2*pi) #plot the curve of y=sin(x) from -pi to 2 pi

square <- function(x) x*x #Define a function

plot(square, -3,2) # Plot the defined function

Plot a 3D surface

x <- seq(-1, 1, length=100)

y <- seq(-1, 1, length=100)

z <- outer(x, y, function(x, y)(1-x^2-y^2))

#outer (x,y, function) renders z function on the x, y grid

persp(x,y,z, theta=330)

yields a 3D surface with perspective angle 330 deg

#Contour plot

contour(x,y,z) #lined contours

filled.contour(x,y,z) #color map of contours

The color map of contours resulted from the last command is shown in Fig. 1.4.

tFig. 1.4
The color map of contours for the function z = 1− x2 − y2.

1.2.5 Symbolic calculations by R

People used to think that R can only handle numbers. Actually R can also do sym-

bolic calculations, such as finding a derivative, although, up to now R is not the

best symbolic calculation tool. One can use WolframAlpha, SymPy, and Yacas for

free symbolic calculations or use the paid software package Maple or Mathematica.

Google symbolic calculation for calculus to find a long list of symbolic calculation

software packages, e.g., https://en.wikipedia.org/wiki/List_of_computer_algebra_systems.

D(expression(x^2,’x’), ’x’)

Take derivative of x^2 w.r.t. x

2 * x #The answer is 2x

fx= expression(x^2,’x’) #assign a function

D(fx,’x’) #differentiate the function w.r.t. x

2 * x #The answer is 2x

fx= expression(x^2*sin(x),’x’)

#Change the expression and use the same derivative command

D(fx,’x’)

2 * x * sin(x) + x^2 * cos(x)

fxy = expression(x^2+y^2, ’x’,’y’)

#One can define a function of 2 or more variables

fxy #renders an expression of the function in terms of x and y

#expression(x^2 + y^2, "x", "y")

D(fxy,’x’) #yields the partial derivative with respect to x: 2 * x

D(fxy,’y’) #yields the partial derivative with respect to y: 2 * y

square = function(x) x^2

integrate (square, 0,1)

#Integrate x^2 from 0 to 1 equals to 1/3 with details below

#0.3333333 with absolute error < 3.7e-15

integrate(cos,0,pi/2)

#Integrate cos(x) from 0 to pi/2 equals to 1 with details below

#1 with absolute error < 1.1e-14

The above two integration examples are for definite integral. It seems that no

efficient R packages are available for finding antiderivatives, or indefinite integrals.

1.2.6 Vectors and matrices

R can handle all kinds of operations vectors and matrices.

c(1,6,3,pi,-3) #c() gives a vector and is considered a 4X1 column vector

#[1] 1.000000 6.000000 3.000000 3.141593 -3.000000

seq(2,6) #Generate a sequence from 2 to 6

#[1] 2 3 4 5 6

seq(1,10,2) # Generate a sequence from 1 to 10 with 2 increment

#[1] 1 3 5 7 9

x=c(1,-1,1,-1)

x+1 #1 is added to each element of x

#[1] 2 0 2 0

2*x #2 multiplies each element of x

#[1] 2 -2 2 -2

x/2 # Each element of x is divided by 2

#[1] 0.5 -0.5 0.5 -0.5

y=seq(1,4)

x*y # This multiplication * multiples each pair of elements

#[1] 1 -2 3 -4

x%*%y #This is the dot product of two vectors and yields

[,1]

#[1,] -2

t(x) # Transforms x into a row 1X4 vector

[,1] [,2] [,3] [,4]

#[1,] 1 -1 1 -1

t(x)%*%y #This is equivalent to dot product and forms 1X1 matrix

[,1]

#[1,] -2

x%*%t(y) #This column times row yields a 4X4 matrix

[,1] [,2] [,3] [,4]

#[1,] 1 2 3 4

#[2,] -1 -2 -3 -4

#[3,] 1 2 3 4

#[4,] -1 -2 -3 -4

my=matrix(y,ncol=2)

#Convert a vector into a matrix of the same number of elements

#The matrix elements go by column, first column, second, etc

#Commands matrix(y,ncol=2, nrow=2) or matrix(y,2)

#or matrix(y,2,2) does the same job

my

[,1] [,2]

#[1,] 1 3

#[2,] 2 4

dim(my) #find dimensions of a matrix

#[1] 2 2

as.vector(my) #Convert a matrix to a vector, again via columns

#[1] 1 2 3 4

mx <- matrix(c(1,1,-1,-1), byrow=TRUE,nrow=2)

mx*my #multiplication between each pair of elements

[,1] [,2]

#[1,] 1 3

#[2,] -2 -4

mx/my #division between each pair of elements

[,1] [,2]

#[1,] 1.0 0.3333333

#[2,] -0.5 -0.2500000

mx-2*my

[,1] [,2]

#[1,] -1 -5

#[2,] -5 -9

mx%*%my #This is the real matrix multiplication in matrix theory

[,1] [,2]

#[1,] 3 7

#[2,] -3 -7

det(my) #determinant

#[1] -2

myinv = solve(my) #yields the inverse of a matrix

myinv

[,1] [,2]

#[1,] -2 1.5

#[2,] 1 -0.5

myinv%*%my #verifies the inverse of a matrix

[,1] [,2]

#[1,] 1 0

#[2,] 0 1

diag(my) #yields the diagonal vector of a matrix

#[1] 1 4

myeig=eigen(my) #yields eigenvalues and unit eigenvectors

myeig

myeig$values

#[1] 5.3722813 -0.3722813

myeig$vectors

[,1] [,2]

#[1,] -0.5657675 -0.9093767

#[2,] -0.8245648 0.4159736

mysvd = svd(my) #SVD decomposition of a matrix M=UDV’

#SVD can be done for a rectangular matrix of mXn

mysvd$d

#[1] 5.4649857 0.3659662

mysvd$u

[,1] [,2]

#[1,] -0.5760484 -0.8174156

#[2,] -0.8174156 0.5760484

mysvd$v

[,1] [,2]

#[1,] -0.4045536 0.9145143

#[2,] -0.9145143 -0.4045536

ysol=solve(my,c(1,3))

#solve linear equations matrix %*% x = b

ysol #solve(matrix, b)

#[1] 2.5 -0.5

my%*%ysol #verifies the solution

[,1]

#[1,] 1

#[2,] 3

1.2.7 Simple statistics by R

R was originally designed to do statistical calculations. Thus, R has a comprehensive

set of statistics functions and software packages. This sub-section gives a few basic

commands. More will be described in the statistics chapter of this book.

x=rnorm(10) #generate 10 normally distributed numbers

x

#[1] 2.8322260 -1.2187118 0.4690320 -0.2112469 0.1870511

#[6] 0.2275427 -1.2619005 0.2855896 1.7492474 -0.1640900

mean(x)

#[1] 0.289474

var(x)

#[1] 1.531215

sd(x)

#[1] 1.237423

median(x)

#[1] 0.2072969

quantile(x)

0% 25% 50% 75% 100%

#-1.2619005 -0.1994577 0.2072969 0.4231714 2.8322260

range(x) #yields the min and max of x

#[1] -1.261900 2.832226

max(x)

#[1] 2.832226

boxplot(x) #yields the box plot of x

w=rnorm(1000)

summary(rnorm(12)) #statistical summary of the data sequence

Min. 1st Qu. Median Mean 3rd Qu. Max.

#-1.9250 -0.6068 0.3366 0.2309 1.1840 2.5750

hist(w)

#yields the histogram of 1000 random numbers with a normal distribution

#Linear regression and linear trend line

#2007-2016 data of the global temperature anomalies

#Source: NOAAGlobalTemp data

t=2007:2016

T=c(.36,.30, .39, .46, .33, .38, .42, .50, .66, .70)

lm(T ~ t) #Linear regression model of temp vs time

#(Intercept) t

#-73.42691 0.03673

#Tempearture change rate is 0.03673 oC/yr or 0.37 oC/decade

plot(t,T, type="o",xlab="Year",ylab="Temperature [deg C]",

main="2007-2016 Global Temperature Anomalies

and Their Linear Trend [0.37 oC/decade] ")

abline(lm(T ~ t), lwd=2, col="red") #Regression line

The global temperature data from 2007-2016 in the above R code example are

displayed in Fig. 1.5, together with their linear trend line

T = −73.42691 + 0.03673t. (1.1)

2008 2010 2012 2014 2016

0
.3

0
.4

0
.5

0
.6

0
.7

2007−2016 Global Temperature Anomalies

 and Their Linear Trend [0.37 oC/decade]

Year

T
e
m

p
e
ra

tu
re

 [
d
e
g
 C

]

tFig. 1.5
The 2007-2016 global average annual mean surface air temperature anomalies with

respect to the 1971-2000 climate normal. The red is a linear trend line computed from

a linear regression model.

1.3 Online Tutorials

1.3.1 Youtube tutorial: for true beginners

This is a very good and slow paced 22 minutes youtube tutorial: Chapter 1. An

Introduction to R

https://www.youtube.com/watch?v=suVFuGET-0U

1.3.2 Youtube tutorial: for some basic statistical summaries

This is a 9 minutes tutorial by Layth Alwan.

https://www.youtube.com/watch?v=XjOZQN-Nre4

1.3.3 Youtube tutorial: Input data by reading a csv file into R

An excel file can be saved as csv file: xxxx.csv. This 15 minutes youtube video shows

how to read a csv file into R by Layth Alwan. He also shows linear regression.

https://www.youtube.com/watch?v=QkE8cp0B9gg

R can input all kinds of data files, including xlsx, netCDF, fortran data, and

sas data. Some commands are below. One can google to find proper data reading

command for your particular data format.

mydata <- read.csv("mydata.csv")

read csv file named "mydata.csv"

mydata <- read.table("mydata.txt")

read text file named "my data.txt"

library(gdata) # load gdata package

mydata = read.xls("mydata.xls") # read an excel file

library(foreign) # load the foreign package

mydata = read.mtp("mydata.mtp") # read from .mtp file

library(foreign) # load the foreign package

mydata = read.spss("myfile", to.data.frame=TRUE)

ff <- tempfile()

cat(file = ff, "123456", "987654", sep = "\n")

read.fortran(ff, c("F2.1","F2.0","I2")) #read a fotran file

library(ncdf)

ncin <- open.ncdf(ncfname) # open a NetCDF file

lon <- get.var.ncdf(ncin, "lon") #read a netCDF file into R

Many more details of reading and reformatting of .nc file will be discussed later

when dealing with NCEP/NCAR Reanalysis data.

Some libraries are not in the R project anymore. For example,

library(ncdf) #The following error message pops up

Error in library(ncdf) : there is no package called ncdf

One can then google r data reading netcdf R-project and go to the R-project

website. The following can be found.

Package ncdf was removed from the CRAN repository.

Formerly available versions can be obtained from the archive.

Archived on 2016-01-11: use ’RNetCDF’ or ’ncdf4’ instead.

This means that one should use RNetCDF, which can be downloaded from internet.

Thus, if a library gives an error message, then google the library package, download

and install the package, and finally read the data with a specified format.

References

[1] R tutorials by William B. King, Coastal Carolina University,

http://ww2.coastal.edu/kingw/statistics/R-tutorials/

[2] R tutorial by Steve Jost, De Paul University,

http://facweb.cs.depaul.edu/sjost/csc423/

Exercises

1.1 For some purposes, climatology or climate is dened as the mean state, or nor-

mal state, of a climate parameter, and is calculated from data over a period

of time called the climatology period (e.g., 1961-1990). Thus the surface air

temperature climate or climatology at a given location may be calculated by

averaging observational temperature data over a period such as 1961 through

1990. Thirty years are often considered in the climate science community

as the standard length of a climatology period. Due to the relatively high

density of weather stations in 1961-1990, compared to earlier periods, investi-

gators have often used 1961-1990 as their climatology period, although some

may now choose 1971-2000 or 1981-2010. Surface air temperature (SAT) is

often dened as the temperature inside a white-painted louvered instrument

container or box, known as a Stevenson screen, located on a stand about 2

meters above the ground. The purpose of the Stevenson screen is to shelter

the instruments from radiation, precipitation, animals, leaves, etc, while al-

lowing the air to circulate freely inside the box. Daily maximum temperature

(Tmax) is the maximum temperature measured inside the screen box by a

maximum temperature thermometer within 24 hours.

Go to the United States Historical Climatology Network (USHCN) website

http://cdiac.ornl.gov/epubs/ndp/ushcn/ushcn_map_interface.html

and download the monthly Tmax, Tmin, and Tmean data of the Cuyamaca

station (USHCN Site No. 042239) near San Diego, California. Use R to cal-

culate the climatology of the August , California, USA according to the 1961-

1990 climatology period.

14

tFig. 1.6
Inside a Stevenson screen, invented by Thomas Stevenson in 1864, and recommended

by the World Meteorological Organization (WMO) to measure Tmax and Tmin using

two thermometers. The data were recorded every 24 hours. Tmax and Tmin are the

temperature extremes over the previous 24 hours and depend on the time of

observation. Thus, the observations have the time of observation bias (TOB) due to

the inconsistent time of data recording. A much-used dataset called the USHCN

dataset includes data corrected for TOB, as well as the raw (uncorrected) data.

1.2 Express the Tmax climatology as an integral when regarding Tmax as a func-

tion of time t, using the definition of an integral from the statistics perspective.

1.3 Use R (a) to plot the the Cuyamaca January Tmin data from 1951 to 2010

with continuous curve, and (b) to plot the linear trend lines of Tmin on the

same plot as (a) in the following time periods:

(i) 1951-2010,

(ii) 1961-2010,

(iii) 1971-2010, and

(iv) 1981-2010.

Finally, what is the temporal trend per decade for each of the four periods

above?

1.4 Trend and derivative:

(a) Use the derivative to explain the trends of the above exercise problem,

and

(b) Treat the time series of the Cuyamaca January Tmin in above exercise

problem as a smooth function from 1951 to 2010. Use the curve and

its derivative to explain the instantaneous rate of change. Use the

concept of derivative.

(c) Use the average rate of change for a given period of time to explain the

linear trend in each of the four periods. Use the concept of mean value

theorem in the integral form.

1.5 Use the integral concept to describe the rainfall deficit or surplus history of San

Diego since January 1 of this year according to the USHCN daily precipitation

data, or do this for another location you are familiar with. You may use the

integral to describe the precipitation deficit or surplus. The daily data can be

found and downloaded from

http://cdiac.ornl.gov/epubs/ndp/ushcn/ushcn_map_interface.html

Requirements: You should use at least one figure. Your English text must be

longer than 100 words.

1.6 Time series and trend line plots for the NOAA global average annual mean

temperature anomaly data:

https://www.ncdc.noaa.gov/data-access/marineocean-data/

noaa-global-surface-temperature-noaaglobaltemp

(a) Plot the global average annual mean temperature from 1880 to 2015.

(b) Find the linear trend of the temperature from 1880 to 2015. Plot the

trend line on the same figure as a).

(c) Find the linear trend from 1900 to 1999. Plot the trend line on the same

figure as a).

1.7 Use the gridded NOAA global monthly temperature data from the following

website or another data source

https://www.ncdc.noaa.gov/data-access/marineocean-data/

noaa-global-surface-temperature-noaaglobaltemp

(a) Choose two 5-by-5 degrees lat-lon grid boxes of your interest. Plot the

temperature anomaly time series of the two boxes on the same figure

using two different colors.

(b) Choose sufficiently many grid boxes that cover the state of Texas. Com-

pute the average temperature of these boxes. Then plot the monthly

average temperature of these anomalies. Show the trend line on the

same figure.

1.8 Research problem: Use the integral of temperature with respect to time to

interpret the concept of cumulative degree-days in agriculture. Consider the

energy needed by plants to grow.

Requirements: You must use at least one figure and one table. Your English

text must be longer than 100 words.

2
R Analysis of Incomplete Climate

Data

2.1 The missing data problem

Unlike the climate model data which are space-time complete, the observed data

are often space-time incomplete, i.e., some space-time grid points or boxes do not

have data. We call this the missing data problem.

Missing data problems can be of many kinds and can be very complicated. Here

we use the NOAAGlobalTemp dataset to illustrate a few methods often used in

analyzing datasets with missing data. NOAAGlobalTemp is the merged land and

oceanic observed surface temperature anomalies with respect to the 1970-2000 base

period climatology, produced by the United States National Center for Environ-

mental Information in 2015.

https://www.ncdc.noaa.gov/data-access/marineocean-data/

noaa-global-surface-temperature-noaaglobaltemp

This dataset is a monthly data from January 1880 to the present with 5 × 5◦

latitude-longitude spatial resolution. The earlier years had many missing data while

the recent years are better covered. Figure 2.1 shows the history of the percentage

of area covered by the data. One hundred minus this percentage is the percentage

of missing data. The minimum coverage is nearly 60%, much of which is due to

the good coverage provided by NOAA ERSST (extended reconstructed sea surface

temperature).

Using software 4DVD (4-dimensional visual delivery of big climate data) devel-

oped at San Diego State University, one can easily see where and when data are

missing. Figure 2.2 shows the NOAAGlobalTemp data distribution over the globe

for January 1917. The data cover 72% of the global area. The black region includes

28% of the global area and has missing data. The data void regions include the

polar areas which could not be accessed at that time, the central tropical Pacific

regions which were not on the tracks of commercial ships, central Asia, part of

Africa, and the Amazon region. Figure 2.3 shows that the grid box (12.5S, 117.5W)

in the Amazon region did not begin to have data until 1918, and the data time

series after 1918 is discontinuous with missing data around 1921 and 1922.

17

tFig. 2.1
Percentage of the global surface area covered by the NOAAGlobalTemp dataset.

tFig. 2.2
The January 1917 distribution of the NOAAGlobalTemp data. The black region

means missing data.

tFig. 2.3
Time series of the monthly temperature anomalies for a grid box over the Amazon

region.

2.2 Read NOAAGlobalTemp and form the space-time
data matrix

This section describes how to use R to read the data and convert the data into a

standard space-time matrix for various of kinds of analyses.

2.2.1 Read the downloaded data

First, we download the NOAAGlobalTemp gridded data from its ftp site

ftp://ftp.ncdc.noaa.gov/pub/data/noaaglobaltemp/operational

The anomalies are with respect to the 1971-2000 climatology.

The ftp site has two data formats: asc and bin. We use the asc format as example

to describe the R analysis. The following R code reads the asc data and makes the

conversion.

rm(list=ls(all=TRUE))

Download .asc file

setwd("/Users/sshen/Desktop/MyDocs/teach/SIOC290-ClimateMath2016/Rcodes/NOAAGlobalTemp")

da1=scan("NOAAGlobalTemp.gridded.v4.0.1.201701.asc")

length(da1)

#[1] 4267130

da1[1:3]

#[1] 1.0 1880.0 -999.9 #means mon, year, temp

#data in 72 rows (2.5, ..., 357.5) and

#data in 36 columns (-87.5, ..., 87.5)

tm1=seq(1,4267129, by=2594)

tm2=seq(2,4267130, by=2594)

length(tm1)

length(tm2)

mm1=da1[tm1] #Extract months

yy1=da1[tm2] #Extract years

head(mm1)

head(yy1)

length(mm1)

length(yy1)

rw1<-paste(yy1, sep="-", mm1) #Combine YYYY with MM

head(tm1)

head(tm2)

tm3=cbind(tm1,tm2)

tm4=as.vector(t(tm3))

head(tm4)

#[1] 1 2 2595 2596 5189 5190

da2<-da1[-tm4] #Remote the months and years data from the scanned data

length(da2)/(36*72)

#[1] 1645 #months, 137 yrs 1 mon: Jan 1880-Jan 2017

da3<-matrix(da2,ncol=1645) #Generate the space-time data

#2592 (=36*72) rows and 1645 months (=137 yrs 1 mon)

To facilitate the use of space-time data, we add the latitude and longitude co-

ordinates for each grid box as the first two columns, and the time mark for each

month as the first row. This can be done by the following R code.

colnames(da3)<-rw1

lat1=seq(-87.5, 87.5, length=36)

lon1=seq(2.5, 357.5, length=72)

LAT=rep(lat1, each=72)

LON=rep(lon1,36)

gpcpst=cbind(LAT, LON, da3)

head(gpcpst)

dim(gpcpst)

#[1] 2592 1647 #The first two columns are Lat and Lon

#-87.5 to 87.5 and then 2.5 to 375.5

#The first row for time is header, not counted as data.

write.csv(gpcpst,file="NOAAGlobalT.csv")

#Output the data as a csv file

2.2.2 Plot the temperature data map of a given month

With this space-time data, one can plot a data map for a given month or a data time

series for a given location. For example, the following R code plots the temperature

data map for December 2015, an El Niño month (See Fig. 2.4).

tFig. 2.4
Monthly mean temperature anomalies of December 2015 based on the

NOAAGlobalTemp data.

library(maps)#Install maps package if not done before

Lat= seq(-87.5, 87.5, length=36)

Lon=seq(2.5, 357.5, length=72)

mapmat=matrix(gpcpst[,1634],nrow=72)

#column 1634 corresponding to Dec 2015

#Covert the vector into a lon-lat matrix for R map plotting

mapmat=pmax(pmin(mapmat,6),-6)

#Matrix flipping is not needed since the data go from 2.5 to 375.5

plot.new()

par(mar=c(4,5,3,0))

int=seq(-6,6,length.out=81)

rgb.palette=colorRampPalette(c(’black’,’blue’, ’darkgreen’,’green’,

’yellow’,’pink’,’red’,’maroon’),interpolate=’spline’)

mapmat= mapmat[,seq(length(mapmat[1,]),1)]

filled.contour(Lon, Lat, mapmat, color.palette=rgb.palette, levels=int,

plot.title=title(main="NOAAGlobalTemp Anomalies Dec 2015 [deg C]",

xlab="Latitude",ylab="Longitude", cex.lab=1.5),

plot.axes={axis(1, cex.axis=1.5);

axis(2, cex.axis=1.5);map(’world2’, add=TRUE);grid()},

key.title=title(main="[oC]"),

key.axes={axis(4, cex.axis=1.5)})

2.2.3 Extract the data for a specified region

If one wishes to study the data over a particular region, say, the tropical Pacific

for El Niño characteristics, he can extract the data for the region for a given time

interval. The following code extracts the space-time data for the tropical Pacific

region (20S-20N, 160E-120W) from 1951 to 2000.

#Keep only the data for the Pacific region

n2<-which(gpcpst[,1]>-20&gpcpst[,1]<20&gpcpst[,2]>160&gpcpst[,2]<260)

dim(gpcpst)

length(n2)

#[1] 160 $4 latitude bends and 20 longitude bends

pacificdat=gpcpst[n2,855:1454]

Here, we have used a powerful and convenient which search command. This very

useful command is easier to program and faster than if conditions.

Despite the good coverage of ERSST, it still has a few missing data in this tropical

Pacific area. Because the missing data are assigned -999.00, they can significantly

impact the computing results, such as SVD, when they are used in computing. We

assign the missing data to be zero, instead of -999.00. The following code plots the

December 1997 temperature data for the tropical Pacific region (20S-20N, 160E-

120W) (see Fig. 2.5).

tFig. 2.5
Tropical Pacific SST anomalies of December 1997 based on the NOAAGlobalTemp

data.

Lat=seq(-17.5,17.5, by=5)

Lon=seq(162.5, 257.5, by=5)

plot.new()

par(mar=c(4,5,3,0))

mapmat=matrix(pacificdat[,564], nrow=20)

int=seq(-5,5,length.out=81)

rgb.palette=colorRampPalette(c(’black’,’blue’, ’darkgreen’,

’green’, ’yellow’,’pink’,’red’,’maroon’),interpolate=’spline’)

#mapmat= mapmat[,seq(length(mapmat[1,]),1)]

filled.contour(Lon, Lat, mapmat, color.palette=rgb.palette, levels=int,

xlim=c(120,300),ylim=c(-40,40),

plot.title=title(main="Tropic Pacific SAT Anomalies [deg C]: Dec 1997",

xlab="Latitude",ylab="Longitude", cex.lab=1.5),

plot.axes={axis(1, cex.axis=1.5); axis(2, cex.axis=1.5);

map(’world2’, add=TRUE);grid()},

key.title=title(main="[oC]"),

key.axes={axis(4, cex.axis=1.5)})

2.2.4 Extract data from only one grid box

A special case is to extract data for a specified grid box with given latitude and

longitude, e.g., the San Diego box (32.5N, 117.5W) or (+32.5, 242.5). This can be

easily done by the following R code that includes a simple plotting command.

#Extract data for a specified box with given lat and lon

n2 <- which(gpcpst[,1]==32.5&gpcpst[,2]==242.5)

SanDiegoData <- gpcpst[n2,855:1454]

plot(seq(1880,2017, len=length(SanDiegoData)),

SanDiegoData, type="l",

xlab="Year", ylab="Temp [oC]",

main="San Diego temperature anomalies history")

2.3 Spatial averages and their trends

2.3.1 Compute and plot the global area-weighted average of
monthly data

The area-weighted average, also called spatial average, of a temperature field T (φ, θ, t)

on a sphere is mathematically defined as follows

T̄ (t) =
1

4π

∫∫
T (φ, θ, t) cos(φ)dφdθ, (2.1)

where φ is latitude and θ is longitude, and t is time. The above formula’s discrete

form for a grid of resolution ∆φ×∆θ is

ˆ̄T (t) =
∑
i,j

T (i, j, t)
cos(φij)∆φ∆θ

4π
, (2.2)

where (i, j) are coordinate indices for the grid box (i,j), and ∆φ and ∆θ are in

radian. If it is a 5◦ resolution, then ∆φ = ∆θ = (5/180)π.

If NOAAGlobalTemp had data in every box, then the global average would be

easy to calculate according to the above formua:

ˆ̄T (t) =
∑
i,j

T (i, j, t)
cos(φij)(5/180)2

4
. (2.3)

However, NOAAGlobalTemp has missing data. We thus should not average the

data-void region. A method is to consider the spatial average problem as a weighted

average, which assigns a data box with weight proportional to cosφij and a data-

void box with zero weight. We thus generate a weight matrix areaw corresponding

to the data matrix temp by the following R code.

#36-by-72 boxes and Jan1880-Jan2016=1633 months + lat and lon

areaw=matrix(0,nrow=2592,ncol = 1647)

dim(areaw)

#[1] 2592 1647

areaw[,1]=temp[,1]

areaw[,2]=temp[,2]

#create an area-weight matrix equal to cosine box with data and zero for missing

for(j in 3:1647) {for (i in 1:2592) {if(temp[i,j]> -290.0) {areaw[i,j]=veca[i]} }}

Then compute an area-weighted temperature data matrix and its average:

#area-weight data matrixs first two columns as lat-lon

tempw=areaw*temp

tempw[,1:2]=temp[,1:2]

#create monthly global average vector for 1645 months

#Jan 1880- Jan 2017

avev=colSums(tempw[,3:1647])/colSums(areaw[,3:1647])

Figure 2.6 shows the spatial average of the monthly temperature data from

NOAAGlobalTemp from January 1880 to January 2017 and can be generated by

the following R code.

timemo=seq(1880,2017,length=1645)

plot(timemo,avev,type="l", cex.lab=1.4,

xlab="Year", ylab="Temperature anomaly [oC]",

main="Area-weighted global average of monthly SAT anomalies: Jan 1880-Jan 2017")

abline(lm(avev ~ timemo),col="blue",lwd=2)

text(1930,0.7, "Linear trend: 0.69 [oC] per century",

cex=1.4, col="blue")

2.3.2 Percent coverage of the NOAAGlobalTemp

As a byproduct of the above weighted average, the matrix areaw can be used to

calculate the percentage of area covered by the data.

tFig. 2.6
Spatial average of monthly temperature anomalies with respect to 1971-2000

climatology based on the NOAAGlobalTemp data.

rcover=100*colSums(areaw[,3:1647])/sum(veca)

The following R code can plot this time series against time, which is the percentage

of data covered area with respect to the entire sphere, shown in Fig. 2.1 at the

beginning of this chapter.

#Plot this time series

motime=seq(1880, 2017, length=1645)

plot(motime,rcover,type="l",ylim=c(0,100),

main="NOAAGlobalTemp Data Coverage: Jan 1880-Jan 2017",

xlab="Year",ylab="Percent area covered [\%]")

2.3.3 Difference from the NOAA NCEI monthly mean global
averages

The NOAA National Centers for Environmental Information (NCEI) also computed

the monthly mean global averages, which can also be downloaded from the NOAA-

GlobalTemp website. The differences between our monthly means and the NCEI’s

monthly means are less than 0.02◦C. Figure 2.7 shows our data minus the NCEI

data, and can be generated by the following R code.

#Download the NCEI spatial average time series of monthly data

#https://www1.ncdc.noaa.gov/pub/data/noaaglobaltemp/operational/timeseries/aravg.mon.land_ocean.90S.90N.v4.0.1.201702.asc

setwd("/Users/sshen/Desktop/MyDocs/teach/SIOC290-ClimateMath2016/Rcodes/Ch15-Rgraphics")

aveNCEI<-read.table("aravg.mon.land_ocean.90S.90N.v4.0.1.201702.asc.txt", header=FALSE)

tFig. 2.7
Shen’s spatial average of monthly anomalies minus the NCEI time series.

dim(aveNCEI) #Jan 1880-Feb 2017 #an extra month to be deleted

#[1] 1646 10

avediff<-avev-aveNCEI[1:1645,3]

par(mar=c(4,5,2,1))

plot(timemo,avediff,type="l",

cex.lab=1.4,

xlab="Year",

ylab="Diffences [oC]",

main="Difference of R average minus NCEI average of global temp")

The small difference might be caused by the different round-off errors in the

computer programs. These small differences do not alter any scientific conclusions

based on the NOAAGlobalTemp data.

2.3.4 Which month has the strongest trend?

It is known that climate changes are not uniform across a year. We thus plot

the trends of each month from January to December in the period of 1880-2016.

Figure 2.8 shows the strongest trend 0.75◦/century in March, and the weakest trend

0.656◦/century in September. This method of study is even more meaningful for

hemispheric averages or regional averages, such as the United States. Figure 2.8

can be produced by the following R code.

#Plot the each month’s anomalies with trend in 12 panels

plot.new()

tFig. 2.8
The trend of the spatial average of each month based on the NOAAGlobalTemp data

from 1880-2016.

par(mfrow = c(4, 3)) # 4 rows and 3 columns

par(mgp=c(2,1,0))

for (i in 1:12) {

plot(timeyr, avemy[,i],type="l", ylim=c(-1.0,1.0),

xlab="Year",ylab="Temp [oC]",

main = paste("Month is", i, split = ""))

abline(lm(avemy[,i]~timeyr),col="red")

text(1945,0.7, paste("Trend oC/century=", round(digits=3,(100*coefficients(lm(avemy[,i]~timeyr))[2]))), col="red")

}

2.3.5 Spatial average of annual data

The following R code can compute and plot the annual mean. It first convert the

vector data of monthly spatial averages to a 12-column matrix. Each column is a

month. The row mean yields the annual mean.

tFig. 2.9
Annual mean of the monthly spatial average anomalies from the NOAAGlobalTemp

data.

avem = matrix(avev[1:1644], ncol=12, byrow=TRUE)

#compute annual average

annv=rowMeans(avem)

#Plot the annual mean global average temp

timeyr<-seq(1880, 2016)

plot(timeyr,annv,type="s",

cex.lab=1.4, lwd=2,

xlab="Year", ylab="Temperature anomaly [oC]",

main="Area-weighted global average of annual SAT anomalies: 1880-2016")

abline(lm(annv ~ timeyr),col="blue",lwd=2)

text(1940,0.4, "Linear trend: 0.69 [oC] per century",

cex=1.4, col="blue")

text(1900,0.07, "Base line",cex=1.4, col="red")

lines(timeyr,rep(0,137), type="l",col="red")

2.3.6 Nonlinear trend of the global average annual mean data

The global average annual mean temperature apparently does not vary linearly with

time. It is thus useful to examine the underlying nonlinear variation of the annual

temperature time series. The simplest nonlinear trend exploration is thorough a

polynomial fit. Usually, orthogonal polynomial fits are more efficient and have better

fidelity to the data. Figure 2.10 shows two fits by the 9th order and 20th order

orthogonal polynomials. The choice of 9th order is because it is the lowest order

polynomial which can reflect the oscillation of temperature from the high in the

1880s to the low in the 1910s, then rising until the 1940s, decreasing in the 1960s

and 1970s. The choice of the 20th order polynomial fit is because it is the lowest

order orthogonal polynomial that can mimic the detailed climate variations, such

as the local highs around 1900 and 1945. We have tried higher order polynomials

which often show an unphysical overfit.

tFig. 2.10
Annual mean time series and its fit by orthogonal polynomials.

Figure 2.10 can be produced by the following R code.

#Polynomial fitting to the global average annual mean

#poly9<-lm(annv ~ poly(timeyr,9, raw= TRUE))

#raw=TRUE means regular polynomial a0+a1x^2+..., non-orthogonal

polyor9<-lm(annv ~ poly(timeyr,9, raw= FALSE))

polyor20<-lm(annv ~ poly(timeyr,20, raw= FALSE))

#raw=FALSE means orthongonal polynomial of 9th order

#Orthogonal polynomial fitting is usually better

plot(timeyr,annv,type="s",

cex.lab=1.4, lwd=2,

xlab="Year", ylab="Temperature anomaly [oC]",

main="Annual SAT time series and its orthogonal polynomial fits: 1880-2016")

lines(timeyr,predict(polyor9),col="blue", lwd=3)

legend(1880, 0.6, col=c("blue"),lty=1,lwd=2.0,

legend=c("9th order orthogonal polynomial fit"),

bty="n",text.font=2,cex=1.5)

lines(timeyr,predict(polyor20),col="red", lwd=3)

legend(1880, 0.7, col=c("red"),lty=1,lwd=2.0,

legend=c("20th order orthogonal polynomial fit"),

bty="n",text.font=2,cex=1.5)

A popular non-parametric fit is the LOWESS (locally weighted scatterplot smooth-

ing), often referred to as the Loess fit. It is basically a weighted piecewise local

polynomial fitting. The local fitting property requires many data points to make a

reasonable fit. One can use the following one-line R code to generate a nonlinear

fit which has a shape similar to the 20th order polynomial fit.

scatter.smooth(annv timeyr, span=2/18, cex=0.6)

2.4 Spatial characteristics of the temperature change
trends

2.4.1 20th century temperature trend

It is widely known that the global average temperature has increased, especially

in recent decades since the 1970s. This is known to the general public as “global

warming.” However, the increase is non-uniform, and a few area have even experi-

enced cooling, such as the 1900- 1999 cooling over the North Atlantic off the coast

of Greenland. Figure 2.11 shows the uneven spatial distribution of the linear trend

of the monthly SAT anomalies from January 1900 to December 1999. Most parts of

the world experienced warming particularly over the land areas. Canada and Rus-

sia thus experienced more warming in the 20th century, compared to other regions

around the world.

Many grid boxes do not have complete data stream from January 1900-December

1999. Our trend calculation’s R code allows some missing data in the middle of the

data streams, but it requires data at both the beginning month (January 1900) and

the end month (December 1999). When a grid box does not satisfy the requirement,

the trend for the box is not calculated. Figure 2.11’s large white areas over the polar

regions, Pacific, Africa, and Central America do not satisfy the requirement. For

the missing data in the middle of a data stream for a grid box, our linear regression

omits the missing data and carries out the regression with a shorter temperature

data stream, and correspondingly with a shorter time data stream.

We used lm(temp1[i,243: 1442] timemo1, na.action=na.omit) to treat

the missing data between the beginning month and the end month. The missing

data have been replaced by NA. The R command na.action=na.omit means that

the missing data are omitted in the regression, and the fitted data at the missing

data’s time locations are omitted too and are not outputted. One can use another

command lm(temp1[i,243: 1442] timemo1, na.action=na.exclude) to do

linear regression with missing data. The slope and intercept results computed by

the two commands are the same. The only difference is that the latter outputs NA

for the fitted data at the missing data’s time locations. For example,

x=1:8

y=c(2,4,NA,3,6.8,NA,NA,9)

fitted(lm(y ~ x, na.action=na.exclude))

1 2 3 4 5 6 7 8

#2.08 3.04 NA 4.96 5.92 NA NA 8.80

##

fitted(lm(y ~ x, na.action=na.omit))

1 2 4 5 8

#2.08 3.04 4.96 5.92 8.80

tFig. 2.11
Linear trend of SAT from January 1900 to December 1999. The trend was calculated

for each grid box using the NOAAGlobalTemp data, and the procedure required that

the box did not have missing data for the first month (January 1900) and the last

month (December 1999). The white regions mean that the data did not satisfy our

calculation conditions, i.e. these are the regions of insufficient amount of data.

Figure 2.11 can be produced by the following R code.

#Compute the trend for each box for the 20th century

timemo1=seq(1900,2000, len=1200)

temp1=temp

temp1[temp1 < -490.00] <- NA

trendgl=rep(0,2592)

for (i in 1:2592){

if(is.na(temp1[i,243])==FALSE & is.na(temp1[i,1442])==FALSE)

{trendgl[i]=lm(temp1[i,243: 1442] ~ timemo1, na.action=na.omit)$coefficients[2]}

else

{trendgl[i]=NA}

}

library(maps)

Lat= seq(-87.5, 87.5, length=36)

Lon=seq(2.5, 357.5, length=72)

mapmat=matrix(100*trendgl,nrow=72)

mapmat=pmax(pmin(mapmat,2),-2)

#Matrix flipping is not needed since the data goes from 2.5 to 375.5

plot.new()

par(mar=c(4,5,3,0))

int=seq(-2,2,length.out=21)

rgb.palette=colorRampPalette(c(’black’,’blue’, ’darkgreen’,’green’,

’yellow’,’pink’,’red’,’maroon’),interpolate=’spline’)

#mapmat= mapmat[,seq(length(mapmat[1,]),1)]

filled.contour(Lon, Lat, mapmat, color.palette=rgb.palette, levels=int,

plot.title=title(main="Jan 1900-Dec 1999 temperature trends: [oC/century]",

xlab="Latitude",ylab="Longitude", cex.lab=1.5),

plot.axes={axis(1, cex.axis=1.5); axis(2, cex.axis=1.5);map(’world2’, add=TRUE);grid()},

key.title=title(main="[oC]"),

key.axes={axis(4, cex.axis=1.5)})

2.4.2 20th century temperature trend computed under a relaxed
condition

If we relax our trend calculation condition and allow a trend to be computed for a

grid box when the box has less than one third ot its data missing, then the trends

can be computed for more grid boxes. Figure 2.12 shows the trend map computed

under this relaxed condition.

Figure 2.12 uses ◦C per decade as the unit, while Fig. 2.11 uses ◦C per century.

The patterns of the two figures are consistent, which implies that the relaxed con-

dition for trend calculation has not led to spatially inconsistent trends. Thus, Fig.

2.12 can be regarded as an accurate spatial extension of Fig. 2.11.

Figure 2.12 can be generated by the following R code.

#Trend for each box for the 20th century: Version 2: Allow 2/3 of data

tFig. 2.12
Linear trend of SAT from January 1900-December 1999. The trend was calculated for

each grid box using the NOAAGlobalTemp data when the box has less than 1/3 of

data missing.

#Compute the trend

timemo1=seq(1900,2000, len=1200)

temp1=temp[,243:1442]

temp1[temp1 < -490.00] <- NA

temptf=is.na(temp1)

bt=et=rep(0,2592)

for (i in 1:2592) {

if (length(which(temptf[i,]==FALSE)) !=0)

{

bt[i]=min(which(temptf[i,]==FALSE))

et[i]=max(which(temptf[i,]==FALSE))

}

}

##

trend20c=rep(0,2592)

for (i in 1:2592){

if(et[i]-bt[i] > 800)

{trend20c[i]=lm(temp1[i,bt[i]:et[i]] ~ seq(bt[i],et[i]), na.action=na.omit)$coefficients[2]}

else

{trend20c[i]=NA}

}

#plot the 20C V2 trend map

plot.new()

#par(mar=c(4,5,3,0))

mapmat=matrix(120*trend20c,nrow=72)

mapmat=pmax(pmin(mapmat,0.2),-0.2)

int=seq(-0.2,0.2,length.out=41)

rgb.palette=colorRampPalette(c(’black’,’blue’, ’darkgreen’,’green’,

’yellow’,’pink’,’red’,’maroon’),interpolate=’spline’)

filled.contour(Lon, Lat, mapmat, color.palette=rgb.palette, levels=int,

plot.title=title(main="Jan 1900-Dec 1999 temperature trends: [oC/decade]",

xlab="Latitude",ylab="Longitude", cex.lab=1.5),

plot.axes={axis(1, cex.axis=1.5); axis(2, cex.axis=1.5);map(’world2’, add=TRUE);grid()},

key.title=title(main="[oC]"),

key.axes={axis(4, cex.axis=1.5)})

2.4.3 Trend pattern for the four decades of consecutive
warming: 1976-2016

Our recent period of long-term rapid warming (four decades from 1976-2016) ex-

hibits a warming that is greater than the last long-term warming from the 1910s to

the early 1950s, which also lasted about four decades. Figure 2.13 shows the strong

global warming trend from January 1976 to December 2016. It shows that during

this period, the world became warmer on every continent except Antarctica.

tFig. 2.13
Linear trend of SAT from January 1976-December 2016. The white regions mean

insufficient amount of data.

The trend data for Fig. 2.13 can be calculated using the following R code.

timemo2=seq(1976,2017, len=492)

temp1=temp

temp1[temp1 < -490.00] <- NA

trend7616=rep(0,2592)

for (i in 1:2592){

if(is.na(temp1[i,1155])==FALSE & is.na(temp1[i,1646])==FALSE)

{trend7616[i]=lm(temp1[i,1155: 1646] ~ timemo2, na.action=na.omit)$coefficients[2]}

else

{trend7616[i]=NA}

}

The R code for plotting Fig. 2.13 is almost identical to that for the 20th century

trend of Fig. 2.12 and is omitted here.

References

[1] Huang, B., V.F. Banzon, E. Freeman, J. Lawrimore, W. Liu, T.C. Peterson,

T.M. Smith, P.W. Thorne, S.D. Woodruff, H.M. and Zhang (2015): Extended

reconstructed sea surface temperature version 4 (ERSST. v4). Part I: upgrades

and intercomparisons. Journal of Climate, 28, 911-930.

[2] Karl, T.R., A. Arguez, B. Huang, J.H. Lawrimore, J.R. McMahon, M.J. Menne,

T.C.Peterson, R.S. Vose, H.M. and Zhang (2015): Possible artifacts of data

biases in the recent global surface warming hiatus. Science, 348,1469-1472.

[3] Smith, T.M. and R.W. Reynolds (2003): Extended reconstruction of global sea

surface temperatures based on COADS data (18541997). Journal of Climate,

16,1495-1510.

Exercises

2.1 Following the R code for generating Fig. 2.6 for the monthly global average

SAT anomalies, write an R code to generate a similar figure but for the North-

ern Hemisphere’s SAT anomalies from January 1880 to December 2016, based

on the gridded 5-deg NOAAGlobalTemp.

2.2 Compute and plot the spatial average of the annual mean SAT for the North-

ern Hemisphere from 1880 to December 2016.

2.3 Do the same as the previous problem, but for the Southern Hemisphere.

2.4 Plot and compare the maps of the January SAT anomalies’ linear trends from

1948 to 2016 based on the gridded January SAT anomalies around the 1971-

2000 climatology period for two datasets: the NCEP/NCAR Reanalysis data

and the NOAAGlobalTemp data. Use 200-500 words to describe your results.

2.5 (a) Plot the time series of the spatially averaged annual mean SAT anomalies

for the contiguous United States using the NOAAGlobalTemp data from 1880

to 2016.

(b) Add a linear trend line to the time series plot in (a). Mark the trend value

on the figure with the unit [◦C per century].

36

3 R Graphics for Climate Science

This chapter is an introduction to the basic skills needed to use R graphics for

climate science. These skills are sufficient to meet most needs for climate science

research, teaching and publications. We have divided these skills into the following

categories:

(i) Plotting multiple data time series in the same figure, including multiple panels

in a figure, adjusting margins, and using proper fonts for text, labels, and

axes;

(ii) Creating color maps of a climate parameter, such as the surface air temperature

on the globe or over a given region; and

(iii) Animation.

3.1 Two dimensional line plots and setups of margins
and labels

3.1.1 Plot two different time series on the same plot

Chapter 3 already showed how to plot a simple time series using plot(xtime, ydata).

Climate science often requires one to plot two different quantities, such as two time

series, on the same plot so that direct comparisons can be made. For example, to

see whether a hot year is also a dry year, one may plot the temperature data on the

same figure as the precipitation data. The left side of the y-axis shows temperature

and the right side shows precipitation. The following code plots a figure containing

the contiguous United States (CONUS) annual mean temperature and annual total

precipitation from 2001-2010 (see Fig. 3.1).

#Plot US temp and prec times series on the same figure

plot.new()

Time <- 2001:2010

Tmean <- c(12.06, 11.78,11.81,11.72,12.02,12.36,12.03,11.27,11.33,11.66)

Prec <- c(737.11,737.87,774.95,844.55,764.03,757.43,741.17,793.50,820.42,796.80)

plot(Time,Tmean,type="o",col="red",xlab="Year", ylab="Tmean [dec C]",lwd=1.5,

main="Contiguous U.S. Annual Mean Temperature and Total Precipitation")

legend(2000.5,12.42, col=c("red"),lty=1,lwd=2.0,

37

legend=c("Tmean"),bty="n",text.font=2,cex=1.0)

#Allows a figure to be overlaid on the first plot

par(new=TRUE)

plot(Time, Prec,type="o",col="blue",lwd=1.5,axes=FALSE,xlab="",ylab="")

legend(2000.5,839, col=c("blue"),lty=1,lwd=2.0,

legend=c("Prec"),bty="n",text.font=2,cex=1.0)

#Suppress the axes and assign the y-axis to side 4

axis(4)

mtext("Precipitation [mm]",side=4,line=3)

#legend("topleft",col=c("red","blue"),lty=1,legend=c("Tmean","Prec"),cex=0.6)

#Plot two legends at the same time make it difficult to adjust the font size

#because of different scale

tFig. 3.1
Contiguous United States annual mean temperature and annual total precipitation.

Figure 3.1 shows that during the ten years from 2001 to 2010, the CONUS precip-

itation and temperature are in opposite phase: higher temperature tends to occur

in dry years with less precipitation, and lower temperature tends to occur in wet

years with more precipitation.

3.1.2 Figure setups: margins, fonts, mathematical symbols, and
more

R has the flexibility to create plots with specific margins, mathematical symbols for

text and labels, text fonts, text size, and more. R also allows one to merge multiple

figures. These capabilities are often useful in producing a high-quality figure for

presentations or publication.

par(mar=c(2,5,3,1)) specifies the four margins of a figure. The first margin 2

(i.e., two line space) is the x-axis, the second 5 is for the y-axis, 3 is for the top, and

1 is for the right. One can change the numbers in par(mar=c(2,5,3,1)) to adjust

the margins. A simple example is shown in Fig. 3.2, which may be generated by

the following R program.

tFig. 3.2
Set margins, insert mathematical symbols, and write text outside a figure.

#Margins, math symbol, and figure setups

plot.new()

par(mar=c(6,4,3,3))

x<-0.25*(-30:30)

y<-sin(x)

x1<-x[which(sin(x) >=0)]

y1<-sin(x1)

x2<-x[which(sin(x) < 0)]

y2<-sin(x2)

plot(x1,y1,xaxt="n", xlab="",ylab="",lty=1,type="h",

lwd=3, tck=-0.02, ylim=c(-1,1), col="red",

col.lab="purple",cex.axis=1.4)

lines(x2,y2,xaxt="n", xlab="",ylab="",lty=3,type="h",

col="blue",lwd=8, tck=-0.02)

axis(1, at=seq(-6,6,2),line=3, cex.axis=1.8)

axis(4, at=seq(-1,1,0.5), lab=c("A", "B", "C", "D","E"),

cex.axis=2,las=2)

text(0,0.7,font=3,cex=6, "Sine waves", col="darkgreen") #Itatlic font size 2

mtext(side=2,line=2, expression(y==sin(theta-hat(phi))),cex=1.5, col="blue")

tFig. 3.3
Adjust font size, axis labels space, and margins.

mtext(font=2,"Text outside of the figure on side 3",side=3,line=1, cex=1.5)#Bold font

mtext(font=1, side=1,line=1,

expression(paste("Angle in radian: ",

theta-phi[0])),cex=1.5, col="red")

Similar to using cex.axis=1.8 to change the font size of the tick values, one can

use

cex.lab=1.5, cex.main=1.5, cex.sub=1.5

to change the font sizes for axis labels, the main title, and the sub-title. An example

is shown in Fig. 3.3 generated by the R code below.

par(mar=c(8,6,3,2))

par(mgp=c(2.5,1,0))

plot(1:200/20, rnorm(200),sub="Sub-title: 200 random values",

xlab= "Time", ylab="Random values", main="Normal random values",

cex.lab=1.5, cex.axis=2, cex.main=2.5, cex.sub=2.0)

Here par(mgp=c(2.5,1,0)) is used to adjust the positions of axis labels, tick

values, and tick bars, where 2.5 means the xlab is two and half lines away from

the figure’s lower and left borders, 1 means the x-axis tick values are one line away

from the borders, 0 means the tick bars are on the border lines. The default mgp

values are 3,1,0. Another simple example is below.

par(mgp=c(2,1,0))

plot(sin,xlim=c(10,20))

The above R code used many R plot functions. An actual climate science line

plot is often simpler than this. One can simply remove the redundant functions in

the above R code to produce the desired figure.

Let us plot the global average annual mean surface air temperature (SAT) from

1880 - 2016 using the above plot functions (see Fig. 3.4). The data is from the

NOAAGlobalTemp dataset

https://www.ncdc.noaa.gov/data-access/marineocean-data/

noaa-global-surface-temperature-noaaglobaltemp

We write the data in two columns in a file named NOAATemp. The first column is

the year, and the second is the temperature anomalies.

tFig. 3.4
Global average annual mean SAT based on the United States’ NOAAGlobalTemp data

.

Figure 3.4 can be generated by the following R code.

#A fancy plot of the NOAAGlobalTemp time series

plot.new()

par(mar=c(4,4,3,1))

x<-NOAATemp[,1]

y<-NOAATemp[,2]

z<-rep(-99,length(x))

for (i in 3:length(x)-2) z[i]=mean(c(y[i-2],y[i-1],y[i],y[i+1],y[i+2]))

n1<-which(y>=0)

x1<-x[n1]

y1<-y[n1]

n2<-which(y<0)

x2<-x[n2]

y2<-y[n2]

x3<-x[2:length(x)-2]

y3<-z[2:length(x)-2]

plot(x1,y1,type="h",xlim=c(1880,2016),lwd=3,

tck=0.02, ylim=c(-0.7,0.7), #tck>0 makes ticks inside the plot

ylab="Temperature [deg C]",

xlab="Time",col="red",

main="NOAA Global Average Annual Mean Temperature Anomalies")

lines(x2,y2,type="h",

lwd=3, tck=-0.02, col="blue")

lines(x3,y3,lwd=2)

3.1.3 Plot two or more panels on the same figure

Another way to compare the temperature and precipitation time series is to plot

them in different panels and display them in one figure, as shown in Fig. 3.5.

tFig. 3.5
(a) Contiguous United States annual mean temperature; and (b) annual total

precipitation.

Figure 3.5 can be generated by the following R code. This figure’s arrangement

has used the setups described in the above sub-section.

#Plot US temp and prec times series on the same figure

par(mfrow=c(2,1))

par(mar=c(0,5,3,1)) #Zero space between (a) and (b)

Time <- 2001:2010

Tmean <- c(12.06, 11.78,11.81,11.72,12.02,12.36,12.03,11.27,11.33,11.66)

Prec <- c(737.11,737.87,774.95,844.55,764.03,757.43,741.17,793.50,820.42,796.80)

plot(Time,Tmean,type="o",col="red",xaxt="n", xlab="",ylab="Tmean [dec C]")

text(2006, 12,font=2,"US Annual Mean Temperature", cex=1.5)

text(2001.5,12.25,"(a)")

#Plot the panel on row 2

par(mar=c(3,5,0,1))

plot(Time, Prec,type="o",col="blue",xlab="Time",ylab="Prec [mm]")

text(2006, 800, font=2, "US Annual Total Precipitation", cex=1.5)

text(2001.5,840,"(b)")

After completing this figure, the R console may “remember” the setup. When

you plot the next figure expecting the default setup, R may still use the previous

setup. One can remove the R “memory” by

rm(list=ls())

plot.new()

A more flexible way to stack multiple panels together as a single figure is to

use the layout matrix. The following example has three panels on a 2-by-2 matrix

space. The first panel occupies the first row’s two positions. Panels 2 and 3 occupies

the second row’s two positions.

layout(matrix(c(1,1,2,3), 2, 2, byrow = TRUE),

widths=c(3,3), heights=c(2,2))

plot(sin,type="l", xlim=c(0,20))

plot(sin,xlim=c(0,10))

plot(sin,xlim=c(10,20))

This layout setup does not work for the plot function filled.contour described in

the next section, since it has already used a layout and overwrites any other layout.

3.2 Contour color maps

3.2.1 Basic principles for an R contour plot

The basic principles for an R contour plot are below.

(i) The main purpose of a contour plot is to show a 3D surface with contours or

filled contours, or simply a color map for a climate parameter;

(ii) (x, y, z) coordinates data or a function z = f(x, y) should be given; and

(iii) A color scheme should be defined, such as color.palette = heat.colors.

A few simple examples are below.

x <- y <- seq(-1, 1, len=25)

z <- matrix(rnorm(25*25),nrow=25)

contour(x,y,z, main="Contour Plot of Normal Random Values")

filled.contour(x,y,z, main="Filled Contour Plot of Normal Random Values")

filled.contour(x,y,z, color.palette = heat.colors)

filled.contour(x,y,z, color.palette = colorRampPalette(c("red", "white", "blue")))

3.2.2 Plot contour color maps for random values on a map

For climate applications, a contour plot is often overlaid on a geography map, such

as a world map or a map of country or a region. Our first example is to show a very

simple color plot over the world: plotting the standard normal random values on a

5◦ × 5◦ grid over the globe.

#Plot a 5-by-5 grid global map of standard normal random values

library(maps)

plot.new()

#Step 1: Generate a 5-by-5 grid (pole-to-pole, lon 0 to 355)

Lat<-seq(-90,90,length=37) #Must increasing

Lon<-seq(0,355,length=72) #Must increasing

#Generate the random values

mapdat<-matrix(rnorm(72*37),nrow=72)

#The matrix uses lon as row going and lat as column

#Each row includes data from south to north

#Define color

int=seq(-3,3,length.out=81)

rgb.palette=colorRampPalette(c(’black’,’purple’,’blue’,’white’,

’green’, ’yellow’,’pink’,’red’,’maroon’),

interpolate=’spline’)

#Plot the values on the world map

filled.contour(Lon, Lat, mapdat, color.palette=rgb.palette, levels=int,

plot.title=title(xlab="Longitude", ylab="Latitude",

main="Standard Normal Random Values on a World Map: 5 Lat-Lon Grid"),

plot.axes={ axis(1); axis(2);map(’world2’, add=TRUE);grid()}

)

#filled.contour() is a contour plot on an x-y grid.

#Background maps are added later in plot.axes={}

#axis(1) means ticks on the lower side

#axis(2) means ticks on the left side

#Save image with width=800, maintain aspect ratio

Similarly one can plot a regional map.

#Plot a 5-by-5 grid regional map to cover USA and Canada

Lat3<-seq(10,70,length=13)

tFig. 3.6
Color maps of standard normal random values 5◦ × 5◦ grid over the globe.

Lon3<-seq(230,295,length=14)

mapdat<-matrix(rnorm(13*14),nrow=14)

int=seq(-3,3,length.out=81)

rgb.palette=colorRampPalette(c(’black’,’purple’,’blue’,’white’,

’green’, ’yellow’,’pink’,’red’,’maroon’),

interpolate=’spline’)

filled.contour(Lon3, Lat3, mapdat, color.palette=rgb.palette, levels=int,

plot.title=title(main="Standard Normal Random Values on a World Map: 5-deg Lat-Lon Grid",

xlab="Lon", ylab="Lat"),

plot.axes={axis(1); axis(2);map(’world2’, add=TRUE);grid()})

3.2.3 Plot contour maps from climate model data in NetCDF
files

Here we show how to plot a downloaded netCDF NCEP/NCAR Reanalysis dataset

of surface air temperature.

https://www.esrl.noaa.gov/psd/data/gridded/data.ncep. reanalysis.derived.surface.html

The reanalysis data are generated by climate models that have “assimilated” (i.e.,

been constrained by) observed data. The reanalysis output is the complete space-

time gridded data. Reanalysis data in a sense is still model data, although some

scientists prefer to regard the reanalysis data as dynamically interpolated observa-

tional data because the assimilation of observational data has taken place. Gridded

observational data in this context may thus be the interpolated results from ob-

tFig. 3.7
Color maps of standard normal random values 5◦ × 5◦ grid over Canada and USA.

servational data which have been adjusted in a physically consistent way with the

assistance of climate models. The data assimilation system is a tool to accomplish

such a data adjustment process correctly.

3.2.3.1 Read .nc file

We first download the Reanalysis data, which gives a .nc data file: air.mon.mean.nc.

The R package ncdf can read the data into R.

#R plot of NCEP/NCAR Reanalysis PSD monthly temp data .nc file

#http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.

#reanalysis.derived.surface.html

rm(list=ls(all=TRUE))

setwd("/Users/sshen/Desktop/Papers/KarlTom/Recon2016/Test-with-Gregori-prec-data")

Download netCDF file

Library

install.packages("ncdf")

library(ncdf4)

4 dimensions: lon,lat,level,time

nc=ncdf4::nc_open("air.mon.mean.nc")

nc

ncdimlon$vals # output values 0.0->357.5

ncdimlat$vals #output values 90->-90

ncdimtime$vals

#ncdimtime$units

#ncdimlevel$vals

Lon <- ncvar_get(nc, "lon")

Lat1 <- ncvar_get(nc, "lat")

Time<- ncvar_get(nc, "time")

head(Time)

#[1] 65378 65409 65437 65468 65498 65529

library(chron)

month.day.year(1297320/24,c(month = 1, day = 1, year = 1800))

#1948-01-01

precnc<- ncvar_get(nc, "air")

dim(precnc)

#[1] 144 73 826, i.e., 826 months=1948-01 to 2016-10, 68 years 10 mons

#plot a 90S-90N precip along a meridional line at 160E over Pacific

plot(seq(-90,90,length=73),precnc[15,,1],

type="l", xlab="Lat", ylab="Temp [oC]",

main="90S-90N temperature [mm/day]

along a meridional line at 35E: Jan 1948",

lwd=3)

tFig. 3.8
The surface air temperature along a meridional line at 160◦E over the Pacific.

Here, our first example is to plot the temperature variation in the meridional

(i.e., north-south) direction from pole to pole, for a given longitude.

Next we plot the global color contour map showing the January temperature

climatology as the average of the January temperature from 1948 to 2015, plus the

surface air temperature of January 1983, and finally its anomaly calculated as the

difference defined as the January 1983 data minus the January climatology. The R

code is below, and the results are shown in Figs. 3.9 - 3.11 .

#Compute and plot climatology and standard deviation Jan 1948-Dec 2015

library(maps)

climmat=matrix(0,nrow=144,ncol=73)

sdmat=matrix(0,nrow=144,ncol=73)

Jmon<-12*seq(0,67,1)

for (i in 1:144){

for (j in 1:73) {climmat[i,j]=mean(precnc[i,j,Jmon]);

sdmat[i,j]=sd(precnc[i,j,])

}

}

mapmat=climmat

#Note that R requires coordinates increasing from south to north -90->90

#and from west to east from 0->360. We must arrange Lat and Lon this way.

#Correspondingly, we have to flip the data matrix left to right according to

#the data matrix precnc[i,j,]: 360 (i.e. 180W) lon and from North Pole

#and South Pole, then lon 178.75W, 176.75W, ..., 0E. This puts Greenwich

#at the center, China on the right, and USA on the left. However, our map should

#have the Pacific at the center, and USA on the right. Thus, we make a flip.

Lat=-Lat1

mapmat= mapmat[,length(mapmat[1,]):1]#Matrix flip around a column

#mapmat= t(apply(t(mapmat),2,rev))

int=seq(-50,50,length.out=81)

rgb.palette=colorRampPalette(c(’black’,’blue’,’darkgreen’,’green’,

’white’,’yellow’,’pink’,’red’,’maroon’),interpolate=’spline’)

filled.contour(Lon, Lat, mapmat, color.palette=rgb.palette, levels=int,

plot.title=title(main="NCEP RA 1948-2015 January climatology [deg C]",

xlab="Longitude",ylab="Latitude"),

plot.axes={axis(1); axis(2);map(’world2’, add=TRUE);grid()},

key.title=title(main="[oC]"))

#plot standard deviation

plot.new()

par(mgp=c(2,1,0))

par(mar=c(3,3,2,2))

mapmat= sdmat[,seq(length(sdmat[1,]),1)]

int=seq(0,20,length.out=81)

rgb.palette=colorRampPalette(c(’black’,’blue’, ’green’,’yellow’,’pink’,’red’,’maroon’),

interpolate=’spline’)

filled.contour(Lon, Lat, mapmat, color.palette=rgb.palette, levels=int,

plot.title=title(main="NCEP 1948-2015 Jan SAT RA Standard Deviation [deg C]",

xlab="Longitude", ylab="Latitude"),

plot.axes={axis(1); axis(2);map(’world2’, add=TRUE);grid()},

key.title=title(main="[oC]"))

tFig. 3.9
NCEP Reanalysis January climatology (upper panel) computed as the January

temperature mean from 1948-2015. Lower panel shows the standard deviation of the

same 1948-2015 January temperature data.

3.2.3.2 Plot data for displaying climate features

The next figure is the January 1983 temperature. The 1982-83 winter is noteworthy

because of a strong El Niño event. However, the full temperature field depicted in

Fig. 3.10 cannot show the El Niño feature: the warming of the eastern tropical

Pacific. This is due to that the full temperature field is dominated by its annual

cycle: hot in the equatorial area and cold in the polar areas. El Niño is a phenomenon

of climate anomalies: the temperature over the eastern tropical Pacific is warmer

than normal, sometimes by as much as 6◦C.

#Plot the January 1983 temperature using the above setup

mapmat83J=precnc[,,421]

mapmat83J= mapmat83J[,length(mapmat83J[1,]):1]

int=seq(-50,50,length.out=81)

rgb.palette=colorRampPalette(c(’black’,’blue’,’darkgreen’,

’green’, ’white’,’yellow’,’pink’,’red’,’maroon’),interpolate=’spline’)

filled.contour(Lon, Lat, mapmat83J, color.palette=rgb.palette, levels=int,

plot.title=title(main="January 1983 surface air temperature [deg C]",

xlab="Longitude",ylab="Latitude"),

plot.axes={axis(1); axis(2);map(’world2’, add=TRUE);grid()},

key.title=title(main="[oC]"))

tFig. 3.10
NCEP Reanalysis temperature of January 1983: an El Niño event.

To see the El Niño, we compute the temperature anomaly, which is the January

1983 temperature minus the January climatology. A large tongue-shaped region over

the eastern tropical Pacific appears with temperatures up to almost 6◦C warmer

than the climatological average temperatures (Fig. 3.11). This is the typical El Niño

signal.

#Plot the January 1983 temperature anomaly from NCEP data

plot.new()

anomat=precnc[,,421]-climmat

anomat=pmin(anomat,6)

anomat=pmax(anomat,-6)

anomat= anomat[,seq(length(anomat[1,]),1)]

int=seq(-6,6,length.out=81)

rgb.palette=colorRampPalette(c(’black’,’blue’,’darkgreen’,’green’,

’white’,’yellow’,’pink’,’red’,’maroon’),interpolate=’spline’)

filled.contour(Lon, Lat, anomat, color.palette=rgb.palette, levels=int,

plot.title=title(main="January 1983 surface air temperature anomaly [deg C]",

xlab="Longitude",ylab="Latitude"),

plot.axes={axis(1); axis(2);map(’world2’, add=TRUE);grid()},

key.title=title(main="[oC]"))

tFig. 3.11
NCEP Reanalysis temperature anomaly of January 1983, showing the eastern tropical

Pacific’s El Niño warming tongue.

Sometimes one needs to zoom in to a given latitude-longitude box of the above

maps, in order to see the detailed spatial climate pattern over the region. For

example, Fig.3.12 shows the January 1983 SAT anomalies over Pacific and North

America. The El Niño pattern over the Pacific and El Niño’s influence over North

America are much more clear than in the global map shown in Fig. 3.11.

The top panel for the Pacific region in Fig. 3.12 may be generated by the following

code, which is a minor change from the global map generation: specifying the xlmin

and ylim to the desired region Pacific region (100E, 60W) and (50S,50N).

#Zoom in to a specific lat-lon region: Pacific

int=seq(-6,6,length.out=81)

rgb.palette=colorRampPalette(c(’black’,’blue’,’darkgreen’,’green’,

’white’,’yellow’,’pink’,’red’,’maroon’), interpolate=’spline’)

filled.contour(Lon, Lat, mapdiff,

xlim=c(100,300),ylim=c(-50,50),zlim=c(-6,6),

color.palette=rgb.palette, levels=int,

plot.title=title(

main="January 1983 surface air temperature anomaly [deg C]",

xlab="Longitude",ylab="Latitude"),

plot.axes={axis(1); axis(2);map(’world2’, add=TRUE);grid()},

key.title=title(main="[oC]"))

The bottom panel for the Northern American region can be generated in a similar

way by changing the xlim and ylim: (130W, 60W) and (20N,60N).

tFig. 3.12
NCEP Reanalysis temperature anomaly of January 1983: the Pacific region (the top

panel), and the North America region (the bottom panel).

3.3 Plot wind velocity field on a map

3.3.1 Plot a wind field using arrow.plot

To describe the use of arrow.plot, we use the ideal geostrophic wind field as an

example to plot a vector field on a map (see Fig.3.13). The geostrophic wind field is

a result of the balance between the pressure gradient force (PGF) and the Coriolis

force (CF).

Figure 3.13 can be generated by the following R code.

#Wind directions due to the balance between PGF and Coriolis force

#using an arrow plot for vector fields on a map

library(fields)

library(maps)

library(mapproj)

lat<-rep(seq(-75,75,len=6),12)

165W 105W 45W 15E 75E 135E

75S

45S

15S

15N

45N

75N

Intertropical Convergence Zone (ITCZ)

Subtropical High

Subtropical High

Polar High

tFig. 3.13
Vector field of the ideal geostrophic wind field.

lon<-rep(seq(-165,165,len=12),each=6)

x<-lon

y<-lat

#u<- rep(c(-1,1,-1,-1,1,-1), each=12)

#v<- rep(c(1,-1,1,-1,1,-1), each=12)

u<- rep(c(-1,1,-1,-1,1,-1), 12)

v<- rep(c(1,-1,1,-1,1,-1), 12)

wmap<-map(database="world", boundary=TRUE, interior=TRUE)

grid(nx=12,ny=6)

#map.grid(wmap,col=3,nx=12,ny=6,label=TRUE,lty=2)

points(lon, lat,pch=16,cex=0.8)

arrow.plot(lon,lat,u,v, arrow.ex=.08, length=.08, col=’blue’, lwd=2)

box()

axis(1, at=seq(-165,135,60), lab=c("165W","105W","45W","15E","75E","135E"),

col.axis="black",tck = -0.05, las=1, line=-0.9,lwd=0)

axis(1, at=seq(-165,135,60),

col.axis="black",tck = 0.05, las=1, labels = NA)

axis(2, at=seq(-75,75,30),lab=c("75S","45S","15S","15N","45N","75N"),

col.axis="black", tck = -0.05, las=2, line=-0.9,lwd=0)

axis(2, at=seq(-75,75,30),

col.axis="black", tck = 0.05, las=1, labels = NA)

text(30, 0, "Intertropical Convergence Zone (ITCZ)", col="red")

text(75, 30, "Subtropical High", col="red")

text(75, -30, "Subtropical High", col="red")

mtext(side=3, "Polar High", col="red", line=0.0)

3.3.2 Plot a sea wind field from netCDF data

This sub-section uses vectorplot in rasterVis to plot the wind velocity field (i.e.,

the surface wind data over the global ocean) is used as an example. The procedure

is described from the data download to the final product of a wind field. The NOAA

wind data were generated from multiple satellites observations, such as QuikSCAT,

SSMIs, TMI, and AMSR-E , on a global at 1/4◦× 1/4◦ grid with a time resolution

of 6 hours.

Longitude

L
a

ti
tu

d
e

50°S

0°

50°N

100°E 160°W 60°W
0

2

4

6

8

10

tFig. 3.14
The NOAA sea wind field of 1 January 1995: UTC00Z at 1/4◦ × 1/4◦ resolution.

#Plot the wind field over the ocean

#Ref: https://rpubs.com/alobo/vectorplot

#Agustin.Lobo@ictja.csic.es

#20140428

library(ncdf4)

library(chron)

library(RColorBrewer)

library(lattice)

download.file("ftp://eclipse.ncdc.noaa.gov/pub/seawinds/SI/uv/clm/uvclm95to05.nc",

"uvclm95to05.nc", method = "curl")

mincwind <- nc_open("uvclm95to05.nc")

dim(mincwind)

#print.nc(mincwind)

u <- ncvar_get(mincwind, "u")

class(u)

dim(u)

v <- ncvar_get(mincwind, "v")

class(v)

dim(v)

u9 <- raster(t(u[, , 9])[ncol(u):1,])

v9 <- raster(t(v[, , 9])[ncol(v):1,])

filled.contour(u[, , 9])

filled.contour(u[, , 9],color.palette = heat.colors)

filled.contour(u[, , 9],color.palette = colorRampPalette(c("red", "white", "blue")))

contourplot(u[, , 9])

install.packages("raster")

library(raster)

library(sp)

library(rgdal)

u9 <- raster(t(u[, , 9])[ncol(u):1,])

v9 <- raster(t(v[, , 9])[ncol(v):1,])

w <- brick(u9, v9)

wlon <- ncvar_get(mincwind, "lon")

wlat <- ncvar_get(mincwind, "lat")

range(wlon)

range(wlat)

projection(w) <- CRS("+init=epsg:4326")

extent(w) <- c(min(wlon), max(wlon), min(wlat), max(wlat))

w

plot(w[[1]])

plot(w[[2]])

install.packages("rasterVis")

install.packages("latticeExtra")

library(latticeEtra)

library(rasterVis)

vectorplot(w * 10, isField = "dXY", region = FALSE, margin = FALSE, narrows = 10000)

slope <- sqrt(w[[1]]^2 + w[[2]]^2)

aspect <- atan2(w[[1]], w[[2]])

vectorplot(w * 10, isField = "dXY", region = slope,

margin = FALSE,

par.settings=BuRdTheme,

narrows = 10000, at = 0:10)

vectorplot(stack(slope * 10, aspect), isField = TRUE, region = FALSE, margin = FALSE)

Also see the following websites for more vector field plots https://www.r-bloggers.com/vectorplot-in-rastervis/

https://rpubs.com/alobo/vectorplot

3.4 ggplot for data

ggplot is a data-oriented R plot tool developed by Hadley Wickham based on

Leland Wilkinsons landmark 1999 book entitled “The Grammar of Graphics” (gg).

ggplot can generally produce graphic-artist-quality default output and can make

plotting complicated data easy with a relatively simple code. For example, ggplot

can save plots as objects, which allows superposition of different layers in a figure

and hence enables one to see the evolution of a figure from an initial framework

to the final product. The ggplot2 library was built on a logical mapping between

data and graphical elements and includes many maps and datasets that are useful

in climate science.

However, ggplot syntax is not the same as the conventional R plot. There is a

learning curve.

A simple example is given here for plotting the contiguous “lower 48” states of

the United States shown in Fig. 3.15. The figure may be generated by the following

ggplot code.

#ggplot for USA States

library(ggplot2)

states <- map_data("state")

p<- ggplot(data = states) +

geom_polygon(aes(x = long, y = lat, fill = region, group = group),

color = "white") +

coord_fixed(1.3)

#guides(fill=TRUE) # This leaves off the color legend on the right

p<- p + xlab("Longitude")+ ylab("Latitude")

p<- p + ggtitle("Color Map of the 48 Lower States")

p

Although some R users strongly advocate the use of ggplot, a non-expert in R

may remain with the regular R codes to produce plots that might be sufficient

for his or her applications. However, ggplot is always a good resource if a figure

cannot be generated by the usual R plot. Many good ggplot tutorial materials and

examples are online and can be easily found with a search engine such as Google.

57 ggplot for data

tFig. 3.15
“Lower 48” contiguous states of the United States.

References

[1] GeoR http://geog.uoregon.edu/GeogR/index.html

: This is a “Geographic Data Analysis Using R Maps in R” writ-

ten by Pat Bartlein of the University of Oregon for a geographic

data analysis course in 2016. For map plotting examples, visit

http://geog.uoregon.edu/GeogR/topics/maps01.html

http://geog.uoregon.edu/GeogR/topics/maps02.html

http://geog.uoregon.edu/GeogR/topics/maps03.html

[2] Introduction to R Graphics with ggplot2

http://tutorials.iq.harvard.edu/R/Rgraphics/Rgraphics.html: This is

a good ggplot2 tutorial, starting from the beginning and ending with relatively

complex plots.

Exercises

3.1 Use R to plot the temperature and precipitation anomaly time series from the

NCEP Reanalysis data for the grid boxes of Tahiti and Darwin. Put the four

time series on the same figure, and explain the their behaviors during the El

Niño and La Niña periods.

3.2 Use R and NCEP Reanalysis data to display the El Niño temperature anomaly

for January 2016. Find the latitude and longitude of the grid box on which

the maximum temperature anomaly of the month occurred? What is the max-

imum anomaly?

3.3 Use R to compute the 1971-2000 climatology from the NCEP Reanalysis’

annual mean temperature data for each grid box. Plot the climatology map.

3.4 Use R to compute the 1948-2010 standard deviation from the NCEP Re-

analysis’ annual mean temperature data for each grid box. Plot the standard

deviation map.

3.5 Use R to plot the map of the North America and use arrows to indicate the

Alaska Jet Stream.

58

4
Advanced R Analysis and Plotting

for Climate Data

The empirical orthogonal function (EOF) method is a commonly used tool for

climate data analysis in modern days. EOFs show spatial patterns of climate data,

such as the El Niño warm anomaly pattern of the eastern Tropical Pacific. The

corresponding temporal patterns are called principal components (PC). Thus, the

EOF analysis is also called the PC analysis. We describe the EOFs and PCs as a

natural space-time decomposition of a space-time data matrix using the singular

value decomposition (SVD) method and a simple R command svd(datamatrix).

This is different from traditional approach of an eigenvalue problem of a covariance

matrix. This chapter provides recipe-like R codes and their explanations for EOF

and PC calculations. It also describes temporal trend calculations of climate data

and the trend influences on the first a few EOFs.

4.1 Ideas of EOF, PC and variances from SVD

SVD described in Chapter 5 decomposes a space-time climate data matrix A into

three parts: spatial patterns U , temporal patterns V , and energy D, i.e.,

A = UDV t. (4.1)

Both U and V are orthogonal matrices, meaning that each column has length

equal to one and is orthogonal to a different column vector. The first column of

U determines the spatial pattern of mode 1. The pattern is called an empirical

orthogonal function (EOF), and the method was introduced into meteorology in

the 1950s by Edward Lorenz, who is well known for his contributions to theoretical

meteorology, the theories of chaos, and the “butterfly effect.” The corresponding

first column of V determines the temporal pattern, which is called a principal

component (PC). For example, for the SLP data of Darwin and Tahiti analyzed in

Chapter 5, the EOFs are the SLP patterns at the two locations, and the PCs are

the time series. EOF1 shows that Darwin and Tahiti have opposite SLP anomalies.

When Darwin’s SLP anomaly is positive and Tahiti’s negative, it is an El Niño.

The corresponding PC1’s positive peaks shows the time when El Niño actually

happened. PC1’s negative peaks indicates the time of La Niña.

EOF1 and PC1 are both referred to mode 1 and has “energy”: 31.352, which is the

variance of Au1, i.e., the data’s projection onto the first EOF pattern. The variance

of a mode relative to the total variance is a more useful piece of information. In

59

Darwin-Tahiti SLP case, the relative variance of EOF1 is

d2
1

d2
1 + d2

2

=
31.352

31.352 + 22.252
= 67%. (4.2)

EOF1 thus accounts 2/3 of the total variance. EOF2’s variance relative to the total

variance is thus 33%, or 1/3.

The elements of U and V are dimensionless and consist of othonormal vectors.

The dimension of di(i = 1, 2) is the same as that of the elements of the data matrix

A, and measures the “amplitude” that is proportional to the system’s variance

or “energy.” The dimension of d2
1 is the square of the dimension of A, i.e., the

dimension of the variance. Variance is a measure of “energy” of the El Niño Southern

Oscillation system.

4.2 2Dim spatial domain EOFs and 1Dim temporal
PCs

The spatial fields of many climate data applications are two-dimensional, or 2Dim

for short. The corresponding EOFs are over a 2Dim domain on the Earth’s surface,

and the corresponding PCs are on a time interval. This section describes the basic

concepts of using SVD to compute EOFs and PCs and using R graphics to show

them. We use a simple synthetic data set to illustrate the procedures. The next

section will feature using real climate data.

4.2.1 Generate synthetic data by R

The spatial domain is Ω = [0, 2π]× [0, 2π], and the time interval is T = [1, 10]. The

synthetic data are generated by the following function

z(x, y, t) = c1(t)ψ1(x, y) + c2(t)ψ2(x, y), (4.3)

where ψ1(x, y) and ψ1(x, y) are two orthonormal basis functions given below

ψ1(x, y) = (1/π) sinx sin y, (4.4)

ψ2(x, y) = (1/π) sin(8x) sin(8y), (4.5)

with ∫
Ω

dΩψ2
k(x, y) = 1, k = 1, 2 (4.6)∫

Ω

dΩψ1(x, y)ψ2(x, y) = 0 (4.7)

The corresponding basis’ expansion coefficients are

c1(t) = sin(t), (4.8)

c2(t) = exp(−0.3t). (4.9)

These are not orthogonal. Thus, the generating function for z(x, y, t) in eq. (4.3) is

not an SVD decomposition.

The spatial domain Ω is divided into a 100×100 grid. The time grid is 1, 2, · · · , 10.

There are 10,000 spatial grid points (100 × 100 = 10, 000) and 10 temporal grid

points. The space-time data may be generated by the following R commands.

x<-seq(0, 2*pi, len=100)

y<-seq(0, 2*pi, len=100)

#t<-seq(1,20,by=1)

mydat<-array(0,dim=c(100,100,10))

for(t in 1:10){z<-function(x,y){z=sin(t)*(1/pi)*sin(x)*sin(y)

+exp(-0.3*t)*(1/pi)*sin(8*x)*sin(8*y)}

mydat[,,t]=outer(x,y,z)}

The z(x, y, t) is a superposition of a large-scale spatial wave ψ1(x, y) (see Fig. 4.2)

with a small-scale wave ψ2(x, y). The first wave’s coefficient c1(t) varies periodically,

while the second wave’s coefficient c2(t) decays exponentially. Thus, for a large value

of time t, the z pattern will be dominated by the large-scale spatial wave ψ1(x, y).

Figure 4.1 shows the z(x, y, 1) and z(x, y, 10). When time is 1, the figure shows the

superposition of a large-scale wave and a small-scale wave. When the time is 10, the

figure shows only the large scale wave, and the small-scale’s influence is negligible.

tFig. 4.1
The z(x, y, t) function as t = 1 and t = 10.

This figure can be generated by the following filled.contour command for a

matrix data.

#Plot the original z(x,y,t) waves for a given t

filled.contour(x,y,mydat[,,1], color.palette =rainbow,

plot.title=title(main="Orignal field at t=10",

xlab="x", ylab="y", cex.lab=1.0),

key.title = title(main = "Scale"),

plot.axes = {axis(1,seq(0,3*pi, by = 1), cex=1.0)

axis(2,seq(0, 2*pi, by = 1), cex=1.0)}

)

4.2.2 SVD for the synthetic data: EOFs, variances and PCs

We first convert the synthetic data matrix into a 1000× 10 dimensional space-time

data. Then SVD can be applied to the space-time data to generate EOFs, variances

and PCs.

The following code coverts the 3Dim array mydat(,,,) into a 2Dim space-time

data matrix da1.

da1<- matrix(0,nrow=length(x)*length(y),ncol=10)

for (i in 1:10) {da1[,i]=c(t(mydat[,,i]))}

Applying SVD on this space-time data is shown below.

da2<-svd(da1)

uda2<-da2$u

vda2<-da2$v

dda2<-da2$d

dda2

#[1] 3.589047e+01 1.596154e+01 7.764115e-14 6.081008e-14

#The first mode variance 36/(36+16)= 69%

The EOFs shown in Fig. 4.2 can be plotted by the following R code.

par(mgp=c(2,1,0))

filled.contour(x,y,matrix(-uda2[,1],nrow=100), color.palette =rainbow,

plot.title=title(main="SVD Mode 1: EOF1", xlab="x", ylab="y", cex.lab=1.0),

key.title = title(main = "Scale"),

plot.axes = {axis(1,seq(0,2*pi, by = 1), cex=1.0)

axis(2,seq(0, 2*pi, by = 1), cex=1.0)})

Figure 4.2 shows that the EOF patterns from SVD are similar to the original

orthonormal basis ψ1(x, y) and ψ2(x, y). This means that SVD has recovered the

original orthonormal basis functions. However, this is not always true, when the

variances of the two modes are close to each other. These two SVD eigenvalues will

then be close to each other. Consequently, the EOFs, as eigenfunctions, will have

large differences from the original true orthonormal basis functions. This is quan-

tified by the North’s rule-of-thumb, which states that both EOFs will have large

errors, which are inversely proportional to the difference between the two eigenval-

ues. Thus, when the two eigenvalues have a small difference, the two corresponding

eigenfunctions will have large errors due to mode mixing. In linear algebra terms,

this means that when two eigenvalues are close to each other, the corresponding

eigenspaces tend to be close to each other. They form a 2-dimensional eigenspace,

which has infinitely many eigenvectors due to the mixture of the two eigenvectors.

A physically meaningful eigenvector should have no ambiguity, and infinitely many

eigenvectors imply uncertainties, large errors, and no physical interpretation.

tFig. 4.2
The first row shows two EOFs from SVD, and the second row shows two orthonormal

basis functions on the xy-domain: φ1(x, y) = −(1/π) sinx sin y, and

φ2(x, y) = (1/π) sin 8x sin 8y.

The original orthonormal basis functions can be plotted by the following R codes.

#Accurate spatial patterns from functions that generate data

z1 <- function(x,y){(1/pi)*sin(x)*sin(y)}

z2 <- function(x,y){(1/pi)*sin(5*x)*sin(5*y)}

fcn1<-outer(x,y,z1)

fcn2<-outer(x,y,z2)

par(mgp=c(2,1,0))

filled.contour(x,y,fcn1, color.palette =rainbow,

plot.title=title(main="Accurate Mode 1",

xlab="x", ylab="y", cex.lab=1.0),

key.title = title(main = "Scale"),

plot.axes = {axis(1,seq(0,3*pi, by = 1), cex=1.0)

axis(2,seq(0, 2*pi, by = 1), cex=1.0)}

)

The first two principal components (PCs) are shown in Fig. 4.3, which can be

generated by the following code.

#Plot PCs and coefficients of the functional patterns

t=1:10

plot(1:10, vda2[,1],type="o", ylim=c(-1,1), lwd=2,

ylab="PC or Coefficient", xlab="Time",

main="SVD PCs vs. Accurate Temporal Coefficients")

legend(0.5,1.15, lty=1, legend=c("PC1: 69% variance"),

bty="n",col=c("black"))

lines(1:10, vda2[,2],type="o", col="red", lwd=2)

legend(0.5,1.0, lty=1, legend=c("PC2: 31% varance"),

col="red", bty="n",text.col=c("red"))

lines(t, -sin(t), col="blue", type="o")

legend(0.5,0.85, lty=1, legend=c("Mode 1 coefficient: 80% variance"),

col="blue", bty="n",text.col="blue")

lines(t, -exp(-0.3*t), type="o",col="purple")

legend(0.5,0.70, lty=1, legend=c("Mode 2 coefficient: 20% variance"),

col="purple", bty="n",text.col="purple")

tFig. 4.3
Two principal components (PCs) from SVD approximation and two accurate time

coefficients: − sin t and exp(−0.3t).

PC1 demonstrates sinusoidal oscillation, while PC2 shows a wavy increase. These

two temporal patterns are similar to the original time coefficients − sin(t) and

− exp(−0.3t). Here, the negative signs are added to make the EOF patterns have

the same sign as the original basis functions, because the EOFs are determined up

to the sign, i. e., the plus or minus sign is indeterminate.

PC1 and PC2 are orthogonal, but coefficients c1(t) and c2(t) are not orthogonal.

This can be verified by the following code.

#Verify orthogonality of PCs

t(vda2[,1])%*%vda2[,2]

[1,] -5.551115e-17

t=1:10

t(-sin(t))%*%(-exp(-0.3*t))

#[1,] 0.8625048

The SVD theory tells us that the original data can be recovered from the EOFs,

PCs and the variances by the following formula

z = UDV ′. (4.10)

Because the eigenvalues for this problem, except the first two, are close to be zero,

we can have an accurate reconstruction by using the first two EOFs, PCs and

their corresponding eigenvalues. The R code for both 2-mode approximation and

all-mode recovery is below.

B<-uda2[,1:2]%*%diag(dda2)[1:2,1:2]%*%t(vda2[,1:2])

B1<-uda2%*%diag(dda2)%*%t(vda2)

The left panel of Fig. 4.2.2 shows the recovered z at time t = 5 using only two

EOF modes, and can be plotted by the following R code.

plot.new()

filled.contour(x,y,matrix(B[,5],nrow=100), color.palette =rainbow,

plot.title=title(main="2-mode SVD reconstructed field t=5",

xlab="x", ylab="y", cex.lab=1.0),

key.title = title(main = "Scale"),

plot.axes = {axis(1,seq(0,3*pi, by = 1), cex=1.0)

axis(2,seq(0, 2*pi, by = 1), cex=1.0)})

The full recovery or the original field at time t = 5, shown in the right panel

of Fig. 4.2.2, is virtually identical to the 2-mode approximation. The difference is

less than 10−10 at any given points. This high level of accuracy may not always be

achieved even with the full recovery UDV t when high spatial variability appears.

To be specific, the full recovery UDV t may have non-negligible numerical digits

truncation errors (single precision or double precision), which can cause large errors

in the recovery results, when the high spatial variability is involved.

−0.4

−0.2

0.0

0.2

0.4

Scale

0 1 2 3 4 5 6

0

1

2

3

4

5

6

2−mode SVD reconstructed field t=5

x

y

−0.4

−0.2

0.0

0.2

0.4

Scale

0 1 2 3 4 5 6

0

1

2

3

4

5

6

All−mode SVD reconstructed field t=5

x

y

tFig. 4.4
Recovery of the original data using two modes (the left panel) and using all modes

(the right panel).

4.3 From climate data download to EOF and PC
visualization

This section presents an example of computing EOFs and PCs from a netCDF file

downloaded from the Internet. In climate research and teaching, data from netCDF

files are often encountered. We shall download the data and make an EOF analysis.

The example is the surface temperature data from the NCEP/NCAR Reanalysis I,

which outputs the 2.5 degree monthly data from January 1948 to the present. We

choose the most frequently used surface air temperature (SAT) field.

4.3.1 Download and visualize the NCEP temperature data

We downloaded the monthly surface air temperature (SAT) data from

https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.surface.html.

The datafile is called air.month.mean.nc, and its size is 26MB for the data ex-

tending from January 1948 to October 2016. The spatial resolution is a 2.5-degree

latitude-longitude (lat-lon) grid.

Download netCDF file

Library

install.packages("ncdf")

library(ncdf4)

4 dimensions: lon,lat,level,time

nc=ncdf4::nc_open("/Users/sshen/Desktop/Papers/KarlTom/

Recon2016/Test-with-Gregori-prec-data/air.mon.mean.nc")

nc

ncdimlon$vals #output lon values 0.0->357.5

ncdimlat$vals #output lat values 90->-90

ncdimtime$vals #output time values in GMT hours: 1297320, 1298064

ncdimtime$units

#[1] "hours since 1800-01-01 00:00:0.0"

#ncdimlevel$vals

Lon <- ncvar_get(nc, "lon")

Lat1 <- ncvar_get(nc, "lat")

Time<- ncvar_get(nc, "time")

#Time is the same as ncdimtime$vals

head(Time)

#[1] 1297320 1298064 1298760 1299504 1300224 1300968

library(chron)

Tymd<-month.day.year(Time[1]/24,c(month = 1, day = 1, year = 1800))

#c(month = 1, day = 1, year = 1800) is the reference time

Tymd

#$month

#[1] 1

#$day

#[1] 1

#$year

#[1] 1948

#1948-01-01

precnc<- ncvar_get(nc, "air")

dim(precnc)

#[1] 144 73 826, i.e., 826 months=1948-01 to 2016-10, 68 years 10 mons

To check whether our downloaded data appear to be reasonable, we plot the first

month’s temperature data at longitude 180◦E from the South Pole to the North

Pole (see Fig. 4.5). The figure shows a reasonable temperature distribution: a high

temperature nearly 30◦C over the tropics, a lower temperature below -30◦C over the

Antarctic region at the left, and between -20◦C and -10◦C over the Arctic region at

the right. We are thus reasonably confident that our downloaded data are correct

and that the data values correctly correspond to their assigned positions on the

latitude-longitude grid.

Figure ?? may be generated by the following R code:

#plot a 90S-90N temp along a meridional line at 180E

plot(seq(-90,90,length=73),precnc[72,,1], type="o",

xlab="Latitude", ylab="Temperature [oC]",

main="90S-90N temperature [mm/day] along a meridional line at 180E: Jan 1948")

tFig. 4.5
The north-south distribution of SAT along the meridional line at 180◦E for January

1948.

4.3.2 Space-time data matrix and SVD

4.3.2.1 Reformat the data into a space-time data matrix

We convert the downloaded nc file into a space-time matrix and write it into a csv

file which is easy for users first to read the data and then to use it their computer

programs. The R code for this procedure is below.

#Write the data as space-time matrix with a header

precst=matrix(0,nrow=10512,ncol=826)

temp=as.vector(precnc[,,1])

head(temp)

for (i in 1:826) {precst[,i]=as.vector(precnc[, , i])}

dim(precst)

#[1] 10512 826

#Build lat and lon for 10512 spatial positions usig rep

LAT=rep(Lat, 144)

LON=rep(Lon[1],73)

for (i in 2:144){LON=c(LON,rep(Lon[i],73))}

gpcpst=cbind(LAT, LON, precst)

dim(gpcpst)

#[1] 10512 828

#The first two columns are lat and lon. 826 mons: 1948.01-2016.10

#Convert the Julian day and hour into calendar mons for time

tm=month.day.year(Time/24, c(month = 1, day = 1, year = 1800))

tm1=paste(tm$year,"-",tm$month)

#tm1=data.frame(tm1)

tm2=c("Lat","Lon",tm1)

colnames(gpcpst) <- tm2

setwd("/Users/sshen/Desktop/MyDocs/teach/

SIOC290-ClimateMath2016/Rcodes/Ch12-RGraphics")

#setwd routes the desired csv file to a given directory

write.csv(gpcpst,file="ncepJan1948_Oct2016.csv")

The resulting csv file’s first column is latitude, the second is longitude, and the

first row is the time mark for each month from January 1948 to October 2016. The

csv file can be read and then used by Excel, R, Matlab, Python, and almost all

other commonly encountered computer programs.

4.3.2.2 Climatology and standard deviation

Here we show a different way to compute the climatology and standard deviation,

which were already described in the last chapter. The method described here is to

use the space-time data matrix. With this matrix, computing the climatology and

standard deviation becomes very easy. Graphically showing the spatial distribution

of climatology and standard deviation (see Fig.3.9) can further verify the correctness

of the downloaded data, such as the cold temperature over the Himalayas and

Tibetan Plateau regions of Asia, and the Andes region of South America. These

regions are at relatively low latitudes but they experience very low temperatures

due to their high altitudes, which may be 4,000 or more meters.

The R code for computing the January climatology and standard deviation is

below.

monJ=seq(1,816,12)

gpcpdat=gpcpst[,3:818]

gpcpJ=gpcpdat[,monJ]

climJ<-rowMeans(gpcpJ)

library(matrixStats)# rowSds command is in the matrixStats package

sdJ<-rowSds(gpcpJ)

The climatology and standard deviation are shown in Fig.3.9, which can be gen-

erated by the following R code.

#Plot Jan climatology

Lat=-Lat1

mapmat=matrix(climJ,nrow=144)

mapmat= mapmat[,seq(length(mapmat[1,]),1)]

plot.new()

int=seq(-50,50,length.out=81)

rgb.palette=colorRampPalette(c(’black’,’blue’, ’darkgreen’,’green’,

’white’,’yellow’,’pink’,’red’,’maroon’),interpolate=’spline’)

filled.contour(Lon, Lat, mapmat, color.palette=rgb.palette, levels=int,

plot.title=title(main="NCEP Jan SAT RA 1948-2015 climatology [deg C]"),

plot.axes={axis(1); axis(2);map(’world2’, add=TRUE);grid()},

key.title=title(main="[oC]"))

#---------------------

#Plot Jan Standard Deviation

Lat=-Lat1

mapmat=matrix(sdJ,nrow=144)

mapmat= mapmat[,seq(length(mapmat[1,]),1)]

plot.new()

int=seq(0,3,length.out=81)

rgb.palette=colorRampPalette(c(’black’,’blue’, ’green’,

’yellow’,’pink’,’red’,’maroon’),interpolate=’spline’)

filled.contour(Lon, Lat, mapmat, color.palette=rgb.palette, levels=int,

plot.title=title(main="NCEP Jan SAT RA 1948-2015 Standard Deviation [deg C]"),

plot.axes={axis(1); axis(2);map(’world2’, add=TRUE);grid()},

key.title=title(main="[oC]"))

The very large standard deviation, more than 5◦C over the high latitude Northern

Hemisphere shown in Fig.3.9 may be artificially amplified by the climate model

employed to carry out the NCEP/NCAR reanalysis. This error may be due to the

models handling of a physically complex phenomenon, namely the sea ice and albedo

feedback. The actually standard deviation might thus be smaller over the same

region. This type of error highlights a caution that should be kept in mind when

using reanalysis datasets. Combining a complex climate model with observational

data can improve the realism of data sets, but it can also introduce a type of error

that could not exist if no model were used.

4.3.2.3 Plot EOFs, PCs, and variances

The EOFs, PCs, and variances for a month can be easily calculated by SVD for the

space-time data matrix for the given month, by the following R code:

#Compute the Jan EOFs

monJ=seq(1,816,12)

gpcpdat=gpcpst[,3:818]

gpcpJ=gpcpdat[,monJ]

climJ<-rowMeans(gpcpJ)

library(matrixStats)

sdJ<-rowSds(gpcpJ)

anomJ=(gpcpdat[,monJ]-climJ)/sdJ #standardized anomalies

anomAW=sqrt(cos(gpcpst[,1]*pi/180))*anomJ #Area weighted anormalies

svdJ=svd(anomAW) #execute SVD

The eigenvalues of a covariance matrix are variances, and the SVD eigenvalues

from a data matrix correspond to standard deviations. Climate science often uses

variance for measuring a signal strength that may be attributed to a particular

mode or modes. Further, what is often most important is the relative variance, i.e.,

the percentage of the variance attributable to a specific mode, relative to the sum

of the variances in all the modes. We thus plot the percentage of the square of

each SVD eigenvalue, and the cumulative percentage from the first mode to the

last mode. See Fig. 4.6 for the plot. This figure can be plotted by the following R

code.

tFig. 4.6
Percentage variance, and the cumulative variance of the covariance matrix of the

January SAT from 1948-2015.

#plot eigenvalues

par(mar=c(3,4,2,4))

plot(100*(svdJ$d)^2/sum((svdJ$d)^2), type="o", ylab="Percentage of variance [%]",

xlab="Mode number", main="Eigenvalues of covariance matrix")

legend(20,5, col=c("black"),lty=1,lwd=2.0,

legend=c("Percentange variance"),bty="n",

text.font=2,cex=1.0, text.col="black")

par(new=TRUE)

plot(cumsum(100*(svdJ$d)^2/sum((svdJ$d)^2)),type="o",

col="blue",lwd=1.5,axes=FALSE,xlab="",ylab="")

legend(20,50, col=c("blue"),lty=1,lwd=2.0,

legend=c("Cumulative variance"),bty="n",

text.font=2,cex=1.0, text.col="blue")

axis(4)

mtext("Cumulative variance [%]",side=4,line=2)

The EOFs are from the column vectors of the SVD’s U matrix and the PCs are

the SVD’s V columns. The first three EOFs and PCs are shown in Figs. 4.7-4.9,

which may be generated by the following R code.

tFig. 4.7
The first EOF and PCs= from the January SAT’s standardized area-weighted

anomalies.

#plot EOF1: The physical EOF= eigenvector divided by area factor

mapmat=matrix(svdJ$u[,1]/sqrt(cos(gpcpst[,1]*pi/180)),nrow=144)

rgb.palette=colorRampPalette(c(’blue’,’green’,’white’,

’yellow’,’red’),interpolate=’spline’)

int=seq(-0.04,0.04,length.out=61)

mapmat=mapmat[, seq(length(mapmat[1,]),1)]

filled.contour(Lon, Lat, -mapmat, color.palette=rgb.palette, levels=int,

plot.title=title(main="January EOF1 from 1948-2016 NCEP Temp Data"),

plot.axes={axis(1); axis(2);map(’world2’, add=TRUE);grid()},

key.title=title(main="Scale"))

#

tFig. 4.8
The second EOF and PCs= from the January SAT’s standardized area-weighted

anomalies.

#plot PC1

pcdat<-svdJ$v[,1]

Time<-seq(1948,2015)

plot(Time, -pcdat, type="o", main="PC1 of NCEP RA Jan SAT: 1948-2015",

xlab="Year",ylab="PC values",

lwd=2, ylim=c(-0.3,0.3))

Often, the first two or three EOFs and PCs will have some physical interpreta-

tions, because the higher modes’ eigenvalues are too close to each other, and hence

have a large amount of uncertainty.

In the case of the January SAT Reanalysis data here, PC1 shows an increas-

ing trend. The corresponding EOF1 shows the spatially non-uniform pattern of

temperature increasing.

EOF2 shows an El Niño pattern, with a warm tongue over the eastern tropical

Pacific. PC2 shows the timpoeral variation of the the El Niño signal. For example,

the January 1983 and 1998 peaks correspond to two strong El Niños.

EOF3 appears to correspond to a mode known as the Pacific Decadal Oscillation.

tFig. 4.9
The third EOF and PC from the January SAT’s standardized area-weighted anomalies.

It shows a dipole pattern over the Northern Pacific. PC3 shows quasi-periodicity

in this mode with a period of about 20 to 30 years.

4.3.2.4 EOFs from the de-trended standardized data

We can also de-trend the standardized anomaly data first and then compute the

EOFs and PCs. As expected, the new EOF1 then will no longer be the trend pattern,

rather it is the El Niño mode, i.e. the EOF2 of the non-detrended anomalies (see

Figs. 4.10 and 4.11). This implies that the de-trending process has removed the

EOF1 mode in the original non-de-trended data.

The de-trending and SVD procedures can carried out by the following R code.

#EOF from de-trended data

monJ=seq(1,816,12)

gpcpdat=gpcpst[,3:818]

gpcpJ=gpcpdat[,monJ]

climJ<-rowMeans(gpcpJ)

library(matrixStats)

sdJ<-rowSds(gpcpJ)

anomJ=(gpcpdat[,monJ]-climJ)/sdJ

trendM<-matrix(0,nrow=10512, ncol=68)#trend field matrix

trendV<-rep(0,len=10512)#trend for each grid box: a vector

for (i in 1:10512) {

trendM[i,] = (lm(anomJ[i,] ~ Time))$fitted.values

trendV[i]<-lm(anomJ[i,] ~ Time)$coefficients[2]

}

dtanomJ = anomJ - trendM

dim(dtanomJ)

dtanomAW=sqrt(cos(gpcpst[,1]*pi/180))*dtanomJ

svdJ=svd(dtanomAW)

tFig. 4.10
The first EOF and PC from the January SAT’s de-trended standardized area-weighted

anomalies.

One can then use the EOF plotting code described in the previous sub-subsection

to make the plots of eigenvalues, EOFs and PCs. Comparing with the EOFs and

PCs of the previous sub-sub-section, it is clear that the de-trended EOF1 here is

similar to the non-de-trended EOF2. However, they are not exactly the same. Thus,

the de-trending process is approximately similar to the EOF1 filtering, although not

exactly the same. Similar statements can be made for the other EOFs and PCs.

tFig. 4.11
The second EOF and PC from the January SAT’s de-trended standardized

area-weighted anomalies.

The first eigenvalue of the de-trended anomalies explains about 10% of the total

variance, approximately equivalent to the 8% of the total variance explained by

EOF2 of the non-de-trended anomalies (see Fig. 4.6). This can be derived from the

non-de-trended SVD results. Let

ci = 100
d2
i∑K

i=1 d
2
i

, i = i, 2, · · · ,K (4.11)

be the percentage of variance explained by the ith mode, where K is the total

number of modes available. In our case of January temperature from 1948-2015,

K = 68. The SVD calculation of the previous sub-sub-section found that

c1 = 16.63[%], c2 = 8.25[%]. (4.12)

Figure 4.6 shows these values. From the following formula

c2 = 100
d2

2∑K
i=1 d

2
i

= 100
d2

2

d2
1 +

∑K
i=2 d

2
i

, (4.13)

one can derive that

100
d2

2∑K
i=2 d

2
i

= 100
1

1/c2 − d2
1/d

2
2

= 100
c2

1− c1
= 100

0.0825

1− 0.1663
= 9.9[%] (4.14)

4.4 Area-weighted average and spatial distribution of
trend

4.4.1 Global average and PC1

To verify that PC1 of the non-de-trended anomalies represents the trend, we com-

pute and plot the area-weighted SAT (see Fig. 4.12) from the NCEP/NCAR RA1

data using the following R code

tFig. 4.12
The global area-weighted January SAT anomalies from 1948-2015 based on the

NCEP/NCAR RA1 data.

#Plot the area-weighted global average Jan temp from 1948-2015

#Begin from the space-time data matrix gpcpst[,1]

vArea=cos(gpcpst[,1]*pi/180)

anomA=vArea*anomJ

dim(anomA)

JanSAT<-colSums(anomA)/sum(vArea)

plot(Time, JanSAT, type="o", lwd=2,

main="Global Average Jan SAT Anomalies from NCEP RA",

xlab="Year",ylab="Temperature [oC]")

regSAT<-lm(JanSAT ~ Time)

#0.48oC/100a trend

abline(regSAT, col="red", lwd=4)

text(1965,0.35,"Linear trend 0.48oC/100a", col="red", cex=1.3)

Figs. 4.12 and 4.7 clearly show that this global average is similar to PC1 of

the non-de-trended data. Their trends are very close: 0.53◦C/100a for the global

average, and 0.48◦C/100a for PC1. Their correlation is 0.61, not as large as one may

expect, because the global average has more extremes and large temporal variances.

PC1 may be understood as the nonlinear trend of large scale spatial patterns. In

other words, PC1 and EOF1 may be regarded as a low frequency and small wave

number filter of the temperature anomaly field.

4.4.2 Spatial pattern of linear trends

Next we compute and plot the temperature trend from 1948 to 2015 based on the

NCEP/NCAR Reanalysis’ January temperature data. Each grid box has a time

series of 68 years of January SAT anomalies from 1948 to 2015, and each grid

box has a linear trend. These trends form a spatial pattern (see Fig. 4.13, which

is similar to that of EOF1 for the non-de-trended SAT anomaly data. The trend

value for each grid box is computed by R’s linear model command: lm(anomJ[i,]

Time)$coefficients[2]. The anomaly data are assumed to be written in the

space-time data matrix gpcpst with the first two columns as latitude and lon-

gitude. The following R codes make the trend calculation and plot.

#plot the trend of Jan SAT non-standardized anomaly data

#Begin with the space-time data matrix

monJ=seq(1,816,12)

gpcpdat=gpcpst[,3:818]

gpcpJ=gpcpdat[,monJ]

plot(gpcpJ[,23])

climJ<-rowMeans(gpcpJ)

anomJ=(gpcpdat[,monJ]-climJ)

trendV<-rep(0,len=10512)#trend for each grid box: a vector

for (i in 1:10512) {

trendV[i]<-lm(anomJ[i,] ~ Time)$coefficients[2]

}

mapmat1=matrix(10*trendV,nrow=144)

mapv1=pmin(mapmat1,1) #Compress the values >5 to 5

mapmat=pmax(mapv1,-1) #compress the values <-5 t -5

rgb.palette=colorRampPalette(c(’blue’,’green’,’white’, ’yellow’,’red’),

interpolate=’spline’)

int=seq(-1,1,length.out=61)

mapmat=mapmat[, seq(length(mapmat[1,]),1)]

filled.contour(Lon, Lat, mapmat, color.palette=rgb.palette, levels=int,

plot.title=title(

main="Trend of the NCEP RA1 Jan 1948-2015 Anom Temp",

xlab="Latitude",ylab="Longitude"),

plot.axes={axis(1); axis(2);map(’world2’, add=TRUE);grid()},

key.title=title(main="oC/10a"))

tFig. 4.13
Linear trend of NCEP Reanalysis’ January SAT from 1948-2015.

Figure 4.13 shows that the trends are non-uniform. The trend magnitudes over

land are larger than those over ocean. The largest positive trends are over the Arctic

region, while the Antarctic region has negative trends. These trends may not be

reliable since the reanalysis climate model has an amplified variance over the polar

regions, another example of model deficiencies leading to erroneous information in

the reanalysis produced by using that model.

Indeed, the spatial distribution of the trends appears similar to EOF1 of the

non-de-trended data (see Fig. 4.7). The spatial correlation between the trend map

of Fig. 4.7 and the EOF1 map in Fig. 4.7 is very high and in fact is 0.97. This result

implies that temperature’s spatial patterns are more coherent than the temporal

patterns, which is consistent with the existence of large spatial correlation scales

for the monthly mean temperature field.

References

[1] Monahan, A.H., J.C. Fyfe, M.H. Ambaum, D.B. Stephenson, G.R. and North,

2009: Empirical orthogonal functions: The medium is the message. Journal of

Climate, 22, 6501-6514.

[2] North, G. R., F. J. Moeng, T. J. Bell and R. F. Cahalan, 1982: Sampling Errors

in the Estimation of Empirical Orthogonal Functions. Mon. Wea. Rev., 110,

699-706.

[3] Strang, G., 2016: Introduction to Linear Algebra, 5th edition, Wellesley-

Cambridge Press, Wellesley, U.S.A.

Exercises

4.1 Use the SVD approach to find the EOFs and PCs for the Northern Hemi-

sphere’s January SAT based on the anomaly data from the NCEP/NCAR

Reanalysis. Use the 1981-2010 January mean as the January climatology for

each grid box. Plot the squared SVD eigenvalues against mode number for

the first 30 modes. The suggested steps are below.

(a) Convert the Reanalysis data into a space-time data matrix.

(b) Extract the Northern Hemisphere’s January data using proper row and

column indices.

(c) Apply the SVD to the extract space-time matrix.

(d) Plot the squared eigenvalues.

4.2 Use R to plot the first three EOFs and PCs from the previous problem.

Interpret the climatic meaning as much as you can, but limited 200-500 words.

4.3 Compute and plot the first three EOFs and PCs for the January SAT anoma-

lies for the contiguous United States. Use these EOFs and PCs to describe

the U.S. climate patterns, but limited 200-500 words. [Hint: You may first

use internet to find a grid mask table for the contiguous U.S. Use the table

and R’s which command to extract the U.S. data out of the January Northern

Hemispheric data.]

80

5
Climate Data Matrices and Linear

Algebra

This chapter introduces matrix from the perspective of space-time climate data and

emphasizes the singular value decomposition (SVD) that decomposes a space-time

data matrix into three matrices: the spatial pattern matrix, “energy” matrix, and

temporal pattern matrix. An extensive analysis is made for the sea level pressure

data of Darwin and Tahiti and their optimal formation of a weighted Southern

Oscillation Index. The chapter also contains the conventional and basic materials

of linear algebra: matrix operations, linear equations, multivariate regression by R,

and various applications, such as balancing the number of molecules for a chemical

reaction equation.

5.1 Matrix as a data array

In general, a matrix is a rectangular array of numbers or symbols or expressions,

which are called elements, arranged in rows or columns. A table such as that shown

in Fig. 5.1 is a matrix, consisting of N rows and Y columns of numbers. Figure

5.1 shows the 10 ten-year annual precipitation anomalies from the year 1900 to

1909 for the 15 five-degree latitude-longitude boxes centered at 2.5◦E longitude for

different latitudes over the Northern Hemisphere ranging from latitudes 2.5◦N to

72.5◦N . The matrix shown in Fig. 5.1 thus has 15 rows (N = 15), and 10 columns

(Y = 10). An anomaly of a climate parameter is defined as its real value minus its

normal value that is an average of 30 or more years.

Many other types of climate data can also be represented as matrices (which

is the plural of matrix). Precipitation data [units: mm/day] at multiple stations

and multiple days can also form a matrix, normally with stations [each marked

by a station identifier, or station ID] represented in rows, and time [units: day]

represented in columns. The daily minimum surface air temperature (Tmin) data

for the same stations and the same days form another matrix. In general, a space-

time climate data table always forms a matrix. Conventionally, the spatial locations

correspond to the rows, and the time coordinate corresponds to the columns.

Another matrix example, taken from everyday life, is that the ages of members

of an audience, sitting in a movie theater in chairs arranged in rows and columns,

also form a matrix. The weights of these audience members form another matrix.

Their bank account balances form still another matrix, and so on. Thus, a matrix

is a data table, and extensive mathematical methods have been developed in the

81

Lat Lon 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909
2.5 2.5 0.283240 -0.131860 -0.190500 0.160040 -0.878110 0.080356 0.059193 -0.136900 0.200420 0.822600
7.5 2.5 0.172670 0.830550 -0.180350 -0.203630 -0.238590 0.425310 0.002805 0.102780 0.254050 0.516200
12.5 2.5 0.024392 0.152030 -0.034115 -0.062696 -0.192070 0.074360 0.201970 -0.011311 0.035259 0.272010
17.5 2.5 0.006780 0.066783 -0.084581 -0.008636 -0.038109 -0.001092 0.088250 0.011047 0.029358 0.082329
22.5 2.5 0.021162 0.079977 0.020016 -0.022142 -0.027032 0.065704 0.012937 -0.003823 0.032545 0.028636
27.5 2.5 0.049846 0.057413 0.026621 0.019914 -0.002651 0.071242 0.012837 0.001567 0.051857 0.099650
32.5 2.5 0.107740 0.143510 0.061613 0.076137 0.147760 0.137890 -0.074612 0.110300 0.087752 0.126920
37.5 2.5 0.128250 0.211940 0.113010 0.027472 0.183710 0.125550 -0.267500 0.215980 0.007609 0.055573
42.5 2.5 0.158490 0.800950 0.292690 0.172930 0.272010 0.126370 -0.017183 0.184880 0.118980 0.200520
47.5 2.5 -0.112800 0.243130 -0.121630 -0.076247 -0.047231 0.110160 0.080978 -0.091371 0.016172 -0.060487
52.5 2.5 -0.199840 -0.381070 -0.217570 -0.107760 -0.124700 -0.117470 -0.062448 -0.171070 -0.277650 -0.132690
57.5 2.5 -0.076619 -0.515070 0.005342 0.016647 0.137820 0.038041 0.131370 -0.196490 -0.132480 0.014887
62.5 2.5 -0.261760 -0.402600 0.137200 -0.214960 0.249210 0.147550 0.866120 -0.453910 -0.026134 0.053409
67.5 2.5 0.034079 0.223610 0.314090 -0.044832 0.130470 0.201260 0.554170 -0.054434 0.185870 0.308950
72.5 2.5 -0.119680 0.022949 0.004324 -0.050248 0.251330 -0.233080 -1.043800 0.363850 -0.315400 -0.113080tFig. 5.1

Annual precipitation anomalies data of the Northern Hemisphere at longitude 2.5◦E

[units: mm/day]. The annual total of the anomalies should be multiplied by 365.

20th century to study matrices. Computer software systems, such as R, have also

been developed in recent years that greatly facilitate working with matrices.

This chapter will discuss following topics:

(i) Matrix algebra of addition, subtraction, multiplication, and division (i.e., in-

verse matrix));

(ii) Linear equations;

(iii) Space-time decomposition, eigenvalues, eigenvectors, and the climate dynam-

ics interpretation of a space-time climate data matrix;

(iv) A matrix application example in balancing the mass in a chemical reaction

equation by solving a set of linear equations; and

(v) A matrix application in multivariate linear regression.

5.2 Matrix algebra

Matrix algebra is quite different from the algebra for a few scalars of x, y, z as

we learned in high school. For example, matrix multiplication does not have the

commutative property, i.e., matrix A times matrix B is not always the same as

matrix B times matrix A. This section describes a set of rules for doing matrix

algebra.

5.2.1 Matrix equality, addition and subtraction

An m× n matrix A has m rows and n columns and can be written as

A =

a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

...

am1 am2 · · · amn

 , (5.1)

or

Am×n = [aij], (5.2)

or simply

A = [aij], (5.3)

where aij , i = 1, · · · ,m, j = 1, · · ·n are the mn elements of the rectangular matrix

A, and m× n is often called the size or order of a matrix. We say that A is an m

times n matrix. The elements of the matrix shown in Fig. 5.1 are the precipitation

anomaly data, m = 15, and n = 10. So, Fig. 5.1 is a 15 times 10 matrix.

Matrix A = [aij] is equal to matrix B = [bij] if and only if aij = bij for all the

elements. That is, A is identical to B. We can understand this by considering the

two identical photos. A black/white photo is a matrix of pixel brightness values.

Two photos are identical only when the corresponding brightness values of the two

photos are the same. So, when considering that a matrix is equal to another, we

may regard the equality as two same-size photos, maps, or climate charts being

identical to one another.

The matrix addition is simply the addition of the corresponding elements:

A+B = [aij + bij]. (5.4)

Of course, two matrices can be added to each only when they have the same size

m× n. If the two matrices represent dimensional data, such as precipitation, then

their units must be the same for corresponding elements to add. However, each ele-

ment in a matrix can represent a different climate parameter. For example, a climate

data matrix for San Diego for 24 hours may have its first row representing temper-

ature, the second precipitation, the third atmospheric pressure, the fourth relative

humidity, etc, while the first columns represent time from 1:00 (i.e., 1:00AM) to

24:00 (i.e., 12:00 AM).

Matrix subtraction is defined in a similar way:

A−B = [aij − bij]. (5.5)

Example 1. Matrix subtraction:[
1 1

1 −1

]
−
[

1 2

3 0

]
=

[
0 −1

−2 −1

]
(5.6)

The R code for the above matrix subtraction can be written as follows:

matrix(c(1,1,1,-1), nrow=2) - matrix(c(1,3,2,0), nrow=2)

[,1] [,2]

#[1,] 0 -1

#[2,] -2 -1

One can use matrix subtraction to quantify the differences of climate between two

space-time domains when the climate data for each domain are in a matrix form.

5.2.2 Matrix multiplication

5.2.2.1 A row vector times a column vector

The single column n-row matrix is often called an n-dimensional vector, or an n-

dimensional column vector. Similarly, one can define an n-dimensional row vector

as a single row n-column matrix.

A row vector of n elements times a column vector of the same number of elements

is equal to a scalar, which is the sum of the products of each pair of corresponding

elements:

[
a1 a2 · · · an

]

b1
b2
...

bn

 = a1b1 + a2b2 · · ·+ anbn (5.7)

This is also called the dot product of two vectors a = (a1, a2, · · · , an) and b =

(b1, b2, · · · , bn), denoted by

a · b = a1b1 + a2b2 · · ·+ anbn. (5.8)

In 2- or 3-dimensional space, the dot product of two vectors has simple geometric

interpretation:

a · b = ||a|| ||b|| cos γ, (5.9)

where ||a|| stands for the length of a vector a, and γ is the angle between a and b.

The proof of the equivalence of the above two expressions (5.7) and (5.9) is given

in the appendix.

When a is force and b is the displacement of a subject moved by the force, then

a · b is the work done by the force to the subject.

Example 2. Dot product of two vectors in a 2-dimensional space:[
1 1

] [1
0

]
= 1 (5.10)

The same result can be computed from the geometric meaning formula (5.9). The

length of the first vector is
√

2 since it is the diagonal vector of a unit square in the

first quadrant, and the length of the second vector is 1 since it is the unit square’s

side on the x-axis. The angle between the two vectors is 45◦. Thus, the dot product

of the two vectors are
√

2× 1× cos(45◦) = 1.

5.2.2.2 A scalar times a matrix

A scalar c times a matrix A = [aij] is formed by multiplying the scalar into every

element of the matrix.

c×A = [c× aij]. (5.11)

The product is again a matrix of the same size. A physically meaningful product

requires that the dimension of the scalar and the dimensions of the matrix elements

are compatible. For example, if the matrix is the price data of many products, and

if the scalar is the number of sales of each product, then the scalar times the matrix

gives the revenue matrix of all the products.

Example 3. A scalar 3 times a 2-by-2 matrix

A =

[
1 1

1 −1

]
is

3×A = 3

[
1 1

1 −1

]
=

[
3 3

3 −3

]
(5.12)

5.2.2.3 A m-by-n matrix times an n-by-k matrix

The multiplication of two matrices is defined as a set of dot products between row

vectors of the first matrix and the column vectors of the second matrix. Because of

the requirement to form dot products, the column number of the first matrix must

be the same as the row number of the second matrix. Am×nBn×k is defined as a

new matrix Cm×k = [cij], where the element cij is the dot product of the ith row

vector of Am×n and jth column vector of Bn×k. Namely,

Am×nBn×k =

[
n∑
l=1

ailblj

]
m×k

. (5.13)

Thus, Am×nBn×k is equal to a matrix of m × k dot products, and is tedious to

compute.

Example 4. Matrix multiplications:[
1 1

1 −1

] [
1 3

2 4

]
=

[
3 7

−1 −1

]
, (5.14)

and [
1 3

2 4

] [
1 1

1 −1

]
=

[
4 −2

6 −2

]
. (5.15)

The first element of the right hand side matrix is 3, which is the product of the first

row vector of A: (1, 1), and the first column vector of B: (1, 2). Their dot product

is

(1, 1) · (1, 2) = 1× 1 + 1× 2 = 3. (5.16)

In the same way, one can verify every element of the above multiplication results.

An R code for the above products is below

matrix(c(1,1,1,-1), nrow=2) %*% matrix(c(1,2,3,4), nrow=2)

[,1] [,2]

#[1,] 3 7

#[2,] -1 -1

matrix(c(1,2,3,4), nrow=2) %*% matrix(c(1,1,1,-1), nrow=2)

[,1] [,2]

#[1,] 4 -2

#[2,] 6 -2

In the above example, the second matrix multiplication (5.15) involves the same

matrices as the first one (5.14), but in a different order: If eq. (5.14) is denoted by

AB, then eq. (5.15) is BA. Clearly, the results are different. In general,

AB 6= BA (5.17)

for a matrix multiplication. Thus, matrix multiplication does not have the commu-

tative property which the multiplication of two scalars x and y does have: xy = yx.

5.2.2.4 Transpose matrix, and diagonal, identity and zero
matrices

Although a space-time climate data matrix often has its rows to mark spatial loca-

tions and columns to mark time, the row and column roles may need to exchange

for some applications, which uses rows to mark time and columns to mark spatial

locations. This operation of exchanging rows and columns is called matrix trans-

pose. A transposed matrix of A is denoted by At. The columns of At are the rows

of A.

Example 5.

A =

[
1 2

3 4

]
, At =

[
1 3

2 4

]
(5.18)

It is obvious that

(A+B)t = At +Bt. (5.19)

However, a true but less obvious formula is the transpose of a matrix multiplication:

(AB)t = BtAt. (5.20)

When a matrix whose only non-zero elements are on the diagonal elements, this

matrix is call a diagonal matrix:

D =

d1

d2

. . .

dn

 , (5.21)

An identity matrix is a special type of diagonal matrix, whose diagonal elements

are all one and whose off-diagonal elements are all zero, and is denoted by I:

I =

1

1
. . .

1

 , (5.22)

which plays a role in matrix operations similar to the role of the value 1.0 in the

familiar real number system.

A zero matrix is a matrix whose elements are all zero. If two matrices are the

same, then their difference is a zero matrix.

5.2.2.5 Matrix division and inverse

The division of a scalar y by another non-zero scalar x can be written as y times

the inverse of x:

y/x = y × x−1. (5.23)

Thus, the division problem becomes a multiplication problem when the inverse is

found. The inverse of x is defined as x−1 × x = 1.

Matrix division is defined in the same way:

A/B = A×B−1, (5.24)

where B−1 is the inverse matrix of B defined as

B−1B = I , (5.25)

where I is the identity matrix.

The R command to find the inverse is

solve(B)

Example 6.

solve(matrix(c(1,1,1,-1), nrow=2))

[,1] [,2]

#[1,] 0.5 0.5

#[2,] 0.5 -0.5

That is [
1 1

1 −1

]−1

=

[
0.5 0.5

0.5 −0.5

]
(5.26)

One can verify this by hand, or by the following R code

matrix(c(0.5,0.5,0.5,-0.5), nrow=2) %*% matrix(c(1,1,1,-1), nrow=2)

[,1] [,2]

#[1,] 1 0

#[2,] 0 1

Finding the inverse matrix of a matrix B “by hand” is usually a very difficult and

involves a long procedure for a large matrix, say, a 4 × 4 matrix. Modern climate

models can involve multiple n× n matrices with n from several hundred to several

million, or even billion. In this book, we use R to find inverse matrices and do

not attempt to explain how to find the inverse of a matrix by hand. Mastering

the material in this book will not require you to have this skill. A typical linear

algebra textbook will devote a large portion of its material to finding an inverse

of a matrix. A commonly used scheme is called echelon reduction through row

operations. For detailed information, see the excellent text Introduction to Linear

Algebra by Gilbert Strang.

5.3 A set of linear equations

A somewhat different matrix example is the coefficient matrix of a system of lin-

ear equations. Solving a system of linear equations is very common in science and

engineering. Finding numerical solutions for a climate model based on partial dif-

ferential equations will usually involve solving large systems of linear equations.

As an introduction to the coefficient matrix of linear equations, let us look at

a simple elementary school mathematics problem: The sum of the ages of two

brothers is 20 years and the difference of the ages is 4 years. What are the ages of

the two brothers? One can easily guess that the older brother is 12 years old, and

the younger one is 8.

If we form a set of equations, which would be

x1 + x2 = 20

x1 − x2 = 4 (5.27)

when x1 and x2 stand for the brothers’ ages.

The matrix form of these equations would be

Ax = b (5.28)

which involves three matrices:

A =

[
1 1

1 −1

]
, x =

[
x1

x2

]
, b =

[
20

4

]
. (5.29)

Here, Ax means a matrix multiplication: A2×2x2×1.

The matrix notation of a system of two linear equations can be extended to

systems of many linear equations, hundreds or millions of equations in climate

modeling and climate data analysis. Typical linear algebra textbooks introduce

matrices in this way by describing linear equations in a matrix form. However, this

approach may be less intuitive for climate science, which emphasizes data. Thus,

our book uses data to introduce matrices as shown at the beginning of this chapter.

Although one can easily guess that the solution to the above simple matrix equa-

tion (5.28) is x1 = 12 and x2 = 8, a more general method for computing the solution

may be using the R code shown below:

solve(matrix(c(1,1,1,-1),nrow=2),c(20,4))

#[1] 12 8 #This is the result x1=12, and x2=8.

In this R command, matrix(c(1,1,1,-1),nrow=2) yields theAmatrix, and c(20,4)

the b vector.

This type of R program can solve more complicated systems of linear equations,

such as a system with 1,000 unknowns rather than two unknowns, as in this exam-

ple.

The solution may be represented as

x = A−1b, (5.30)

where A−1 is the inverse matrix of A and was found earlier in eq. (5.26). One can

verify that

A−1b =

[
0.5 0.5

0.5 −0.5

] [
20

4

]
=

[
12

8

]
(5.31)

is indeed the solution of the system of two linear equations.

5.4 Eigenvalues and eigenvectors of a square space
matrix

“Eigenvalue” is a partial translation of the German word “eigenwert,” meaning

“self-value” or intrinsic value.” In German, “eigen” can mean “self” or“own”, as in

“one’s own,” and“wert” means“value.”

A square matrix is a matrix for which the number of rows is equal to the number

of columns. The matrix thus has the shape of a square. Similarly, other matrices

may be called rectangular matrices, or tall matrices.

In Climate science, one often considers the covariance or correlation among N

stations or N grid points. The covariance matrix is thus a square matrix. The ij-th

element is equal to the covariance of the data of a climate parameter at the i-th

station with those at the j-th station (i, j = 1, 2, · · · , N). If Y is the time length,

say Y years, of the anomaly data AN×Y , then the covariance matrix is

C =
1

Y
AA′. (5.32)

Example 1. This example’s data matrix A has N = 2 and Y = 3. The data’s

covariance matrix is covm.

A=matrix(c(1,-1,2,0,3,1),nrow=2)

A

[,1] [,2] [,3]

#[1,] 1 2 3

#[2,] -1 0 1

covm=(1/(dim(A)[2]))*A%*%t(A)

covm #is the covariance matrix.

[,1] [,2]

#[1,] 4.6666667 0.6666667

#[2,] 0.6666667 0.6666667

The covariance matrix times a vector u yields a new vector in a different direction.

u=c(1,-1)

v=covm%*%u

v

[,1]

#[1,] 4

#[2,] 0

#u and v are in different directions.

In general, when we consider a given square matrix C and a given vector u,

the product Cu is usually not in the same direction as u, as shown in the above

example. However, there always a “self-vector” vector w for each covariance matrix

C such that Cw is in the same direction as w, i.e., Cw and w are parallel expressed

as

Cw = λw, (5.33)

where λ is a scalar which has the property that it simply scales w so that the above

equation holds. This scalar λ is called an eigenvalue (i.e., a “self-value”, “own-

value”, or “characteristic value” of the matrix C), and w is called an eigenvector.

R can calculate the eigenvalues and eigenvectors of a covariance matrix covm with

a command eigen(covm). The output is in an R data frame, which has two storages:

ew$values for eigenvalues and ew$vector for eigenvectors, as shown below.

eigen(covm)

eigen(covm)$values

#[1] 4.7748518 0.5584816

eigen(covm)$vectors

#[,1] [,2]

#[1,] -0.9870875 0.1601822

#[2,] -0.1601822 -0.9870875

#Verify the eigenvectors and eigenvalues

covm%*%ew$vectors[,1]/ew$values[1]

#[,1]

#[1,] -0.9870875

#[2,] -0.1601822

#This is the first eigenvector

A 2×2 covariance matrix has two eigenvalues, and two eigenvectors (λ1, w1) and

(λ2, w2), which are shown below from the R computation above for our example

covariance matrix C:

λ1 = 4.7748518, w1 =

[
−0.9870875

−0.1601822

]
, (5.34)

λ2 = 0.5584816, w2 =

[
0.1601822

−0.9870875

]
. (5.35)

The eigenvectors are frequently called modes, or empirical orthogonal functions

(EOFs) in climate science. The term EOF was coined by Edward Lorenz in his 1956

paper on statistical weather prediction. The first few eigenvectors of a large climate

covariance matrix of climate data often represent some typical patterns of climate

variability. Examples which are of great importance in climate science include the

El Niño Southern Oscillation (ENSO), North American Oscillation (NAO), and

Pacic Decadal Oscillation (PDO).

It is often the case that the components of the first mode, i.e., the elements of

the first eigenvector, have the same sign, either all positive or all negative. The

components of the second mode will then have half negative and half positive signs.

Exceptions can occur, however.

Each eigenvalue is equal to the variance of the data projection on the corre-

sponding eigenvector, and is thus positive. The sum of all the eigenvalues of such

an N × N matrix represents the total variance of the climate system observed at

these N stations. The first eigenvalue λ1 is the largest, corresponding to the largest

spatial variability of the climate field under study. The eigenvalues sizes follow the

order λ1 ≥ λ2 ≥ · · · .
However, in carrying out an analysis of climate data, one can often nd the im-

portant patterns as eigenvectors more directly from the anomaly data matrix A

without computing the covariance matrix C explicitly. This is known as the singu-

lar value decomposition (SVD) approach, which we discuss next. It separates the

space-time anomaly data into a space part, a time part, and what we may think of as

Table 5.1 Space-time data table

Time 1 Time 2 Time 3 Time 4

Space 1 D11 D12 D13 D14

Space 2 D21 D22 D23 D24

Space 3 D31 D32 D33 D34

Space 4 D41 D42 D43 D44

Space 5 D51 D52 D53 D54

a variation in energy part. This mathematical method of space-time decomposition

is universally applicable to any data that we sample in space and time, and it can

often help to develop physical insight and scientific understanding of the phenom-

ena and their properties as contained in the observational data. Efcient computing

methods of SVD have been extensively researched and developed since the 1960s.

Gene H. Golub (1932-2007) was a leading gure in this effort and is remembered as

“Professor SVD” by his Stanford colleagues and the world mathematics community.

5.5 An SVD representation model for space-time data

We encounter space-time data every day, a simple example being the air tempera-

ture at different locations at different times. If you take a plane to travel from San

Diego to New York, you may experience the temperature at San Diego in the morn-

ing when you depart and that at New York in the evening after your arrival. Such

data have many important applications. We may need to examine the precipitation

conditions around the world at different days in order to monitor agricultural yields.

A cellphone company may need to monitor its market share and the temporal vari-

ations of that quantity in different countries. A physician may need to monitor a

patients symptoms in different areas of the body at different times. The observed

data in all these examples can form a space-time data matrix with the row posi-

tion corresponding to the spatial location and the column position corresponding

to time, as in Table 5.1.

Graphically, the space-time data may typically be plotted as a time series at

each given spatial position, or as a spatial map at each given time. Although these

straight-forward graphical representations can sometimes provide very useful in-

formation as input for signal detection, the signals are often buried in the data

and may need to be detected by different linear combinations in space and time.

Sometimes the data matrices are extremely large, with millions of data points in

either space or time. Then the question arises as to how can we extract the essential

information in such a big data matrix? Can we somehow manage to represent the

data in a more simple and yet more useful way? A very useful approach to such

a task involves a space-time separation. Singular value decomposition (SVD) is a

method designed for this purpose. SVD decomposes a space-time data matrix into a

spatial pattern matrix U , a diagonal energy level matrix D, and a temporal matrix

V t, i.e., the data matrix A is decomposed into

AN×Y = UN×mDm×m(V t)m×Y . (5.36)

where N is the spatial dimension, Y is the temporal length, m = min(N,Y), and

V t the transpose of V . The columns of U are a set of orthonormal vectors known

as spatial eigenvectors, i.e.

ul · uk = δlk, (5.37)

where ul are column vectors of U , and δlk is the Kronecker delta equal to zero when

k 6= l and one when k = l. The columns of V are also a set of orthonormal vectors

known as temporal eigenvectors.

Usually, the elements of the U and V matrices are unitless (i.e., dimensionless),

and the unit of the D elements is the same as the elements of the data matrix. For

example, if A is a space-time precipitation data matrix with a unit [mm/day], then

the dimension of the D elements is also [mm/day].

Example 1. SVD for the 2× 3 data matrix A in Section 5.4.

#Develop a 2-by-3 space-time data matrix for SVD

A=matrix(c(1,-1,2,0,3,1),nrow=2)

A

[,1] [,2] [,3]

#[1,] 1 2 3

#[2,] -1 0 1

#Perform SVD calculation

msvd=svd(A)

msvd

msvd$d

#[1] 3.784779 1.294390

msvd$u

[,1] [,2]

#[1,] -0.9870875 -0.1601822

#[2,] -0.1601822 0.9870875

msvd$v

[,1] [,2]

#[1,] -0.2184817 -0.8863403

#[2,] -0.5216090 -0.2475023

#[3,] -0.8247362 0.3913356

#One can verify that A=UDV’, where V’ is transpose of V.

verim=msvd$u%*%diag(msvd$d)%*%t(msvd$v)

verim

[,1] [,2] [,3]

#[1,] 1 2.000000e+00 3

#[2,] -1 1.665335e-16 1

round(verim)

[,1] [,2] [,3]

#[1,] 1 2 3

#[2,] -1 0 1

#This is the original data matrix A

The covariance of the space-time matrix A is a spatial matrix:

C =
1

Y
AAt, (5.38)

where Y is the number of columns of A and is equal to the length of time being

considered.

covm=(1/(dim(A)[2])*A%*%t(A)

eigcov=eigen(covm)

eigcov

$values

[1] 4.7748518 0.5584816

$vectors

[,1] [,2]

[1,] -0.9870875 0.1601822

[2,] -0.1601822 -0.9870875

Thus, the eigenvectors of a covariance matrix are the same as the SVD eigenvectors

of the anomaly data matrix. The eigenvalues of the covariance matrix and the SVD

have following relationship

((msvd$d)^2)/(dim(A)[2])=eigcov$values

[1] 4.7748518 0.5584816

Therefore, the EOFs from a given space-time dataset can be calculated directly by

using an SVD command and do not need the step of calculating the covariance

matrix. With efficient SVD algorithms, this shortcut can save significant amount of

time for an EOF analysis, also known as the principal component analysis (PCA) in

the statistics community, compared to the traditional covariance matrix approach.

So, the result is extremely helpful for the EOF analysis, which is an indispensable

modern tool of climate data analysis. The result is formally described as a theorem

whose proof is also provided as follows.

Theorem 5.1 The eigenvectors bfuk of the covariance matrix C = (1/Y)AAt

Cuk = λiuk, (k = 1, 2, · · · , N), (5.39)

are the same as the SVD spatial modes of A = UDV t. The eigenvalues λk of CN×N
and the SVD eigenvalues dk of AN×Y have the following relationship

λk = d2
k/Y (k = 1, 2, · · · , Y), whenY ≤ N, (5.40)

where Y is the total time length (i.e., time dimension) of the anomaly data matrix

A, and N is the total number of stations for A (i.e., space dimension).

Proof The SVD of the space-time data matrix is

A = UDV t. (5.41)

The data matrix A’s corresponding covariance matrix is thus

C =
1

Y
AAt

=
1

Y
UDV t(UDV t)t

=
1

Y
UDV t(V DU t)

=
1

Y
UD(V tV)DU t

=
1

Y
UDIDU t

=
1

Y
UD2U t. (5.42)

In the above, we have used V tV = IY is a Y × Y identity matrix according to the

SVD definition. The identity matrix’s dimension is Y because if Y ≤ N . Otherwise,

V tV = IN .

The expression C = 1
Y UD

2U t is the EOF expansion of the covariance matrix

and means that a covariance matrix consists of EOFs and its associated variance,

or “energy.”

The covariance matrix’s eigenvalue problem is

CU =
1

Y
UD2U tU =

1

Y
UD2 = UΛ, (5.43)

where

Λ =
1

Y
D2 (5.44)

is the diagonal eigenvalue matrix with its elements as

λk = d2
k/Y (k = 1, 2, · · · , Y). (5.45)

In eq. (5.43), we used U tU = IY based on the SVD definition. Equation (5.43)

becomes an eigenvalues problem because Λ is a diagonal matrix: Cuk = λkuk (k =

1, 2, · · · , Y), where uk is the kth column vector of the space matrix U . Thus, eq.

(5.43) implies the first part of the theorem: The space eigenvectors U from the

SVD of the space-time data matrix A are the same as the eigenvectors of the

corresponding covariance matrix C.

Equation (5.45) is exactly the second part of the theorem. The proof is thus

complete.

In the above proof, we implicitly assumed that the columns of data matrix A are

independent when Y ≤ N . Independence of a set of vectors means that no one can

expressed in terms of the others. So no vectors can be replaced. Real climate data

always satisfy this independence assumption.

5.6 SVD analysis of Southern Oscillation Index

This section is an application example of the SVD method for constructing an

optimally weighted Southern Oscillation Index (WSOI).

SOI is an index that monitors ENSO and is the standardized measure of an

important atmospheric pressure gradient. Specifically, it is the atmospheric sea level

pressure (SLP) at Tahiti (18◦S, 149◦W) minus that at Darwin (12◦S, 131◦E). It thus

measures the SLP difference between the eastern tropical Pacic and the western

tropical Pacic. During a “normal” (non-El Nio) year, Darwins anomaly pressure

is lower than that of Tahiti, and it is this pressure difference which maintains the

easterly trade winds and is dynamically consistent with the existence of the western

Pacic warm pool, an area of higher ocean surface temperatures compared to the

eastern tropical Pacific. When the wind direction reverses, the pressure anomalies

have the opposite sign, leading to westerlies in the region where trade winds are

normally found, and to the accumulation of anomalously warm surface water in

the central or eastern tropical Pacic. This latter ocean temperature pattern is the

characteristic signal of El Niño.

The SLP data of these two stations between January 1951 and December 2015

can be downloaded from the NOAA Climate Prediction Center (CPC)’s website

http://www.cpc.ncep.noaa.gov/data/indices/ We will first examine SOI from

the standardized Tahiti and Darwin SLP data, and then use the same data but the

SVD approach to develop a new southern oscillation index: WSOI, which can more

accurately quantify the El Niño signal.

5.6.1 Standardized SLP data and SOI

Figure 5.2 shows the the standardized Tahiti and Darwin SLP data, SOI, cumulative

SOI index (CSOI), and Atlantic Multi-decadal Oscillation (AMO) index. The AMO

index is defined as the standardized average sea surface temperature (SST) over the

North Atlantic region (80◦W-0◦E, 0◦N-60◦N). The AMO data from January 1951

to December 2015 can be downloaded from the NOAA Earth System Research

Laboratory website

https://www.esrl.noaa.gov/psd/data/correlation/amon.us.data

It appears that the SCOI and AMO index follow a similar nonlinear trend. Both

CSOI and AMO decrease from 1950s to a bottom in the 1970s, then increase to

around year 1998 followed by about a decade plateau, and then start to decrease

around 2006. CSOI has a much smaller variance than the AMO index and has a

more clear signal.

The first three panels of Fig. 5.2 can be generated from the following R code.

#SOI and the Standardized SLP data at Darwin and Tahiti

setwd("/Users/sshen/Desktop/MyDocs/teach/SIOC290-ClimateMath2016/Rcodes/Ch5-SOI")

Pta<-read.table("PSTANDtahiti", header=F)

Remove the first column that is the year

ptamon<-Pta[,seq(2,13)]

#Convert the matrix into a vector according to mon: Jan 1951, Feb 1951, ..., Dec 2015

ptamonv<-c(t(ptamon))

#Generate time ticks from Jan 1951 to Dec 2015

xtime<-seq(1951, 2016-1/12, 1/12)

Plot the Tahiti standardized SLP anomalies

plot(xtime, ptamonv,type="l",xlab="Year",ylab="Presure",

main="Standardized Tahiti SLP Anomalies", col="red",

xlim=range(xtime), ylim=range(ptamonv))

Do the same for Darwin SLP

Pda<-read.table("PSTANDdarwin.txt", header=F)

pdamon<-Pda[,seq(2,13)]

pdamonv<-c(t(pdamon))

plot(xtime, pdamonv,type="l",xlab="Year",ylab="Presure",

main="Standardized Darwin SLP Anomalies", col="blue",

xlim=range(xtime), ylim=range(pdamonv))

#Plot the SOI index

SOI <- ptamonv-pdamonv

plot(xtime, SOI ,type="l",xlab="Year",

ylab="SOI index", col="black",xlim=range(xtime), ylim=c(-6,6), lwd=1)

#Add ticks on top edge of the plot box

axis (3, at=seq(1951,2015,4), labels=seq(1951,2015,4))

#Add ticks on the right edge of the plot box

axis (4, at=seq(-4,4,2), labels=seq(-4,4,2))

lines(xtime, rep(0,length(xtime)))

abline(lm(SOI ~ xtime), col="red", lwd=2)

The following R code can generate the fourth panel of Fig. 5.2.

#CSOI and AMO time series comparison

#Cumulative SOI

plot.new()

par(mar=c(4,4,4,4))

cnegsoi<--cumsum(ptamonv-pdamonv)

plot(xtime, cnegsoi,type="l",xlab="Year",ylab="Negative CSOI index",

1950 1960 1970 1980 1990 2000 2010

-3
-2

-1
0

1
2

3
Standardized Tahiti SLP Anomalies

Year

P
re
su
re

1950 1960 1970 1980 1990 2000 2010

-3
-2

-1
0

1
2

3

Standardized Darwin SLP Anomalies

Year

P
re
su
re

1950 1960 1970 1980 1990 2000 2010

-4
-2

0
2

4

Year

S
O

I i
nd

ex

1951 1959 1967 1975 1983 1991 1999 2007 2015

-4
-2

0
2

4

1951 1959 1967 1975 1983 1991 1999 2007 2015

1950 1960 1970 1980 1990 2000 2010

−
1
5
0

−
1
0
0

−
5
0

0

CSOI and AMO Index Comparison

Year

N
e
g
a
ti
ve

 C
S

O
I
in

d
e
x

CSOI

AMO index

−
0
.4

−
0
.2

0
.0

0
.2

0
.4

A
M

O
 i
n
d
e
x

tFig. 5.2
Standardized sea level pressure anomalies of Tahiti (upper left panel), that of Darwin

(upper right). SOI time series (lower left), and the cumulative of the negative SOI

time series (lower right) and AMO time series.

main="CSOI and AMO Index Comparison", mpg=c(2,2,4,0),

col="red",xlim=range(xtime), ylim=range(cnegsoi), lwd=1.5)

legend(1960,15, col=c("red"),lty=1,lwd=2.0,

legend=c("CSOI"),bty="n",text.font=2,cex=1.0)

#AMO data and plot

amodat=read.table("/Users/sshen/Desktop/MyDocs/teach/SIOC290-ClimateMath2017/R Code/Ch5/AMO1951-2015.txt", header=FALSE)

amots=as.vector(t(amodat[,2:13]))

par(new=TRUE)

plot(xtime, amots,type="l",col="blue",lwd=1.5,axes=FALSE,xlab="",ylab="")

legend(1960,0.45, col=c("blue"),lty=1,lwd=2.0,

legend=c("AMO index"),bty="n",text.font=2,cex=1.0)

#Suppress the axes and assign the y-axis to side 4

axis(4)

mtext("AMO index",side=4,line=3)

5.6.2 Weighted SOI computed by the SVD method

The space-time data matrix of the SLP at Tahiti and Darwin from January 1951-

December 2015 can be obtained from

ptada <-cbind(ptamonv,pdamonv)

This is a matrix of two columns: the first column is the Tahiti SLP and the second

column is the Darwin SLP. Because normally the spatial position is indicated by row

and the time is indicated by column, we transpose the matrix ptada<-t(ptada)

This is the 1951-2015 standardized SLP data for Tahiti and Darwin: 2 rows and

780 columns.

dim(ptada)

[1] 2 780

Make the SVD space-time separation: svdptd<-svd(ptada)

Verify this separation by reconstructing the original space-time data matrix using

the SVD results

recontd=svdptd$u%*%diag(svdptd$d[1:2])%*%t(svdptd$v)

One can verify that recontd=ptada.

The spatial matrix U is a 2×2 orthogonal matrix since there are only two points.

Each column is an eigenvector of the covariance matrix C = (1/t)AAt, where An×t
is the original data matrix of n spatial dimension and t temporal dimension. The

SVD decomposition of the matrix A becomes

A780×2 = U2×2D2×2V2×780. (5.46)

Our EOF matrix U is

U=svdptd$u

U

[,1] [,2]

#[1,] -0.6146784 0.7887779

#[2,] 0.7887779 0.6146784

The two column vectors of U are the covariance matrix’ eigenvectors, i.e., the

empirical orthogonal functions (EOF) in the atmospheric science literature as de-

scribed earlier. The EOFs represent spatial patterns. The first column is the first

spatial mode is u1 = (−0.61, 0.79), meaning opposite signs of Tahiti and Darwin,

which justifies the SOI index as one pressure minus another. This result further

suggests that a better index could be the weighted SOI:

WSOI1 = −0.6147PTahiti + 0.7888PDarwin (5.47)

This mode’s energy level, i.e., the temporal variance, is d1 = 31.35 given by

svdptd$d

[1] 31.34582 22.25421

D=diag(svdptd$d)

D

[,1] [,2]

#[1,] 31.34582 0.00000

#[2,] 0.00000 22.25421

which forms the diagonal matrix D in the SVD formula. In the nature, the second

eigenvalue is often much smaller than the first, but that is not true in this example.

Here the second mode’s energy level is d2 = 22.25, which is equal to 71% of the

first energy level 31.35.

The second weighted SOI mode, i.e. the second column u2 of U , is thus

WSOI2 = 0.7888PTahiti + 0.6147PDarwin (5.48)

From the SVD formula A = UDV t, the above two weighted SOIs are U tA:

U tA = DV t, (5.49)

because U is an orthogonal matrix and U−1 = U t.

The V matrix is given by

V=svdptd$v

V

[,1] [,2]

[1,] -5.820531e-02 1.017018e-02

[2,] -4.026198e-02 -4.419324e-02

[3,] -2.743069e-03 -8.276652e-02

......

The first temporal mode v1 is the first row of V ′ and is called the first principal

component (PC1). The above formulas imply that

v1 = WSOI1/d1 (5.50)

v2 = WSOI2/d2 (5.51)

The two PCs are orthonormal vectors, meaning the dot product of two different

PC vectors is zero, and that of the two same PC vectors is one. The two EOFs

are also orthonormal vectors. Thus, the SLP data at Tahiti and Darwin have been

decomposed into a set of spatially and temporally orthonormal vectors: EOFs and

PCs, together with energy levels.

The WSOIs’ standard deviations are d1 and d2, reflecting the WSOI’s oscillation

magnitude and frequency.

We also have the relations

dkPCk = WSOIk (k = 1, 2). (5.52)

The two WSOIs are shown in Fig.5.3.

%Plot WSOI1

xtime<-seq(1951, 2016-1/12, 1/12)

wsoi1=D[1,1]*t(V)[1,]

plot(xtime, wsoi1,type="l",xlab="Year",ylab="Weighted SOI 1",

col="black",xlim=range(xtime), ylim=range(wsoi1), lwd=1)

axis (3, at=seq(1951,2015,4), labels=seq(1951,2015,4))

%Plot WSOI2

wsoi2=D[2,2]*t(V)[2,]

plot(xtime, wsoi2,type="l",xlab="Year",ylab="Weighted SOI 2",

col="black",xlim=range(xtime), ylim=c(-2,2), lwd=1)

axis (3, at=seq(1951,2015,4), labels=seq(1951,2015,4))

The cumulative WSOIs can be plotted by the following R commands

%Plot cumulative WSOI1

#CWSOI and smoothed AMO

#Comparison among CWSOI1, CSOI, and the Smoothed AMO Index

setwd("/Users/sshen/Desktop/MyDocs/teach/SIOC290-ClimateMath2016/Rcodes/Ch5-SOI")

Pta<-read.table("PSTANDtahiti", header=F)

Remove the first column that is the year

ptamon<-Pta[,seq(2,13)]

#Convert the matrix into a vector according to mon: Jan 1951, Feb 1951, ..., Dec 2015

ptamonv<-c(t(ptamon))

xtime<-seq(1951, 2015, length=780)

#Do the same for Darwin data

Pda<-read.table("PSTANDdarwin.txt", header=F)

pdamon<-Pda[,seq(2,13)]

pdamonv<-c(t(pdamon))

ptada <-cbind(ptamonv,pdamonv)

ptada1<-t(ptada)

svdptd<-svd(ptada1)

U=svdptd$u

D=diag(svdptd$d)

V=svdptd$v

wsoi1=D[1,1]*t(V)[1,]

cwsoi1=cumsum(wsoi1)

plot.new()

par(mar=c(4,4,3,4))

plot(xtime, cwsoi1,type="l",xlab="Year",ylab="Weighted SOI 1",

col="blue",lwd=3, ylim=c(-180,20),

main="Comparison between CWSOI1 and the Smoothed AMO Index")

#axis (3, at=seq(1951,2015,4), labels=seq(1951,2015,4))

legend(1970,20, col=c("blue"),lty=1,lwd=3.0,

legend=c("CWSOI1"),bty="n",text.font=2,cex=1.0)

#Superimpose CSOI time series on this CWSOI1

cnegsoi<--cumsum(ptamonv-pdamonv)

lines(xtime, cnegsoi,type="l",col="brown", lwd=3.0)

legend(1970,2, col=c("brown"),lty=1,lwd=3.0,

legend=c("CSOI"),bty="n",text.font=2,cex=1.0)

#24-month ahead moving average of the monthly AMO index

amodat=read.table("/Users/sshen/Desktop/MyDocs/teach/SIOC290-ClimateMath2017/R Code/Ch5/AMO1948-2016.txt", header=FALSE)

amots=as.vector(t(amodat[,2:13]))

#install.packages("TTR")

library("TTR")

amomv=SMA(amots,n=24, fill=NA)

#Average of the previous n points

par(new=TRUE)

xtime=seq(1951,2015,len=780)

plot(xtime, amomv[37:816],type="l",col="green",lwd=1.5,axes=FALSE,xlab="",ylab="")

legend(1970,0.165, col=c("green"),lty=1,lwd=2.0,

legend=c("AMO index"),bty="n",text.font=2,cex=1.0)

#Suppress the axes and assign the y-axis to side 4

axis(4)

mtext("AMO index",side=4,line=3)

#Plot cumulative WSOI2: CWSOI2

wsoi2=D[2,2]*t(V)[2,]

cwsoi2=cumsum(wsoi2)

plot.new()

#par(mar=c(4,4,3,4))

plot(xtime, cwsoi2,type="l",xlab="Year",ylab="Weighted SOI 2",

col="red",lwd=3,

main="CWSOI2 Index: The Cumulative PC2")

When the cumulative WSOI1 decreases, so does the SH surface air temperature

from 1951 to 1980. When the cumulative WSOI1 increases, so does the temperature

from the 1980s to the peak 1998. Later, the cumulative WSOI1 decreases to a

plateau from 1998 to 2002, then remains on plateau until 2007, then decreases

again. This also agrees with nonlinear trend of the SH surface air temperature

anomalies before 1998.

1950 1960 1970 1980 1990 2000 2010

-3
-2

-1
0

1
2

3

Year

W
ei

gh
te

d
S

O
I 1

1951 1959 1967 1975 1983 1991 1999 2007 2015

1950 1960 1970 1980 1990 2000 2010

-2
-1

0
1

2

Year

W
ei

gh
te

d
S

O
I 2

1951 1959 1967 1975 1983 1991 1999 2007 2015

1950 1960 1970 1980 1990 2000 2010

−
1
5
0

−
1
0
0

−
5
0

0

Comparison between CWSOI1 and the Smoothed AMO Index

Year

W
e
ig

h
te

d
 S

O
I
1

CWSOI1

CSOI

AMO index

−
0
.4

−
0
.3

−
0
.2

−
0
.1

0
.0

0
.1

0
.2

0
.3

A
M

O
 i
n
d
e
x

1950 1960 1970 1980 1990 2000 2010

−
1
2
0

−
1
0
0

−
8
0

−
6
0

−
4
0

−
2
0

0
CWSOI2 Index: The Cumulative PC2

Year

W
e
ig

h
te

d
 S

O
I
2

tFig. 5.3
Weighted SOI1 (upper left panel), weighted SOI2 (upper right), cumulative WSOI1

(lower left), and cumulative WSOI2 (lower right).

The CWSOI2 decreases from 1951 to the 1980s, remains at a flat valley until

its further increase from around 2007. This increase coincides with the persistent

global surface air temperature increase in the last decade.

Therefore, SVD results may lead to physical interpretations and may help provide

physical insight and is thus a valuable and convenient tool to use.

5.6.3 Visualization of the ENSO mode computed from the SVD
method

We present a visualization of EOFs from the above SVD results using ggplot.

The space-time data matrix ptada of the SLP at Tahiti and Darwin from January

1951 to December 2015 has 2 rows for space and 780 columns for time. The U matrix

from the SVD is a 2× 2 matrix. Its first column represents the El Niño mode. Note

that the eigenvectors are determined except for a positive or negative sign. Because

Tahiti has a positive SST anomaly during an El Niño, we choose Tahiti 0.61 and

hence make Darwin -0.79. This is the negative first eigenvector from the SVD.

The second mode is Tahiti 0.79 and Darwin 0.61. These two modes are orthogonal

because (−0.79, 0.61) · (0.61, 0.79) = 0. They are displayed in Fig. 5.4, which may

be generated by the following R code.

#Display the two ENSO modes on a world map

library(maps)

library(mapdata)

plot.new()

par(mfrow=c(2,1))

par(mar=c(0,0,0,0)) #Zero space between (a) and (b)

map(database="world2Hires",ylim=c(-70,70), mar = c(0,0,0,0))

grid(nx=12,ny=6)

points(231, -18,pch=16,cex=2, col="red")

text(231, -30, "Tahiti 0.61", col="red")

points(131, -12,pch=16,cex=2.6, col="blue")

text(131, -24, "Darwin -0.79", col="blue")

axis(2, at=seq(-70,70,20),

col.axis="black", tck = -0.05, las=2, line=-0.9,lwd=0)

axis(1, at=seq(0,360,60),

col.axis="black",tck = -0.05, las=1, line=-0.9,lwd=0)

text(180,30, "El Nino Southern Oscillation Mode 1",col="purple",cex=1.3)

text(10,-60,"(a)", cex=1.4)

box()

par(mar=c(0,0,0,0)) #Plot mode 2

map(database="world2Hires",ylim=c(-70,70), mar = c(0,0,0,0))

grid(nx=12,ny=6)

points(231, -18,pch=16,cex=2.6, col="red")

text(231, -30, "Tahiti 0.79", col="red")

points(131, -12,pch=16,cex=2, col="red")

text(131, -24, "Darwin 0.61", col="red")

text(180,30, "El Nino Southern Oscillation Mode 2",col="purple",cex=1.3)

axis(2, at=seq(-70,70,20),

col.axis="black", tck = -0.05, las=2, line=-0.9,lwd=0)

axis(1, at=seq(0,360,60),

col.axis="black",tck = -0.05, las=1, line=-0.9,lwd=0)

text(10,-60,"(b)", cex=1.4)

box()

tFig. 5.4
The two orthogonal ENSO modes from the Tahiti and Darwin standardized SLP data.

The relative data sizes are proportional to the component values of each eigenvector

in the U matrix. Red color indicates positive values, and blue indicates the negative

values.

The EOFs and PC time series from the SVD can be computed and plotted in

another way using the following R code

#Plot principal components of the Darwin and Tahiti SLP

tdsvd<-svd(ptada)

dat=provideDimnames(tdsvd$u,base=list(c("Tahiti", "Darwin"),

+ c("EOF1","EOF2")))

ft=as.data.frame(dat)

dp=ggplot(ft,aes(lon,lat))

dp1=dp+geom_point(aes(colour=factor(EOF1)),cex=9)

+ xlim(-180,180) + ylim(-90,90)

dp1#Show the plot of EOF1

plot(seq(1951, 2015, length=780), tdsvd$v[1,],

+ xlab="Year", ylab="WSOI1", col="red",

+ main="PC1 as the weighted SOI")

More advanced visualization of EOFs and PCs by R will be described in Chapters

13 and 14 of this book for more complex data, such as those from a climate model

output or remote sensing.

5.7 Mass balance for chemical equations in marine
chemistry

This section is another application of linear algebra.

Marine chemistry involves various kinds of chemical reaction equations which

require the conservation of mass during the reactions. Here we use photosynthesis

as an example to illustrate a way to determine the numbers of molecules on each

side of an equation depicting a chemical reaction.

In the process of photosynthesis, plants convert the solar radiant energy carried by

photons, plus carbon dioxide (CO2) and water (H2O), into glucose (C6H12O6) and

oxygen (O2). The chemical equation for this conversion could be written schemat-

ically as

CO2 +H2O −→ C6H12O6 +O2 (5.53)

THowever, the conservation of mass requires that the atomic weights on both

sides of the equation be equal. The photons have no mass. Thus, the chemical

equation as written above is incorrect. The correct equation should specify precisely

how many CO2 molecules react with how many H2O molecules to generate how

many C6H12O6 and O2 molecules. Suppose that these coefficients are x1, x2, x3, x4.

We then have

x1CO2 + x2H2O −→ x3C6H12O6 + x4O2 (5.54)

Making the number of atoms of carbon on the left and right sides of the equation

equal yields

x1 = 6x3 (5.55)

because water and oxygen contain no carbon. Doing the same for hydrogen atoms

leads to

2x2 = 12x3. (5.56)

Similarly, the balance of oxygen atoms is

2x1 + x2 = 6x3 + 2x4. (5.57)

We thus have three equations in four variables. Thus, these equations have infinitely

many solutions. We can set any variable fixed, and express the other three using

this fixed variable. Since the largest molecule is glucose, we set its coefficient x3

fixed. Then we have

x1 = 6x3, x2 = 6x3, x4 = 6x3. (5.58)

Thus, the chemical equation is

6x3CO2 + 6x3H2O −→ x3C6H12O6 + 6x3O2. (5.59)

If we want to produce one glucose molecule, i.e., x3 = 1, then we need 6 carbon

dioxide and 6 water molecules:

6CO2 + 6H2O −→ C6H12O6 + 6O2. (5.60)

Similarly, one can write chemical equations for many common reactions, such as

iron oxidation

3Fe+ 4H2O −→ 4H2 + Fe3O4, (5.61)

and the redox reaction in a human body which consumes glucose and converts the

glucose into energy, water and carbon dioxide:

C6H12O6 + 6O2 −→ 6CO2 + 6H2O. (5.62)

5.8 Multivariate linear regression using matrix
notations

This section is an application of matrix algebra in statistical data analysis, partic-

ularly on a linear regression for more than one variable. The linear regression in

Chapter 4 discussed the fitting of y = ax + b to a pair of data vectors: xd, yd. It

resulted in correlation, trend and other regression quantities. An example is the

correlation between the January SOI as x and U.S. temperature as y. The non-

trivial correlation can suggest that there may be a physical mechanism to explain

how the January SOI inuences the U.S. January temperature.

Here, we use y = ax+ b as the representation of a deterministic fitting function.

No random variables are considered. Most statistics books would consider random

linear models, which distinguishes random variables and their deterministic estima-

tor by data. Our simple linear mathematical model formulation here is equivalent

to the deterministic estimators.

The U.S. January temperature can be influenced by multiple factors in addition

to the SOI. These factors may include the North Atlantic sea surface temperature

(SST), the North Pacic SST, Arctic pressure conditions, etc. Then, the linear model

becomes

y = b0 + b1x1 + b2x2 + · · ·+ bnxn. (5.63)

When n = 1, this degenerates into the single variable regression.

In the following we will present a few R examples of multivariate regression and

its applications. The mathematical theory behind the R code for a multivariate

regression is mostly the matrix operations, which can be found from any standard

textbooks with the materials of multivariate regression.

Example 1. This example shows a two-variable regression.

y = b0 + b1x1 + b2x2. (5.64)

Geometrically, this is an equation of a plane in a 3D space (x1, x2, y). Given three

points not on a straight line, a plane can be determined uniquely. This means spec-

ifying three x1 coordinate values, three x2 coordinate values and three y coordinate

values, which can be done by means of the following R code:

x1=c(1,2,3) #Given the coordinates of the 3 points

x2=c(2,1,3)

y=c(-1,2,1)

df=data.frame(x1,x1,y) #Put data into the data.frame format

df=data.frame(x1,x2,y)

fit <- lm(y ~ x1 + x2, data=df)

fit#Show the regression results

Call:

lm(formula = y ~ x1 + x2, data = df)

Coefficients:

(Intercept) x1 x2

-5.128e-16 1.667e+00 -1.333e+00

1.667*x1-1.333*x2 #Verify that 3 points determining a plane

[1] -0.999 2.001 1.002

Example 2. This example will show that four arbitrarily specified points cannot

all be on a plane. The fitted plane has the shortest distance squares, i.e., the least

squares (LS), or minimal mean square error (MMSE). Thus, the residuals are non-

zero, in contrast to the zero residuals in the previous example.

u=c(1,2,3,1)

v=c(2,4,3,-1)

w=c(1,-2,3,4)

mydata=data.frame(u,v,w)

myfit <- lm(w ~ u + v, data=mydata)

summary(myfit)#Show the result

Call:

lm(formula = w ~ u + v, data = mydata)

Residuals:

1 2 3 4

1.0 -1.0 0.5 -0.5

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.0000 1.8708 0.535 0.687

u1 2.0000 1.2472 1.604 0.355

v1 -1.5000 0.5528 -2.714 0.225

Residual standard error: 1.581 on 1 degrees of freedom

Multiple R-squared: 0.881,Adjusted R-squared: 0.6429

F-statistic: 3.7 on 2 and 1 DF, p-value: 0.345

Example 3. This example will show a general multivariate linear regression

using R. It has three independent variables, one dependent variable, and ten data

points. For R program simplicity, the data are generated by an R random number

generator. Again, R requires that the data be put into data frame format so that

a user can clearly specify which are independent variables, also called explainable

variables, and which is the dependent variable, also called response variable.

dat=matrix(rnorm(40),nrow=10, dimnames=list(c(letters[1:10]), c(LETTERS[23:26])))

fdat=data.frame(dat)

fit=lm(Z~ W + X + Y, data=fdat)

summary(fit)

Call:

lm(formula = Z ~ W + X + Y, data = fdat)

Residuals:

Min 1Q Median 3Q Max

-0.52997 -0.22259 -0.01266 0.22771 0.74387

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.36680 0.16529 2.219 0.0683 .

W 0.11977 0.20782 0.576 0.5853

X -0.53277 0.19378 -2.749 0.0333 *

Y -0.04389 0.14601 -0.301 0.7739

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.4805 on 6 degrees of freedom

Multiple R-squared: 0.5883,Adjusted R-squared: 0.3824

F-statistic: 2.857 on 3 and 6 DF, p-value: 0.1267

Thus, the linear model is

Z = 0.37 + 0.12W − 0.53X − 0.04Y. (5.65)

The 95% confidence interval for W ’s coefficient is 0.12 ± 2 × 0.21, that for X’s

coefficient is −0.53±2×0.19,Y ’s coefficient is −0.04389±2×0.15. Each confidence

interval includes zero. Thus, there is no significant no-zero trend for the Z data with

respect to W,X, Y . This result is to be expected, because the data are randomly

generated and thus should not have a trend.

In practical applications, a user can simply convert the data into the same data

frame format as shown here. Then, R command

lm(formula = Z W + X + Y, data = fdat)

can do the regression job.

R can also do nonlinear regression with specified functions, such as quadratic

functions and exponential functions. See examples from the URLs

https://www.zoology.ubc.ca/~schluter/R/fit-model/

https://stat.ethz.ch/R-manual/R-devel/library/stats/html/nls.html

References

[1] Golub, G.H. and Reinsch, C., 1970: Singular value decomposition and least

squares solutions. Numerische mathematik, 14(5), pp.403-420.

[2] Larson, R., 2013: Elementary linear algebra, 7th edition. Brooks/Cole Cengage

Learning, Boston, 390pp.

[3] Strang, G., 1993: Introduction to Linear Algebra. Wellesley, MA: Wellesley-

Cambridge Press, 400pp.

Exercises

5.1 The following are the SVD results

mat

[,1] [,2]

[1,] 1 1

[2,] 1 -1

svd(mat)

$d

[1] 1.414214 1.414214

$u

[,1] [,2]

[1,] -0.7071068 -0.7071068

[2,] -0.7071068 0.7071068

$v

[,1] [,2]

[1,] -1 0

[2,] 0 -1

Use A = UDV t to recover the first column of

mat

[,1] [,2]

111

[1,] 1 1

[2,] 1 -1

Show detailed calculations of all the relevant matrices and vectors. Use

space-time decomposition to describe your results. For extra credit: Describe

the spatial and temporal modes, and their corresponding variances or energies.

5.2 Use R and the updated Darwin and Tahiti standardized SLP data to repro-

duce the EOFs and PCs and to plot the EOF pattern maps and PC time

series.

5.3 Do the same procedures in the previous problem but for original non-standardized

data. Comment on the difference of the results from the previous problem.

5.4 (a) Download the monthly precipitation data at five different stations over

the United States from the USHCN website:

http://cdiac.ornl.gov/epubs/ndp/ushcn/ushcn_map_interface.html

(b) Use R to organize the January data from 1951 to 2010 into the space-time

format.

(c) Compute the climatology of each station as the 1971-2000 mean.

(d) Compute the space-time anomaly data matrix A as the original space-time

data matrix minus the climatology.

(e) Use R to make the SVD decomposition of the space-time anomaly data

matrix A = UDV t.

(f) Write the U and D matrices.

5.5 In the previous problem, use R and the formula UDV t to reconstruct the

original data matrix A. This is a verification of the SVD decomposition, and

is also called EOF-PC reconstruction.

5.6 Use R to plot the maps of the first three EOF modes, similar to the two El

Niño mode maps shown in Fig. 5.4. Try to explain the climate meaning of the

EOF maps.

5.7 Use R to plot the first three PC time series. Try to explain the climate meaning

of the time series.

5.8 (a) A covariance matrix C can be computed from a space-time observed

anomaly data matrix X which has N rows for spatial locations and Y columns

for time in years:

C = X ·Xt/Y (5.66)

This is an N×N matrix. (a) Choose a Y matrix from the USHCN annual total

precipitation data at three California stations from north to south [Berkeley,

CA (040693); Santa Barbara, CA (047902); Cuyamaca, CA (042239)] and five

years from 2001 to 2005. and calculate a covariance matrix for N = 3 and

Y = 5.

(b) Use R to find the inverse matrix of the covariance matrix C.

(c) Use R to find the eigenvalues and eigenvectors of C.

(d) Use R to make SVD decomposition of the data matrix X = UDV t. Ex-

plicitly write out the three matrices U,D and V .

(e) Use R to explore the relationship between the eigenvalues of C and the

matrix D.

(f) Compare the eigenvectors of C and the matrix U .

(g) Plot the PC time series and describe their behavior.

5.9 The burning of methane (CH4) with oxygen (O2) produces water (H2O)and

carbon dioxide (CO2). Balance the chemical reaction equation.

5.10 The burning of propane (C3H8) with oxygen (O2) produces water (H2O)and

carbon dioxide (CO2). Balance the chemical reaction equation.

5.11 The burning of gasoline (C8H18) with oxygen (O2) produces water (H2O)and

carbon dioxide (CO2). Balance the chemical reaction equation.

6
Basic Statistical Methods for

Climate Data Analysis

The word “statistics” comes from the Latin “status” meaning “state.” We use the

term “statistics” to mean a suite of scientific methods for analyzing data and for

drawing credible conclusions from the data. Statistical methods are routinely used

for analyzing and drawing conclusions from climate data, such as for calculating

the climate “normal” of precipitation at a weather station and for quantifying the

reliability of the calculation. Statistical methods are often used for demonstrating

that global warming is occurring, based on a significant upward trend of surface

air temperature (SAT) anomalies, and on establishing a given significance level for

this trend. Statistical methods are also used for inferring a significant shift from

a lower state of North Pacific sea level pressure (SLP) to a higher state or from

a lower temperature regime to a higher one. A list of questions such as those just

cited can be infinitely long. The purpose of this chapter is to provide basic concepts

and a kind of “user manual” covering the most commonly used statistical methods

in climate data analysis, so that users can arrive at credible conclusions based on

the data, together with a given error probability.

R codes will be supplied for examples in this chapter. Users can easily apply these

codes, and the formulas given in this book, for their data analysis needs without

any need for an extensive background knowledge of calculus, and without a deep

understanding of statistics. To interpret the statistical results in a meaningful way,

however, knowledge of the domain of climate science will be very useful, when

using statistical concepts and the results of calculations to establish conclusions

from specific climate datasets.

The statistical methods in this chapter have been chosen in order to focus on

making credible inferences about the climate state, with a given error probability,

based on the analysis of climate data, so that observational data can lead to ob-

jective and reliable conclusions. We will first describe a list of statistical indices,

such as the mean, variance and quantiles, for climate data. We will then take up

the topics of probability distributions and statistical inferences.

114

6.1 Statistical indices from the global temperature
data from 1880 to 2015

The following link provides data for the global average annual mean surface air

temperature anomalies from 1880 to 2015 (Karl et al. 2015, NOAA GlobalTemp

dataset at NCDC

http://www1.ncdc.noaa.gov/pub/data/noaaglobaltemp/operational/). In the

data list, the first datum corresponds to 1880 and the last to 2015. These 136 years

of data are used to illustrate the following statistical concepts: mean, variance,

standard deviation, skewness, kurtosis, median, 5th percentile, 95th percentile, and

other quantiles. The anomalies are with respect to the 20th century mean, i.e., the

1900-1999 climatology period. The global average of the 20th century mean is 12.7
◦C. The 2015 anomaly was 0.65 ◦C. Thus, the 2015’s global average annual mean

temperature is 13.4◦C.

Because we have just quoted numbers that purport to be observations of annual

mean global mean surface temperatures, this may be a good place to mention

an important caveat. The caveat is that observational estimates of the global mean

surface temperature are less accurate than similar estimates of year-to-year changes.

This is one of several reasons why global mean surface temperature data are almost

always plotted as anomalies (such as differences between the observed temperature

and a long-term average temperature) rather than as the temperatures themselves.

It is also important to realize that the characteristic spatial correlation length scale

for surface temperature anomalies is much larger (hundreds of kilometers) than the

spatial correlation length scale for surface temperatures. The use of anomalies is

also a way of reducing or eliminating individual station biases that are invariant

with time. A simple example of such biases is that due to station location, which

usually does not change with time. It is easy to understand, for instance, that a

station located in a valley in the middle of a mountainous region might report

surface temperatures that are higher than an accurate mean surface temperature

for the entire region, but the anomalies at the station might be more accurately

reflect the characteristics of the anomalies for the region. For a clear and concise

summary of these important issues, with references, see

http://www.realclimate.org/index.php/archives/2017/08/

observations-reanalyses-and-the-elusive-absolute-global-mean-temperature/

[1] -0.367918 -0.317154 -0.317069 -0.393357 -0.457649 -0.468707

[7] -0.451778 -0.498811 -0.403252 -0.353712 -0.577277 -0.504825

[13] -0.556487 -0.568014 -0.526737 -0.475364 -0.340468 -0.367002

[19] -0.505967 -0.368630 -0.315155 -0.387099 -0.494861 -0.585158

[25] -0.663492 -0.535226 -0.457892 -0.617208 -0.684107 -0.672176

[31] -0.624129 -0.675199 -0.570521 -0.558340 -0.379505 -0.308313

[37] -0.531023 -0.551480 -0.444860 -0.444257 -0.451256 -0.388185

[43] -0.469536 -0.455500 -0.489551 -0.385962 -0.305391 -0.393436

[49] -0.416556 -0.538602 -0.339823 -0.316963 -0.360309 -0.486954

[55] -0.347795 -0.383147 -0.356958 -0.262097 -0.272009 -0.257514

[61] -0.152032 -0.050356 -0.095295 -0.088983 0.044418 -0.073264

[67] -0.251405 -0.297744 -0.296136 -0.303984 -0.405346 -0.255647

[73] -0.218081 -0.146923 -0.358796 -0.377482 -0.441748 -0.194232

[79] -0.133076 -0.184608 -0.222896 -0.165795 -0.154384 -0.137509

[85] -0.393492 -0.322453 -0.267491 -0.257946 -0.274517 -0.151345

[91] -0.207025 -0.322901 -0.216440 -0.080250 -0.316583 -0.241672

[97] -0.323398 -0.046098 -0.131010 -0.016080 0.021495 0.057638

[103] -0.061422 0.099061 -0.093873 -0.109097 -0.015374 0.125450

[109] 0.129184 0.050926 0.186128 0.159565 0.010836 0.038629

[115] 0.092131 0.211006 0.074193 0.269107 0.384935 0.194762

[121] 0.177381 0.296912 0.351874 0.363650 0.329436 0.408409

[127] 0.362960 0.360386 0.291370 0.385638 0.453061 0.325297

[133] 0.370861 0.416356 0.491245 0.650217

We use R to calculate all the needed statistical parameters. The data is read as

tmean15.

setwd("/Users/sshen/Desktop/MyDocs/teach/SIOC290-ClimateMath2017/

Book-ClimMath-Cambridge-PT1-2017-07-21/Data")

dat1 <- read.table("aravg.ann.land_ocean.90S.90N.v4.0.0.2015.txt")

dim(dat1)

tmean15=dat1[,2] #Take only the second column of this data matrix

head(tmean15) #The first five values

#[1] -0.367918 -0.317154 -0.317069 -0.393357 -0.457649 -0.468707

mean(tmean15)

#[1] -0.2034367

sd(tmean15)

#[1] 0.3038567

var(tmean15)

#[1] 0.09232888

library(e1071)

#This R library is needed to compute the following parameters

skewness(tmean15)

#[1] 0.7141481

kurtosis(tmean15)

#[1] -0.3712142

median(tmean15)

#[1] -0.29694

quantile(tmean15,probs= c(0.05,0.25, 0.75, 0.95))

5% 25% 75% 95%

#-0.5792472 -0.4228540 -0.0159035 0.3743795

The following R commands can plot the time series of the temperature data with

a linear trend (see Fig. 6.1).

yrtime15=seq(1880,2015)

reg8015<-lm(tmean15 ~ yrtime15)

Display regression results

reg8015

#Call:

#lm(formula = tmean15 ~ yrtime15)

#Coefficients:

#(Intercept) yrtime15

#-13.208662 0.006678

Plot the temperature time series and its trend line

plot(yrtime15,tmean15,xlab="Year",ylab="Temperature deg C",

main="Global Annual Mean Land and Ocean Surface

Temperature Anomalies 1880-2015", type="l")

abline(reg8015, col="red")

text(1930, 0.4, "Linear temperature trend 0.6678 oC per century",

col="red",cex=1.2)

The above statistical indices were computed using the following mathematical

formulas, described by x = {x1, x2, · · · , xn} as the sampling data for a time series:

mean: µ(x) =
1

n

n∑
k=1

xk, (6.1)

variance by unbiased estimate: σ2(x) =
1

n− 1

n∑
k=1

(xk − µ(x))2, (6.2)

standard deviation: σ(x) = (σ2(x))1/2, (6.3)

skewness: γ3(x) =
1

n

n∑
k=1

(
xk − µ(x)

σ

)3

, (6.4)

kurtosis: γ4(x) =
1

n

n∑
k=1

(
xk − µ(x)

σ

)4

− 3. (6.5)

The significance of these indices is as follows. The mean gives the average of sam-

ples. The variance and standard deviation measure the spread of samples. They are

large when the samples have a broad spread. Skewness is a dimensionless quan-

tity. It measures the asymmetry of samples. Zero skewness signifies a symmetric

distribution. For example, the skewness of a normal distribution is zero. Negative

skewness denotes a skew to the left, meaning that the long distribution tail is on

the left side of the distribution. Positive skewness has a long tail on the right side.

tFig. 6.1
Time series of the global average annual mean temperature with respect to 1900-1999

climatology: 12.7 ◦C.

Kurtosis is also dimensionless and measures the peakedness of a distribution. The

kurtosis of a normal distribution is zero. Positive kurtosis means a high peak at

the mean, thus a slim and tall shape for the distribution. This is referred to as

leptokurtic. “Lepto” is Greek in origin and means thin or fine. Negative kurtosis

means a low peak at the mean, thus a fat and short shape for the distribution,

referred to as platykurtic. “Platy” is also Greek in origin and means flat or broad.

“Kurtic” and “kurtosis” are Greek in origin and mean peakedness.

For the 136 years of global average annual mean temperature data given above,

the skewness is 0.71, meaning skew to the right with a long tail on the right, thus

with more extreme high temperatures than low temperatures, as shown in the

histogram in Fig. 6.2. The kurtosis is -0.37, meaning the distribution is flatter than

a normal distribution, also shown in the histogram.

The median is a number characterizing a set of samples, such that 50% of the

samples are less than the median, and another 50% are greater than the median.

To find the median, sort the samples from the smallest to the largest. The median

is then the sample number in the middle. If the number of the samples is even, then

the median is equal to the mean of the two middle samples.

Quantiles are defined in the same way by sorting. For example, 25-percentile

(also called 25th percentile) is a sample such that 25% of sample values are less

than this sample value. By definition, 75-percentile is thus larger than 40-percentile.

Obviously, 100-percentile is the largest sample, and 0-percentile is the smallest

sample. Often, a box plot is used to show the typical quantiles. See Fig. 6.3 for the

box plot of the 136 years of global average annual mean temperature data.

The 50-percentile (or 50th percentile) is called the median. If the distribution is

symmetric, then the median is equal to mean. Otherwise these two quantities are

not equal. If the skew is to the right, then the mean is on the right of the median:

the mean is greater than the median. If the skew is to the left, then the mean

is on the left of the median: the mean is less than the median. Our 136 years of

temperature data are right skewed and have mean equal to -0.2034◦C, greater than

their median equal to -0.2969◦C.

6.2 Commonly used statistical plots

We will use the 136 years of temperature data and R to illustrate some commonly

used statistical figures, namely the histogram, boxplot, scatter plot, qq-plot, and

linear regression trend line.

6.2.1 Histogram of a set of data

h<-hist(tmean15, main="Histogram of 1880-2015 Temperature

Anomalies",xlab="Temperature anomalies") #Plot historgram

xfit<-seq(min(tmean15),max(tmean15), length=30)

areat=diff(h$mids[1:2])*length(tmean15) #Normalization area

yfit<-areat*dnorm(xfit, mean=mean(tmean15), sd=sd(tmean15))

lines(xfit,yfit,col="blue",lwd=2) #Plot the normal fit

Figure 6.2 shows the result of the above R commands.

One can also plot the probability density function based on the R’s estimate.

plot(density(tmean15), main="R estimate

of density",xlab="Temperature") #R estimate density

lines(xfit,dnorm(xfit, mean=mean(tmean15),

sd=sd(tmean15)), col="blue") #Moment estimated normal

6.2.2 Box plot

Figure 6.3 is the box plot of the 136 years of global average annual mean tempera-

ture data, and can be made from the following R command

b=boxplot(tmean15, ylab="Temperature anomalies")

The rectangular box’s mid line indicates the level of the median, which is -0.30◦C.

The rectangular box’s lower boundary is the first quartile, i.e., 25-percentile. The

Histogram of 1880−2015 Temperature Anomalies

Temperature anomalies

Fr
eq

ue
nc

y

−0.5 0.0 0.5

0
10

20
30

40

tFig. 6.2
Histogram of the global average annual mean temperature anomalies from 1880-2015.

box’s upper boundary is the third quartile, i.e., the 75-percentile. The box’s height

is the third quartile minus the first quartile, and is called the interquartile range

(IQR). The upper “whisker” is the third quartile plus 1.5 IQR. The lower whisker

is supposed to be at the first quartile minus 1.5 IQR. However, this whisker would

then be lower than the lower extreme. Thus, the lower whisker takes the value of

the lower extreme, which is -0.68 ◦C. The points outside of the two whiskers are

considered outliers. Our dataset has one outlier, which is 0.65 ◦C. This is the hottest

year in the dataset. It was year 2015.

Sometimes, one may need to plot multiple box plots on the same figure, which

can be done by R. One can look at an example in the R-project document

http://www.inside-r.org/r-doc/graphics/boxplot

6.2.3 Scatter plot

The scatter plot is convenient for displaying whether two datasets are correlated

with one another. We use the southern oscillation index (SOI) and the contiguous

United States temperature as an example to describe the scatter plot. The data

can be downloaded from

www.ncdc.noaa.gov/teleconnections/enso/indicators/soi/

www.ncdc.noaa.gov/temp-and-precip/

The following R code can produce the scatter plot shown in Fig. 6.4.

−0
.6

−0
.4

−0
.2

0.
0

0.
2

0.
4

0.
6

Te
m

pe
ra

tu
re

 a
no

m
al

ie
s

[d
eg

 C
]

tFig. 6.3
Box plot of the global average annual mean temperature anomalies from 1880-2015.

#Use setwd("working directory") to work in the right directory

rm(list=ls())

setwd("/Users/sshen/Desktop/MyDocs/teach/SIOC290-ClimateMath2016/chap4data-refs")

par(mgp=c(1.5,0.5,0))

ust=read.csv("USJantemp1951-2016-nohead.csv",header=FALSE)

soi=read.csv("soi-data-nohead.csv", header=FALSE) #Read data

soid=soi[,2] #Take the second column SOI data

soim=matrix(soid,ncol=12,byrow=TRUE)

#Make the SOI into a matrix with each month as a column

soij=soim[,1] #Take the first column for Jan SOI

ustj=ust[,3] #Take the third column: Jan US temp data

plot(soij,ustj,xlim=c(-4,4), ylim=c(-8,8),

main="January SOI and the U.S. Temperature",

xlab="SOI [dimensionless]",

ylab="US Temperature deg F",

pch=19, cex.lab=1.3)

Plot the scatter plot

soiust=lm(ustj ~ soij) #Linear regression

abline(soiust, col="red", lwd=3) #Linear regression line

The correlation between the two datasets is 0. Thus, the slope of the red trend line

is also zero.

−4 −2 0 2 4

−
5

0
5

January SOI and the U.S. Temperature

SOI [dimensionless]

U
S

 T
e

m
p

e
ra

tu
re

 d
e

g
 F

tFig. 6.4
Scatter plot of the January U.S. temperature vs. the January SOI from 1951-2016.

The scatter plot shows that the nearly zero correlation is mainly due to the five

negative SOI values, which are El Niño Januarys: 1983 (-3.5), 1992 (-2.9), 1998

(-2.7), 2016 (-2.2), 1958 (-1.9). When these strong El Niño Januarys are removed,

then the correlation is 0.2. The slope is then 0.64, compared with 1.0 for perfect

correlation.

The R commands to retain the data without the above five El Niño years are

below

soijc=soij[c(1:7,9:32,34:41,43:47,49:65)]

ustjc=ustj[c(1:7,9:32,34:41,43:47,49:65)] With these data, the scatter plot

and trend line can be produced in the same way.

We thus may say that the SOI has some predictive skill for the January temper-

atures of the contiguous United States, for the non-El Niño years. This correlation

is stronger for specific regions of the U.S. The physical reason for this result has to

do with the fact that the temperature field over the U.S. is inhomogeneous, and in

different regions, it is related to the tropical ocean dynamics in different ways. This

gives us a hint as to how to find the predictive skill for a specific objective field:

to create a scatter plot using the objective field, which is being predicted, and the

field used for making the prediction. The objective field is called the predicant or

predictand, and the field used to make the prediction is called the predictor. A very

useful predictive skill would be that the predictor leads the predicant by a certain

time, say one month. Then the scatter plot will be made from the pairs between

predictor and predicant data with one-month lead. The absolute value of the cor-

relation can then be used as a measure of the predictive skill. Since the 1980s, the

U.S. Climate Prediction Center has been using sea surface temperature (SST) and

sea level pressure (SLP) as predictors for the U.S. temperature and precipitation

via the canonical correlation analysis method (CCA). Therefore, before a prediction

is made, it is a good idea to examine the predictive skill via scatter plots, which

can help identify the best predictors.

However, the scatter plot approach above for maximum correlation is only ap-

plicable for linear predictions or for weakly nonlinear relationships. Nature can

sometimes be very nonlinear, which require more sophisticated assessments of pre-

dictive skill, such as neural networks and time-frequency analysis. The CCA and

other advanced statistical prediction methods are beyond the scope of this book.

6.2.4 QQ-plot

Figure 6.5 is called a QQ-plot. It shows a considerable degree of scattering of the

QQ-plot points away from the red diagonal line, which is called the standard nor-

mal line. We may intuitively conclude that the global average annual temperature

anomalies from 1880 to 2015 are not exactly distributed according to a normal

(or Gaussian) distribution. However, we may also conclude that the distribution

of these temperatures is not very far away from the normal distribution either,

because the points on the QQ-pot are not very far away from the red diagonal line.

The function of a QQ-plot is to compare the distribution of a given set of data

with a specific reference distribution, such as a standard normal distribution with

zero mean and standard deviation equal to one, denoted by N(0, 1). A QQ-plot

lines up the percentiles of data on the vertical axis and the same number of per-

centiles of the specific distribution on the horizontal axis. The pairs of the percentiles

(xi, yi), i = 1, 2, · · · , n determine the points on the QQ-plot. A QQ-line is plotted

as if the vertical axis values are also the percentiles of the given specific distribu-

tion. Thus, the QQ-line should be a diagonal line when the vertical scale and the

horizontal scale are the same.

To check if our global average annual mean temperature data are normally dis-

tributed, we first standardize (or normalize) the data by subtracting the data mean

and dividing by the data’s standard deviation, and then we plot the QQ-plot, which

is shown in Fig. 6.5. The figure was plotted using the following R code:

#qq-plot for standardized anomalies

tstand = (tmean15-mean(tmean15))/sd(tmean15)

qqnorm(tstand, ylab="Global Temperature Anomalies [deg C]",

tFig. 6.5
QQ-plot of the standardized global average annual mean temperature anomalies vs.

standard normal distribution.

xlab="Quantile of N(0,1)", xlim=c(-3,3),ylim=c(-3,3))

qqline(tstand, col = "red", lwd=2)

6.3 Probability distributions

This section describes a few basic probabilistic distributions in addition to the

“bell-shaped” normal or Gaussian distribution we often have in mind.

6.3.1 What is a probability distribution?

A probability distribution is chance of occurrence of an event at a certain value or

an interval of values. For example, if the daily weather at a location is classified as

being in one of two categories: clear weather days, defined as from 0 to 3/10 average

sky cover by clouds, and cloudy weather days, defined as from 4/10 to 10/10 average

sky cover, then the resulting probability distribution is the probability value of clear

and cloudy days. Table 6.1 shows the probabilities of clear weather for three United

States cities based on historical data: Seattle 0.16, San Diego, 0.58, and Las Vegas

0.58. The probability distribution table obviously reflects the very different climates

of the three cities. Seattle is a Pacific Northwest U.S. city characterized by weather

that is often cloudy or rainy, particularly in the winter. San Diego is a Pacific

Southwest U.S. city where it rarely rains, but where cloud cover may be relatively

large in May and June, the so-called “May Gray and June Gloom.” Las Vegas is a

U.S. Southwest inland desert city, which has often experiences a clear sky during

the daytime.

Table 6.1 Probability distribution of weather

Location Clear Sky Cloudy Sky

Las Vegas 0.58 0.42

San Diego 0.40 0.60

Seattle 0.16 0.84

Data source: NOAA Desert Research Institute, July 2017

https://wrcc.dri.edu/htmlfiles/westcomp.clr.html

The data of Table 6.1 can also be displayed by the bar chart in Fig. 6.6. This

figure visually displays the different cloudiness climates of the three cities. Thus,

either the table or the figure demonstrates that a probability distribution can be a

good description of important properties of a random variable, such as cloud cover.

Here, a random variable means a variable that can take on a value in a random

way, such as weather conditions (sunny, rainy, snowy, cloudy, stormy, windy, etc).

Almost anything we deal with in our daily lives is a random variable, that is to say,

a variable which has a random nature, in contrast to a deterministic variable. We

describe a random variable by probability and explore what is the probability of

the variable having a certain value or a certain interval of values. This description

is the probability distribution.

Figure 6.6 can be generated by the following R code.

plot.new()

layout(matrix(c(1,2,3), 1, 3, byrow = TRUE),

widths=c(3,3,3), heights=c(1,1,1))

lasvegas=c(0.58,0.42)

sandiego=c(0.4,0.6)

seattle=c(0.16,0.84)

names(lasvegas)=c("Clear","Cloudy")

names(sandiego)=c("Clear","Cloudy")

Clear Cloudy

P
ro

b
a
b
ili

ty

0
.0

0
.2

0
.4

Las Vegas

Clear Cloudy

0
.0

0
.2

0
.4

0
.6

San Diego

Clear Cloudy

0
.0

0
.2

0
.4

0
.6

0
.8

Seattle

Proability Distribution of Weather

tFig. 6.6
Probability distributions of different climate conditions according to cloudiness for

three cities in the United States.

names(seattle)=c("Clear","Cloudy")

barplot(lasvegas,col=c("skyblue","gray"),ylab="Probability")

mtext("Las Vegas", side=3,line=1)

barplot(sandiego,col=c("skyblue","gray"))

mtext("San Diego", side=3,line=1)

barplot(seattle,col=c("skyblue","gray"))

mtext("Seattle", side=3,line=1)

mtext("Proability Distribution of Weather",

cex=1.3,side = 3, line = -1.5, outer = TRUE)

A probability distribution can be expressed not only by a table as shown above,

but also by bar chart, a curve, or a function y = f(x). Bart charts are used for

the random variables which can take on discrete values, such as clear sky or cloudy

sky, or intervals of continuous values, such as the temperature in the intervals

(0− 5, 6− 10, 11− 15, 16− 20, 21− 25, 25− 30, 31− 35)◦C for San Diego. A smooth

curve or a function y = f(x) is often used to describe a continuous distribution, of

which a random variable can take on any real value in a given range, such as San

Diego temperature in the range of (−50, 50)◦C. In the case of a continuous curve,

the curve’s vertical coordinate value f(x) is not probability, but the value times

an interval length. Thus, f(x)∆x is the probability for the random variable to be

in the interval (x, x + ∆x). In this sense, the curve resembles density in the case

of mass calculation. We therefore call the curve the probability density function

(pdf). The domain of the pdf f(x) is the entire range of all the possible values of

the random variable x. Thus, the probability for x to have a value somewhere in the

entire range is one, i.e., the sum of f(x)∆x for the entire range is one. Following the

method of calculus, when ∆x approaches zero and is denoted by dx, the probability

one can be expressed as an integral of the pdf f(x):∫
D

f(x)dx = 1, (6.6)

where D is the domain of the pdf, the entire range of the possible x values, e.g.,

D = (−50, 50)◦C in the case of temperature for the U.S. This formula is called the

probability normalization condition, as shown in Fig. 6.7.

−3 −2 −1 0 1 2 3

0
.0

0
.1

0
.2

0
.3

0
.4

PDF of the Standard Normal Distribution

Random variable x

P
ro

b
a

b
ili

ty
 d

e
n

si
ty

Area=1

f(x)

dx

x x+dx

dA=f(x)dx

⌠
⌡−∞

∞

f(x)dx=1

tFig. 6.7
Normalization condition of a probability distribution function.

Figure 6.7 can be generated by the following R code

Create data for the area to shade

cord.x <- c(-3,seq(-3,3,0.01),-1)

cord.y <- c(0,dnorm(seq(-3,3,0.01)),0)

Make a curve

curve(dnorm(x,0,1), xlim=c(-3,3), lwd=3,

main=’PDF of the Standard Normal Distribution’,

xlab="Random variable x",

ylab=’Probability density’)

Add the shaded area using many lines

polygon(cord.x,cord.y,col=’skyblue’)

polygon(c(-1.5,-1.5, -1.2, -1.2),c(0, dnorm(-1.5),

dnorm(-1.2), 0.0),col=’white’)

text(0,0.18, "Area=1", cex=1.5)

text(-1.65,0.045,"f(x)")

text(-1.35,0.075,"dx")

text(-1.6,0.005,"x")

text(-0.9,0.005,"x+dx")

arrows(-2,0.2,-1.35,0.13, length=0.1)

text(-2,0.21,"dA=f(x)dx")

text(0,0.09,expression(paste(integral(f(x)*dx,- infinity,infinity),"=1")))

Of course, the normalization condition for a discrete random value, such as clear

and cloudy skies, is a summation, rather than the above integral. Consider the San

Diego case in Table 6.1. The normalization condition is 0.40 + 0.60 = 1.0.

6.3.2 Normal distribution

Figure 6.8 shows five different normal distributions, each of which is a bell-shaped

curve with the highest density when the random variable x takes the mean value,

and approaches zero as x goes to infinity. The figure can be generated by the

following R code.

tFig. 6.8
Probability density function for five normal distributions.

#Normal distribution plot

x <- seq(-8, 8, length=200)

plot(x,dnorm(x, mean=0, sd=1), type="l", lwd=4, col="red",

ylim = c(0,1),

xlab="Random variable x",

ylab ="Probability D=density",

main=expression(Normal~Distribution ~ N(mu,sigma^2)))

lines(x,dnorm(x, mean=0, sd=2), type="l", lwd=2, col="blue")

lines(x,dnorm(x, mean=0, sd=0.6), type="l", lwd=2, col="black")

lines(x,dnorm(x, mean=3, sd=1), type="l", lwd=2, col="purple")

lines(x,dnorm(x, mean=-4, sd=1), type="l", lwd=2, col="green")

#ex.cs1 <- expression(plain(sin) * phi, paste("cos", phi))

ex.cs1 <- expression(paste(mu, "=0",~","~ sigma, "=1"),

paste(mu, "=0",~","~ sigma, "=2"),

paste(mu, "=0",~","~ sigma, "=1/2"),

paste(mu, "=3",~","~ sigma, "=1"),

paste(mu, "=-4",~","~ sigma, "=1"))

legend("topleft",legend = ex.cs1, lty=1,

col=c(’red’,’blue’,’black’,’purple’,’green’), cex=1, bty=n)

The bell-shaped normal distribution curve can be expressed by a mathematical

formula

f(x|µ, σ2) =
1

σ
√

2π
exp

(
− (x− µ)2

2σ2

)
, (6.7)

where µ is the mean and σ is the standard deviation of the normal distribution,

and σ2 is called the variance. The mean is the value one would expect to occur with

the highest probability, and is called the expected value. The standard deviation

measures how much the actual values deviate away from the mean. The pdf’s peak

is at the mean. The pdf is flatter for a large standard deviation, and more peaked

for a smaller standard deviation. Figure 6.8 clearly shows these properties. Notice

how the bell-shaped curve changes due to different values of µ and σ. The mean

reflects the mean state of the random variable and hence determines the position

of the bell-shaped curve; and the standard deviation reflects the diversity of the

random variable and determines the shape of the curve.

Here, x, µ, and σ have the same unit, and, of course, the same dimension.

The probability, or the area, under the entire bell-shaped curve is one. The prob-

ability in the interval (µ−1.96σ, µ+1.96σ) is 0.95, and that in (µ−σ, µ+σ) is 0.68.

These are commonly used properties of a normal distribution. Sometimes we regard

1.96 approximately as 2, and (µ−1.96σ, µ+1.96σ) as two standard deviations away

from the mean. A corresponding mathematical expression is∫ µ+2σ

µ−2σ

1

σ
√

2π
exp

(
− (x− µ)2

2σ2

)
dx = 0.95. (6.8)

One can use an R code to verify this formula:

mu=0

sig=1

intg <- function(x){(1/(sig*sqrt(2*pi)))*exp(-(x-mu)^2/(2*sig^2))}

integrate(intg,-2,2)

#0.9544997 with absolute error < 1.8e-11

#Or using the R built-in function dnorm to get the same result

integrate(dnorm,-2,2)

#0.9544997 with absolute error < 1.8e-11

integrate(dnorm,-1.96,1.96)

#0.9500042 with absolute error < 1e-11

6.3.3 Student’s t-distribution

Figure 6.9 shows Student’s t-distribution , or simply the t-distribution. It is used

when estimating the mean of a normally distributed variable with a small number

of data points and an unknown standard deviation. William Gosset (1876-1937)

published the t-distribution under the pseudonym“Student” while working at the

Guinness Brewery in Dublin, Ireland. Gosset worked as a brewer, because Guinness

hired scientists who could apply their skills to brewing. In 1904, Gosset wrote a re-

port called The Application of the Law of Error to the work of the Brewery. In his

report, Gosset advocated using statistical methods in the brewing industry. Gos-

set published under a pseudonym, because the brewery did not allow its scientists

to publish their research using their real names, perhaps because the information

contained in the research might give a competitive advantage to the brewery. Gos-

set corresponded with leading statisticians of the time, however, and gained their

respect because of his research.

If x1, x2, · · · , xn are normally distributed data with a given mean µ, an unknown

standard deviation, and a small sample n, say, n < 30, then

t =
x̄− µ
S/
√
n

(6.9)

follows a t-distribution with n− 1 degrees of freedom (df), where

x̄ =
1

n

n∑
i=1

xi (6.10)

is the estimated sample mean, and

S2 =
1

n− 1

n∑
i=1

(xi − x̄)2 (6.11)

is the estimated sample variance.

The random variable t is essentially a measure of the deviation of the sample

mean from the given mean value normalized by the estimated standard deviation

scaled down by sqrtn. The pdf of the random variable t can be plotted by the

following R code

tFig. 6.9
Probability density function for five t-distributions with different degrees of freedom.

#Plot t-distribution by R

x <- seq(-4, 4, length=200)

plot(x,dt(x, df=3), type="l", lwd=4, col="red",

ylim = c(0,0.6),

xlab="Random variable t",

ylab ="Probability density",

main="Student t-distribution T(t,df)")

lines(x,dt(x, df=1), type="l", lwd=2, col="blue")

lines(x,dt(x, df=2), type="l", lwd=2, col="black")

lines(x,dt(x, df=6), type="l", lwd=2, col="purple")

lines(x,dt(x, df=Inf), type="l", lwd=2, col="green")

#ex.cs1 <- expression(plain(sin) * phi, paste("cos", phi))

ex.cs1 <- c("df=3", "df=1","df=2","df=6","df=Infinity")

legend("topleft",legend = ex.cs1, lty=1,

col=c(’red’,’blue’,’black’,’purple’,’green’), cex=1, bty=n)

When the df, the number of degrees of freedom (df = n − 1) is infinity, the t-

distribution is exactly the same as the standard normal distribution N(0, 1). Even

when df = 6, the t-distribution is already very close to the standard normal dis-

tribution. Thus, t-distribution is meaningfully different from the standard normal

distribution only when the sample size is small, say, n=5 (i.e., df=4).

The exact mathematical expression of the pdf for the t-distribution is quite com-

plicated and uses a Gamma function, which is a special function beyond the scope

of this book.

6.4 Estimate and its error

6.4.1 Probability of a sample inside a confidence interval

If the data (x1, x2, · · · , xn) are normally distributed with the same mean µ and

standard deviation σ, then the sample mean, i.e., the mean of the data

x̄ =
1

n

n∑
i=1

xi, (6.12)

is normally distributed with mean equal to µ and standard deviation equal to σ/
√
n.

Given the sample size n, mean µ, and standard deviation σ for a set of normal

data, what is the interval [a, b] such that the 95% of the sample means will occur

within the interval [a, b]? Intuitively, the sample mean should be close to the true

mean µ most of the times. However, because the sample data are random, the

sample means are also random and may be very far away from the true mean. For

the example of the global temperature, we might assume that the “true” mean is

14◦C and the “true” standard deviation is 0.3 ◦C. Here, “true” is an assumption,

however, since no one knows the truth. The sample means are close to 14 most of

the time, but climate variations may lead to a sample mean being equal to 16◦C or

12◦C, thus far away from the “true” mean 14◦C. We can use the interval [a, b] to

quantify the probability of the sample mean being inside this interval. We wish to

say that with 95% probability, the sample mean is inside this interval [a, b]. This

leads to the following confidence interval formula.

For a normally distributed population (x1, x2, · · · , xn) with the same mean µ and

standard deviation σ, the confidence interval at the 95% confidence level is

(µ− 1.96σ/
√
n, µ+ 1.96σ/

√
n). (6.13)

Namely, with 95% probability, the sample mean x̄ is

µ− 1.96σ/
√
n < x̄ < µ+ 1.96σ/

√
n. (6.14)

Usually, a = µ− 1.96σ/
√
n is called the lower limit of the confidence interval, and

b = µ+ 1.96σ/
√
n the upper limit.

One can easily simulate this confidence interval formula by the following R code.

#Confidence interval simulation

mu=14 #true mean

sig=0.3 #true sd

n=50 #sample size

d=1.96*sig/sqrt(n)

lowerlim=mu-d

upperlim=mu+d

ksim=10000 #number of simulations

k=0 #k is the simulation counter

for (i in 1:ksim)

{

xbar=mean(rnorm(n, mean=mu, sd=sig))

if (xbar >= lowerlim & xbar <= upperlim)

k=k+1

}

print(c(k,ksim))

#[1] 9496 10000

#plot the histogram

hist(xbar,breaks=51,xlab="Temperature [deg C]",

main="Histogram of Simulated

Sample Mean Temperatures",xaxt="n",

ylim=c(0,600))

axis(1,at =c(13.92, 14.0, 14.08))

text(14,550,"95% Confidence Interval (13.92,14.08)",cex=1.2)

This simulation shows that 9,496 of the 10,000 simulations have the sample means

inside the confidence interval. The probability is thus 0.9496, or approximately 0.95.

Figure 6.10 displays the histogram of the simulation results. It shows that 9,496

sample means from among 10,000 are in the confidence interval (13.92, 14.08). Only

504 sample means are outside the interval with 254 in (−∞, 13.92) and 250 in

(14.08,∞). Thus, the confidence level is the probability of the sample mean falling

into the confidence interval. Intuitively, when the confidence interval is small, the

confidence level is low since there is a smaller chance for the sample mean to fall

into a smaller interval.

6.4.2 Mean of a large sample size: Approximately normal
distribution

6.4.2.1 Confidence interval of the sample mean

The purpose of computing the sample mean is to use it as an estimate for the

real true mean that we do not know in practice. This estimation is more accurate

Histogram of Simulated

 Sample Mean Temperatures

Temperature [deg C]

F
re

q
u
e
n
c
y

0
1
0
0

3
0
0

5
0
0

13.92 14.00 14.08

95% Confidence Interval (13.92,14.08)

tFig. 6.10
Histogram of 10,000 simulated sample mean temperature based on the assumption of

normal distribution with the “true” mean equal 14◦C and “true” standard deviation

0.3 ◦C. Approximately, 95% of the sample means are within the confidence interval

(13.92, 14.08), 2.5% in (14.08,∞), and 2.5% in (−∞, 13.92).

when the confidence interval is small. The extreme case is that the confidence

interval has zero length, which means that with 95% chance, the sample mean is

exactly equal to the true mean. The chance to be wrong is only 5%. To be more

accurate, our intuition suggests that we need to have a small standard deviation,

and have a large sample. The above confidence interval formula (6.13) quantifies

this intuition (µ − 1.96σ/
√
n, µ + 1.96σ/

√
n). A small σ and a large n enable us

to have a small confidence interval, and hence an accurate estimation of the mean.

Thus, to obtain an accurate result in a survey, one should use a large sample.

This subsection shows a method to find out how large a sample should be, for

the case when the confidence probability is given. We also want to deal with the

practical situation where the true mean and standard deviation are almost never

known. Furthermore, it is usually not known whether the random variable is in

fact normally distributed. These two problems can be solved by a very important

theoretical result of mathematical statistics, called the central limit theorem (CLT),

which says that when the sample size n is sufficiently large, the sample mean x̄ =∑n
i=1 xi/n is approximately normally distributed, regardless of the distributions

of xi(i = 1, 2, · · · , n). The approximation becomes better when n becomes larger.

Some textbooks suggest that n = 30 is good enough to be considered a “large”

sample; others use n = 50. In climate science, we often use n = 30.

When the number of samples is large in this sense, the normal distribution as-

sumption for the sample mean is taken care of. We then compute the sample mean

and sample standard deviation by the following formulas

x̄ =
1

n

n∑
i=1

xi, (6.15)

S =

√√√√ 1

n− 1

n∑
i=1

(xi,−x̄)
2
. (6.16)

The standard error of the sample mean is defined as

SE(x̄) =
S√
n
. (6.17)

This gives the size of the “error bar” x̄ ± SE when approximating the true mean

using the sample mean.

The error margin at a 95% confidence level is

EM = 1.96
S√
n
, (6.18)

where 1.96 comes from the 95% probability in (µ− 1.96σ, µ+ 1.96σ) for a normal

distribution. When the confidence level α is raised from 0.95 to a larger value, the

number 1.96 will be increased to a larger number accordingly.

The confidence interval for a true mean µ is then defined as

(x̄− EM, x̄+ EM) or (x̄− 1.96
S√
n
, x̄+ 1.96

S√
n

). (6.19)

This means that the given samples imply that the probability for the true mean

to be inside the confidence interval (x̄ − EM, x̄ + EM) is 0.95, or α in general.

Similarly, the probability for the true mean to be inside the error bar x̄ ± SE is

0.68. See Fig. 6.11 for the confidence intervals at 95% and 68% confidence levels.

When the sample size n goes to infinity, the error margin EM goes to zero, and

accordingly, the sample mean is equal to the true mean. This is correct with 95%

probability, and wrong with 5% probability.

One can also understand the sample confidence interval for a new variable

z =
x̄− µ
S/n

, (6.20)

which is a normally distributed variable with mean equal to zero and standard

deviation equal to one, i.e., it has standard normal distribution. The variable y = −z
also satisfies the standard normal distribution. So, the probability of −1 < z < 1

is 0.68, and −1.96 < z < 1.96 is 0.95. The set −1.96 < z < 1.96 is equivalent to

x̄− 1.96S/
√
n < µ < x̄+ 1.96S/

√
n. Thus, the probability of the true mean in the

confidence interval of the sample mean x̄− 1.96S/
√
n < µ < x̄+ 1.96S/

√
n is 1.96.

This explanation is visually displayed in Fig. 6.11.

In addition,the formulation x̄ = µ+ zS/
√
n corresponds to a standard statistics

problem for an instrument with observational errors:

y = x± ε, (6.21)

where ε stands for errors, x is the true but never-known value to be observed, and

y is the observational data. Thus, data are equal to the truth plus errors. The

expected value of the error is zero and the standard deviation of the error is S/
√
n,

also called standard error.

The confidence level 95% comes into the equation when we require that the

observed value must lie in the interval (µ−EM,µ+EM) with a probability equal

to 0.95. This corresponds to the requirement that the standard normal random

variable z is found in the interval (z−, z+) with a probability equal to 0.95, which

implies that z− = −1.96 and z+ = 1.96. Thus, the confidence interval of the sample

mean at the 95% confidence level is

(x̄− 1.96S/
√
n, x̄+ 1.96S/

√
n), (6.22)

or

(x̄− zα/2S/
√
n, x̄+ zα/2S/

√
n), (6.23)

where zα/2 = z0.05/2 = 1.96. So, 1 − α = 0.95 is used to represent the probability

inside the confidence interval, while α = 0.05 is the “tail probability” outside of the

confidence interval. Outside of the confidence interval means occurring on either

the left side or the right side of the distribution. Each side represents α/2 = 0.025

tail probability. The red area of Fig. 6.11 indicates the tail probability.

Figure 6.11 can be plotted by the following R code.

#Figure of confidence intervals and tail probability

rm(list=ls())

par(mgp=c(1.4,0.5,0))

curve(dnorm(x,0,1), xlim=c(-3,3), lwd=3,

main=’Confidence Intervals

and Confidence Levels’,

xlab="True mean as a random variable",

ylab=’Probability density’,xaxt="n",

cex.lab=1.3)

polygon(c(-1.96, seq(-1.96,1.96,len=100), 1.96),

c(0,dnorm(seq(-1.96,1.96,len=100)),0),col=’skyblue’)

polygon(c(-1.0,seq(-1.0, 1, length=100), 1),

c(0, dnorm(seq(-1.0, 1, length=100)), 0.0),col=’white’)

polygon(c(-3.0,seq(-3.0, -1.96, length=100), -1.96),

c(0, dnorm(seq(-3.0, -1.96, length=100)), 0.0),col=’red’)

polygon(c(1.96,seq(1.96, 3.0, length=100), 3.0),

0
.0

0
.1

0
.2

0
.3

0
.4

Confidence Intervals

 and Confidence Levels

True mean as a random variable

P
ro

b
a

b
il
it
y
 d

e
n

s
it
y

xSE SE SESE

Probability

 = 0.68

Probability

 = 0.025

Probability

 = 0.135

tFig. 6.11
Schematic illustration of confidence intervals and confidence levels of a sample mean

for a large sample size. The confidence interval at 95% confidence level is between the

two red points, and that at 68% is between the two blue points. SE stands for the

standard error, and 1.96 SE is approximately regarded as 2 SE in this figure.

c(0, dnorm(seq(1.96, 3.0, length=100)), 0.0),col=’red’)

points(c(-1,1), c(0,0), pch=19, col="blue")

points(0,0, pch=19)

points(c(-1.96,1.96),c(0,0),pch=19, col="red")

text(0,0.02, expression(bar(x)), cex=1.0)

text(-1.50,0.02, "SE", cex=1.0)

text(-0.60,0.02, "SE", cex=1.0)

text(1.50,0.02, "SE", cex=1.0)

text(0.60,0.02, "SE", cex=1.0)

text(0,0.2, "Probability

= 0.68")

arrows(-2.8,0.06,-2.35,0.01, length=0.1)

text(-2.5,0.09, "Probability")

In practice, we often regard 1.96 as 2.0, and the 2σ-error bar as the 95% confidence

interval.

Example 1. Estimate (a) the mean of the 1880-2015 global average annual mean

temperatures of the Earth, and (b) the confidence interval of the sample mean at

the 95% confidence level.

The answer is that the mean is −0.2034◦C and the confidence interval is

(−0.2545,−0.1524)◦C. These values may be obtained by the following R code.

#Estimate the mean and error bar for a large sample

#Confidence interval for NOAAGlobalTemp 1880-2015

setwd("/Users/sshen/Desktop/MyDocs/teach/SIOC290-ClimateMath2017/Book-ClimMath-Cambridge-PT1-2017-07-21/Data")

dat1 <- read.table("aravg.ann.land_ocean.90S.90N.v4.0.0.2015.txt")

dim(dat1)

tmean15=dat1[,2]

MeanEst=mean(tmean15)

sd1 =sd(tmean15)

StandErr=sd1/sqrt(length(tmean15))

ErrorMar = 1.96*StandErr

MeanEst

#[1] -0.2034367

print(c(MeanEst-ErrorMar, MeanEst+ErrorMar))

#[1] -0.2545055 -0.1523680

6.4.2.2 Estimate the required sample size

The standard error SE = σ/
√
n measures the accuracy of using a sample mean

as an estimate of the true mean when the standard deviation of the population is

given as σ. A practical problem is to determine the sample size when the accuracy

level SE is given. The formula is then

n =
(σ

SE

)2

. (6.24)

Example 2. The standard deviation of the global average annual mean tem-

perature is given to be 0.3◦C. The standard error is required to be less or equal to

0.05◦C. Find the minimal sample size required.

The solution is (0.3/0.05)2 = 36. The sample size must be greater than or equal

to 36.

6.4.2.3 Statistical inference for x̄ using a z-score

Figure 4.1 seems to suggest that the average of the global average annual mean

temperature anomalies from 1880 to 1939 is significantly below zero. We wish to

know whether we can statistically justify that this inference is true, with the proba-

bility of being wrong less than or equal to 0.025, or 2.5%. This probability is called

the significance level. Figure 6.12 shows the significance level as the tail probability

in (−∞, z0.025).

Z−score, p−value, and significance level

z: Standard normal random variable

P
ro

b
a

b
ili

ty
 d

e
n

si
ty

z0.025 =−1.96z−score

p−value

H0 regionH1 region

H0 probability 0.975

tFig. 6.12
The standard normal distribution chart for statistical inference: z-score, p-value for

x̄ < µ, and significance level 2.5%. The value z0.025 = −1.96 is called the critical

z-score for this hypothesis test.

Figure 6.12 can be generated by the following R code.

rm(list=ls())

par(mgp=c(1.4,0.5,0))

curve(dnorm(x,0,1), xlim=c(-3,3), lwd=3,

main=’Z-score, p-value, and significance level’,

xlab="z: standard normal random variable",

ylab=’Probability density’,xaxt="n",

cex.lab=1.2, ylim=c(-0.02,0.5))

lines(c(-3,3),c(0,0))

lines(c(-1.96,-1.96),c(0, dnorm(-1.96)),col=’red’)

polygon(c(-3.0,seq(-3.0, -2.5, length=100), -2.5),

c(0, dnorm(seq(-3.0, -2.5, length=100)), 0.0),col=’skyblue’)

points(-1.96,0, pch=19, col="red")

points(-2.5,0,pch=19, col="skyblue")

text(-1.8,-0.02, expression(z[0.025]), cex=1.3)

text(-2.40,-0.02, "z-score", cex=1.1)

arrows(-2.8,0.06,-2.6,0.003, length=0.1)

text(-2.5,0.09, "p-value", cex=1.3)

To make the justification, we compute a parameter

z =
x̄− µ
S/
√
n
, (6.25)

where x̄ is the sample mean, S is the sample standard deviation, and n is the sample

size. This z value is called the z-statistic, or simply the z-score, which follows the

standard normal distribution, because the sample size n = 60 is large. From the z-

score, we can determine the probability of the random variable z being in a certain

interval, such as (−∞, zs). This significance level 2.5% corresponds to zs = −1.96

according to Fig. 6.11. Thus, the z-score can quantify how significantly is z different

from zero, which is equivalent to the sample mean being significantly different from

the assumed or given value. The associated probability, e.g., the probability in

(−∞, z), is called the p-value that measures the chance of a wrong inference. We

want this p-value to be small in order to be able to claim significance. The typical

significance levels used in practice are 5%, 2.5%, and 1%. Choosing which level to

use depends on the nature of the problem. For drought conditions, one may use 5%,

while for flood control and dam design, one may choose 1%. A statistical inference

is significant when the p-value is less than the given significance level.

For our problem of 60 years of data from 1880-1939, the sample size is n = 60. The

sample mean can be computed by an R command xbar=mean(tmean15[1:60]),

and the sample standard deviation can be computed by S=sd(tmean15[1:60]).

The results are x̄ = −0.4500 and S = 0.1109.

When µ = 0, the z-score computed using formula (6.25) is -31.43. The probability

in the interval (−∞, z) is tiny, namely 4.4× 10−217, which can be regarded as zero.

We can thus conclude that the sample mean from 1880-1939 is significantly less

than zero at a p-value equal to 4.4 × 10−217, which means tat our conclusion is

correct at a significance level of 2.5%.

A formal statistical terminology for the above inference is called hypothesis test,

which tests a null hypothesis

H0 : x̄ ≥ 0, (Null hypothesis: the mean is not smaller than zero) (6.26)

and an alternative hypothesis

H1 : x̄ < 0, (Alternative hypothesis: the mean is smaller than zero). (6.27)

Our question of the average temperature from 1880-1939 is to reject the null hy-

pothesis and confirm the alternative hypothesis. The method is to examine where

the z-score point is on a standard normal distribution chart and what is the corre-

sponding p-value. Thus, the statistical inference becomes a problem of z-score and

p-value using the standard normal distribution chart (See Fig. 6.12). Our z-score

is -31.43 in the H1 region, and our p-value is 4.4 × 10−217, much less than 0.025.

We thus accept the alternative hypothesis, i.e., we reject the null hypothesis with

a tiny p-value 4.4 × 10−217. We conclude that the 1880-1939 mean temperature is

significantly less than zero.

One can similarly formulate a hypothesis test for a warming period from 1981-

2015 and ask whether the average temperature during this period is significantly

greater than zero. The two hypotheses are

H0 : x̄ ≤ 0, (Null hypothesis: the mean is not greater than zero) (6.28)

and an alternative hypothesis

H1 : x̄ > 0, (Alternative hypothesis: the mean is greater than zero). (6.29)

One can follow the same procedure to compute the z-score, see whether it in the

H0 region or H1 region, and compute the p-value. Finally an inference can be made

based on the z-score and the p-value.

6.4.3 Mean of a small sample size: t-test

6.4.3.1 H1 : T̄ > 0 test for the 2006-2016 global average annual
temperature

The hypothesis test in the above subsection is based on the standard normal dis-

tribution for the cases of a large sample size, say, at least 30. When the sample size

is small, the sample mean satisfies a t-distribution, not a normal distribution.

Thus, when the sample size n is small, say less than 10, and the variance is to be

estimated, then we should use a t-distribution, because

t =
x̄− µ
S/
√
n

(6.30)

follows a t-distribution of the degrees-of-freedom (df or dof) equal to n−1. Figure 6.9

shows that the t-distribution is flatter than the corresponding normal distribution

(of the same sample mean and sample variance) and has fatter tails. When the dof

increases to infinity, the t-distribution approaches the normal distribution of the

sample mean and sample variance.

The hypothesis test procedure is the same as before, except the standard normal

distribution is now replaced by the t-distribution with dof equal to n− 1.

Example 3. Test whether the global average annual mean temperature from

2006-2015 is significantly greater than the 1961-1990 climatology, i.e., whether the

sample mean is greater than zero.

The two hypotheses are

H0 : T̄ ≤ 0, (Null hypothesis: The 2006-2015 mean is not greater than zero)

(6.31)

and

H1 : T̄ > 0, (Alternative hypothesis: The mean is greater than zero). (6.32)

One can follow the same procedure as in the last section to compute the t-score,

see whether it in the H0 region or H1 region, and to compute the p-value. We have

10 years of data from 2006-2015, which is a small sample with a sample size n = 10.

The following R code computes the sample mean 0.4107, standard deviation 0.1023,

t-core 12.6931, p-value 2.383058×10−7, and the critical t-value: t0.975 = 2.2622. The

t-score is in the alternative hypothesis region with a very small p-value. Therefore,

we conclude that the average temperature from 2006-2015 is significantly greater

than zero.

#Hypothesis test for NOAAGlobalTemp 2006-2015

setwd("/Users/sshen/Desktop/MyDocs/teach/SIOC290-ClimateMath2017/Book-ClimMath-Cambridge-PT1-2017-07-21/Data")

dat1 <- read.table("aravg.ann.land_ocean.90S.90N.v4.0.0.2015.txt")

tm0615=dat1[127:136,2]

MeanEst=mean(tm0615)

MeanEst

#[1] 0.4107391

sd1 =sd(tm0615)

sd1

#[1] 0.1023293

n=10

t_score=(MeanEst -0)/(sd1/sqrt(n))

t_score

#[1] 12.69306

1-pt(t_score, df=n-1)

#[1] 2.383058e-07 #p-value

qt(1-0.025, df=n-1)

#[1] 2.262157 #critical t-score

For the standard normal distribution, z0.975 = 1.96 < t0.975 = 2.2622, because

the t-distribution is flatter than the corresponding normal distribution and has

fatter tails. Thus, the critical t-scores are larger.

Clearly, one should use the t-test to make the inference when the sample size is

very very small, say, n = 7. However, it is unclear whether one should use the t-test

or the z-test if the sample size is, say, 27. The recommendation is to always use the

t-test if you are not sure whether the z-test is applicable, because t-test has been

mathematically proven to be accurate, while the z-test is an approximation. Since

the t-distribution approaches the normal distribution when dof approaches infinity,

the t-test will yield the same result as the z-test when the z-test is applicable.

6.4.3.2 Compare temperatures of two short periods

A common question in climate science is whether the temperature in one decade is

significantly greater than the temperature in another. The task is thus to compare

the temperatures of two decades.

The general problem is whether the sample mean of the data {T11, T12, · · · , T1n1}
and the sample mean of another set of data {T21, T22, · · · , T2n2

} are significantly

different from each other. The t-statistic for this problem can be computed using

the following formula:

t =
T̄2 − T̄1

Spooled

√
1
n1

+ 1
n2

, (6.33)

where T̄1 and T̄2 are the two sample means

T̄1 =
T11 + T12 + · · ·+ T1n1

n1
, (6.34)

T̄2 =
T21 + T22 + · · ·+ T2n2

n2
, (6.35)

Spooled is the pooled sample standard deviation

Spooled =

√
(n1 − 1)S2

1 + (n2 − 1)S2
2

n1 + n2 − 2
, (6.36)

and S1 and S2 are the two sample standard deviations

S1 =

√
(T11 − S̄1)2 + (T12 − S̄1)2 + · · ·+ (T1n1

− S̄1)2

n1 − 1
, (6.37)

S2 =

√
(T21 − S̄2)2 + (T22 − S̄2)2 + · · ·+ (T2n1

− S̄2)2

n2 − 1
. (6.38)

This t-statistic follows a t-distribution of dof equal to n1 + n2 − 2.

Example 4. Investigate whether the global average annual mean temperature

in the decade of 1991-2000 is significantly different from the previous decade.

The two statistical hypotheses are

H0 : T̄1 = T̄2 (Null hypothesis: The temperatures of the two decades are the same)

(6.39)

and

H1 : T̄1 6= T̄2 (Alternative hypothesis: The two decades are different). (6.40)

This is a two-sided test. The alternative region is a union of both sides (−∞, t0.025)

and (t0.975,∞) if the significance level is set to be 5%. We will compute the t-score

using formula (6.33). The result is below:

a. The t-score is 2.5784,

b. The H0 region is (−2.1009, 2.1009),

c. The p-value is 0.009470,

d. The mean temperature anomalies in 1981-1990 is 0.036862◦C, and

e. The mean of the temperature anomalies in 1991-2000 is 0.161255◦C.

The t-score is outside the H0 region. Thus, the H0 is rejected. The 1991-2000

mean temperature anomaly 0.161255◦C is significantly different from the 1981-1990

mean 0.036862◦C with a p-value equal to 1%. The temperature difference of the

two decades is 0.124392 = 0.161255 − 0.036862◦C which is significantly different

from zero.

The above results were obtained by the following R code.

#Hypothesis test for global temp for 1981-1990 and 1991-2000

setwd("/Users/sshen/Desktop/MyDocs/teach/SIOC290-ClimateMath2017/Book-ClimMath-Cambridge-PT1-2017-07-21/Data")

dat1 <- read.table("aravg.ann.land_ocean.90S.90N.v4.0.0.2015.txt")

tm8190=dat1[102:111,2]

tm9100=dat1[112:121,2]

barT1=mean(tm8190)

barT2=mean(tm9100)

S1sd=sd(tm8190)

S2sd=sd(tm9100)

n1=n2=10

Spool=sqrt(((n1 - 1)*S1sd^2 + (n2 - 1)*S2sd^2)/(n1 + n2 -2))

t = (barT2 - barT1)/(Spool*sqrt(1/n1 + 1/n2))

tlow = qt(0.025, df= n1 + n2 -2)

tup = qt(0.975, df= n1 + n2 -2)

paste("t-score=", round(t,digits=5),

"tlow=", round(tlow,digits=5),

"tup=", round(tup,digits=5))

#[1] "t-score= 2.57836 tlow= -2.10092 tup= 2.10092"

pvalue = 1-pt(t, df= n1 + n2 -2)

paste("p-value=", pvalue)

#[1] "p-value= 0.00947040009284539"

paste("1981-90 temp=", barT1, "1991-00 temp=",barT2)

#[1] "1981-90 temp= 0.0368621 1991-00 temp= 0.1612545"

barT2 - barT1

#[1] 0.1243924

The above is a two-sided test to determine if a sample mean is different from

zero. However, the time series of the global temperature in Fig. 6.1 had already

indicated that the 1991-2000 decade is warmer than 1981-1990. If we take this as

a given prior knowledge, then we should use the one-sided test with the following

two hypotheses

H0 : T̄1 > T̄2 (Null hypothesis: The temperatures of the two decades are the same)

(6.41)

and

H1 : T̄1 ≤ T̄2 (Alternative hypothesis: The two decades are different). (6.42)

The t-score is the same as the above, but the critical t-score is now t0.95 = 1.734.

Again, the t-score 2.57836 is in the H1 region.

6.5 Statistical inference of a linear trend

When studying climate change, one often makes a linear regression and ask if a

linear trend is significantly positive, negative, and different from zero. For example,

is the linear trend of the global average annual mean temperature from 1880-2015

shown in Fig. 6.1 significantly greater than zero? This is again a t-test problem.

The estimated trend b̂ from a linear regression follows a t-distribution.

With the given data pairs {(xi, yi), i = 1, 2, · · · , n} and their regression line

discussed in Chapter 3

ŷ = b̂0 + b̂1x, (6.43)

the t-score for the trend b̂1 is defined by the following formula

t =
b̂1

Sn
√
Sxx

, dof = n=2. (6.44)

Here,

Sn =

√
SSE

n− 2
(6.45)

with the sum of squared errors SSE defined as

SSE =

n∑
i=1

[
yi − (b̄0 + b̄1xi)

]2
, (6.46)

and

Sxx =
n∑
i=1

(xi − x̄)2 (6.47)

with the sample mean of x-data x̄ defined as

x̄ =

∑n
i=1 xi
n

. (6.48)

The dof of this t-score is n − 2. With this dof and a specified significance level,

one can then find the critical t-values and determine whether the t-score is in the

H0 region or H1 region.

We wish to use the t-inference procedure to check if the 1880-2015 temperature

anomalies trend is significantly greater than zero. The statistical hypotheses are

H0 : b̄1 < 0 (Null hypothesis: The trend is not greater than zero) (6.49)

and

H1 : b̄1 ≥ 0 (Alternative hypothesis: The trend is greater than zero). (6.50)

This is a one-sided test. The critical t-score is now t0.95 = 1.734. The summary of

the linear regression command gives the needed statistical values:

a. The trend is b̂1 = 0.667791◦C per century,

b. The t-score for b̂1 is 20.05,

c. The p-value is 1× 10−16, and

d. The critical t value is 1.6563 by an R command qt(0.95, 134).

Clearly, the t-score 20.05 is in the H1 region. We conclude that the trend is signif-

icantly greater than zero with a p-value equal to 1× 10−16.

The above results were computed by the following R code.

setwd("/Users/sshen/Desktop/MyDocs/teach/SIOC290-ClimateMath2017/Book-ClimMath-Cambridge-PT1-2017-07-21/Data")

dat1 <- read.table("aravg.ann.land_ocean.90S.90N.v4.0.0.2015.txt")

tm=dat1[,2]

x = 1880:2015

summary(lm(tm ~ x))

#Coefficients:

Estimate Std. Error t value Pr(>|t|)

#(Intercept) -1.321e+01 6.489e-01 -20.36 <2e-16 ***

x 6.678e-03 3.331e-04 20.05 <2e-16 ***

Sometimes one may need to check if the trend is greater than a specified value

β1. Then, the t-score is defined by the following formula

t =
b̂1 − β1

Sn
√
Sxx

, dof = n-2. (6.51)

In this case, the t-score must be computed from the formulas, not from the summary

of a linear regression by R.

6.6 Free online statistics tutorials

This statistics chapter has presented a very brief course in statistics, but it pro-

vides a sufficient statistics basics and R codes for doing simple statistical analysis

of climate data. This chapter also provides the foundation for expanding a reader’s

statistics knowledge and skills by studying more comprehensive or advanced materi-

als on climate statistics. A few free statistics tutorials available online are introduced

below.

The manuscript by David Stephenson of the University of Reading, the United

Kingdom, provides the basics of statistics with climate data as examples:

http://empslocal.ex.ac.uk/people/staff/dbs202/cag/courses/MT37C/course-d.pdf

This online manuscript is appropriate for readers who have virtually no statistics

background.

Eric Gilleland of NCAR authored a slide for using R to do climate statistics,

particular the analysis of extreme values:

http://www.maths.lth.se/seamocs/meetings/

Malta_Posters_and_Talks/MaltaShortCourseSlides4.pdf

This set of lecture notes provides many R codes for analyzing climate data, such

as risk estimation. The material is very useful for climate data users, and does not

require much mathematical background.

The “Statistical methods for the analysis of simulated and observed climate data

applied in projects and institutions dealing with climate change impact and adap-

tation” by the Climate Service Center, Hamburg, Germany, is particularly useful

for weather and climate data.

http://www.climate-service-center.de/imperia/md/content/csc/

projekte/csc-report13_englisch_final-mit_umschlag.pdf

This online report provides a “user’s manual” for a large number of statistical meth-

ods used for climate data analysis with real climate data examples. The material

is an excellent references fro users of the statistics for climate data.

References

[1] Climate Service Center, Germany, 2013: Statistical methods for the analysis of

simulated and observed climate data. Report 13, Version 2.0,

http://www.climate-service-center.de/imperia/md/content/csc/

projekte/csc-report13_englisch_final-mit_umschlag.pdf

[2] Gilleland, E., 2009: Statistical software for weather and climate: The R pro-

gramming language.

http://www.maths.lth.se/seamocs/meetings/Malta_Posters_and_Talks/MaltaShortCourseSlides4.pdf

[3] Stephenson, D.B., 2005: Data analysis methods in weather and climate research.

Lecture notes, 98pp:

http://empslocal.ex.ac.uk/people/staff/dbs202/cag/courses/MT37C/course-d.pdf

148

Exercises

6.1 Assume that the average bank balance of U.S. residents is $5, 000. Assume

that the bank balances are normally distributed. A group of 25 samples was

taken. The sample data have a mean equal to $5, 000 and standard deviation of

$1, 000. Find the confidence interval of this group of samples at 95% confidence

level.

6.2 The two most commonly used datasets of global ocean and land average an-

nual mean surface air temperature (SAT) anomalies are those credited to the

research groups led by Dr. James E. Hansen of NASA (relative to 1951-1980

climatology period) and Professor Phil Jones, of the University of East Anglia

(relative to 1961-1990 climatology period):

http://cdiac.ornl.gov/trends/temp/hansen/hansen.html

http://cdiac.ornl.gov/trends/temp/jonescru/jones.html

(a) Find the average anomalies for each period of 15 years, starting at 1880.

(b) Use the t-distribution to find the confidence interval of each 15-year period

SAT average at the 95% confidence level using the t-distribution. You can use

either Hansen’s data or Jones’ data. Figure SPM.1(a) of IPCC 2013 (AR4) is

a helpful reference.

(c) Find the hottest and the coldest 15-year periods from 1880-2014, which

is divided into nine disjoint 15-year periods. Use the t-distribution to check

whether the temperature difference in the hottest 15-year period minus that

in the coldest 15-year period is significantly greater than zero. Do this problem

for either Hansen’s data or Jones data.

(d) Discuss the differences between the Hansen and Jones datasets.

6.3 To test if the average of temperature in Period 1 is significantly different from

that in Period 2, one can use the t-statistic

t∗ =
x̄1 − x̄2√
s21
n1

+
s22
n2

, (6.52)

where x̄i and s2
i are the sample mean and variance of the Period i (i = 1, 2).

The degree of freedom (i.e., df) of the relevant t-distribution is equal to the

smaller n1−1 and n2−1. The null hypothesis is that the two averages do not

have significant differences, i.e., their difference is zero (in a statistical sense

with a confidence interval). The alternative hypothesis is that the difference

is significantly different from zero. Now you can choose to use a one-sided

test when the difference is positive. Use a significance level of 5% or 1%, or

another level of at your own choosing.

(a) Choose two 15-year periods which have very different average anomalies.

Use the higher one minus the lower one. Use the t-test method for a one-sided

test to check if the difference is significantly greater than zero. Do this for the

global average annual mean temperature data from either Hansen’s dataset

or Jones dataset.

(b) Choose two 15-year periods which have very similar average anomalies.

Use the higher one minus the lower one. Use the t-test method for a two-sided

test to check if the difference is not significantly different from zero. Do this

for the global average annual mean temperature data from either Hansen’s

dataset or Jones dataset.

Author index

151

Subject index

152

	Preface
	Acknowledgements
	Basics of R Programming
	Download and install R and R-Studio
	R Tutorial
	R as a smart calculator
	Define a sequence in R
	Define a function in R
	Plot with R
	Symbolic calculations by R
	Vectors and matrices
	Simple statistics by R

	Online Tutorials
	Youtube tutorial: for true beginners
	Youtube tutorial: for some basic statistical summaries
	Youtube tutorial: Input data by reading a csv file into R

	References
	Exercises

	R Analysis of Incomplete Climate Data
	The missing data problem
	Read NOAAGlobalTemp and form the space-time data matrix
	Read the downloaded data
	Plot the temperature data map of a given month
	Extract the data for a specified region
	Extract data from only one grid box

	Spatial averages and their trends
	Compute and plot the global area-weighted average of monthly data
	Percent coverage of the NOAAGlobalTemp
	Difference from the NOAA NCEI monthly mean global averages
	Which month has the strongest trend?
	Spatial average of annual data
	Nonlinear trend of the global average annual mean data

	Spatial characteristics of the temperature change trends
	20th century temperature trend
	20th century temperature trend computed under a relaxed condition
	Trend pattern for the four decades of consecutive warming: 1976-2016

	References
	Exercises

	R Graphics for Climate Science
	Two dimensional line plots and setups of margins and labels
	Plot two different time series on the same plot
	Figure setups: margins, fonts, mathematical symbols, and more
	Plot two or more panels on the same figure

	Contour color maps
	Basic principles for an R contour plot
	Plot contour color maps for random values on a map
	Plot contour maps from climate model data in NetCDF files

	Plot wind velocity field on a map
	Plot a wind field using arrow.plot
	Plot a sea wind field from netCDF data

	ggplot for data

	References
	Exercises

	Advanced R Analysis and Plotting for Climate Data
	Ideas of EOF, PC and variances from SVD
	2Dim spatial domain EOFs and 1Dim temporal PCs
	Generate synthetic data by R
	SVD for the synthetic data: EOFs, variances and PCs

	From climate data download to EOF and PC visualization
	Download and visualize the NCEP temperature data
	Space-time data matrix and SVD

	Area-weighted average and spatial distribution of trend
	Global average and PC1
	Spatial pattern of linear trends

	References
	Exercises

	Climate Data Matrices and Linear Algebra
	Matrix as a data array
	Matrix algebra
	Matrix equality, addition and subtraction
	Matrix multiplication

	A set of linear equations
	Eigenvalues and eigenvectors of a square space matrix
	An SVD representation model for space-time data
	SVD analysis of Southern Oscillation Index
	Standardized SLP data and SOI
	Weighted SOI computed by the SVD method
	Visualization of the ENSO mode computed from the SVD method

	Mass balance for chemical equations in marine chemistry
	Multivariate linear regression using matrix notations

	References
	Exercises

	Basic Statistical Methods for Climate Data Analysis
	Statistical indices from the global temperature data from 1880 to 2015
	Commonly used statistical plots
	Histogram of a set of data
	Box plot
	Scatter plot
	QQ-plot

	Probability distributions
	What is a probability distribution?
	Normal distribution
	Student's t-distribution

	Estimate and its error
	Probability of a sample inside a confidence interval
	Mean of a large sample size: Approximately normal distribution
	Mean of a small sample size: t-test

	Statistical inference of a linear trend
	Free online statistics tutorials

	References
	Exercises

	Author index
	Subject index

