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Abstract. This study describes a method of calculating the
mean squared error (MSE) incurred when estimating the
spherical harmonic coefficients of a climatological field
that is sampled at a small network of points. The method
can also be applied to the coefficients of any other set of
orthonormal basis functions that are defined on the
sphere. It, therefore, provides a formalism that can be
applied in a variety of contexts, such as in climate change
detection, where inferences are attempted about finger-
print coefficients that are imperfectly estimated from ob-
servational data. By incorporating the fingerprint as part
of a set of basis functions, the methodology can be used to
estimate the sampling error in the fingerprint coefficient.
The MSE is expressed in terms of the spherical harmonics
(or other orthonormal expansion) of the empirical ortho-
gonal functions (EOFs), the locations of the points in the
network and a set of weights that are applied at these
points. The weights are optimised by minimising the ex-
pected MSE. The method is applied to a number of
network configurations using monthly-mean screen tem-
perature and 500 mb height simulated by the Canadian
Climate Centre 2nd generation general circulation model
in an ensemble of six 10-year simulations. In comparison
with uniform weighting, optimal weighting can reduce
the MSE by an order of magnitude or more for some
spherical harmonic coefficients and some network con-
figurations. Also, the MSEs vary seasonally for each
network. In particular, the relative MSE of low order
spherical harmonic coefficients is found to be larger in
DJF than in JJA. We demonstrate how MSEs improve
with increasing network density and identify graphically,
the coefficients that can be estimated reliably with each
network configuration.

1 Introduction

The errors incurred by using the data from a limited
number of observation stations to estimate a climate-
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index, such as the globally averaged annual mean temper-
ature, have been an important concern for climatologists
in recent years, particularly in the context of climate
change detection, where a great deal of attention has been
paid to the temporal variations of globally and hemi-
spherically averaged temperature. We therefore have two
objectives. The first is to provide a method to evaluate the
minimal mean squared sampling errors (MSEs) incurred
in estimating the spherical harmonic coefficients of a clim-
atological field from observations taken at a network with
a small number of stations. The method is easily adapted
to the problem of evaluating the sampling error of the
estimated time varying coefficients of an arbitrary func-
tion on the sphere (such as a climate change ‘‘fingerprint’’;
Barnett and Schlesinger 1987; Barnett et al. 1991; Hassel-
mann 1993; North et al. 1995), provided the function can
be incorporated into a complete basis for the square
integrable functions on the sphere. The second objective is
to illustrate the methodology by applying it to output of
the Canadian Climate Centre 2nd generation general cir-
culation model (CCC GCM2; McFarlane et al. 1992; Boer
et al. 1992) sampled by a number of observing networks.
We show that the low-order spherical harmonic coeffi-
cients can be reasonably well estimated from a small
network of judiciously located stations. We will also show
that the MSE varies seasonally in accordance with sea-
sonal changes in the variance/covariance structure of the
climatological fields we consider.

Our approach of optimally weighting the observations
to minimise the MSE is similar to that often used in
objective analysis (Gandin 1963; Thiebaux 1976;
Thiebaux and Pedder 1987; Daley 1991; Vinnikov et al.
1990; Reynolds and Smith 1994; Smith et al. 1994). It
differs from objective analysis in the way in which the
spatial covariance function of the field is represented.
Rather than using simple models that characterise the
covariance between locations as a function of separation,
we use the full covariance structure of the field as repre-
sented by its empirical orthogonal functions (EOFs; the
eigen-functions of the associated covariance kernel).

Previous work by one of us has been concerned with
computing the MSEs using spatial covariance structure
estimates derived from observations (Shen et al. 1994) and
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from a simple linear energy balance model (Shen et al.
1996). In the latter paper it is shown that the climate
simulated by a linear white-noise-forced energy-balance
model with constant coefficients has a spatial covariance
structure that is homogeneous on the sphere and therefore
has spherical harmonics as its eigen-functions. Climate
models that are more complex than this, and obser-
vations, have covariance structures that are not homo-
geneous in space and are thus difficult to characterise
analytically. It then becomes important to have available
sufficiently large samples that can be used to construct
accurate estimates of the spatial covariance structure and
the associated eigen-functions.

The present study is distinct from that of Shen et al.
(1994) in several respects. Shen et al. use the Jones et al.
(1986a, b) screen-temperature data set. In contrast, we use
CCC GCM2 simulated screen temperature and 500 mb
height to examine sampling errors in monthly mean
spherical harmonic coefficients. We also examine how the
errors vary with the annual cycle. We use a cross-valida-
tion technique to insure that our MSE estimates remain
robust when the optimal weights are used with indepen-
dent data from the same GCM. We show that unvalidated
MSE estimates are optimistically biased when small sam-
ples are used to estimate the field’s spatial covariance
structure. Finally, our method for estimating the EOFs is
different from that used by Shen et al. (1994).

The plan for the remainder of this study is as follows:
the equation for the MSE is derived in Sect. 2. The climate
model and its output are briefly described in Sect. 3. In
Section 4, we describe the computation of the EOFs of
the simulated climate data and the eigen-spectra of
monthly mean 500 mb height (Z

500
) and the screen temp-

erature (¹
s
). In Sect. 5 we describe the computation of the

optimal weights for estimating spherical harmonic co-
efficients when observations are taken from small net-
works. In comparison with equal weighting of all network
locations, optimal weighting significantly reduces the ex-
pected sampling error. Section 6 contains a summary and
conclusions.

2 The MSE equation

Meteorological fields are regarded as lying on a perfect
sphere with unit radius. The unit outward normal vector
nl "(cos/ cosh, cos/ sinh, sin/) , where / and h are longi-
tude and latitude respectively, gives the position on the
sphere. A nonuniform time varying anomaly field S (nl , t) ,
where S is either monthly mean ¹

s
or Z

500
, and where

anomalies are taken relative to the annual cycle, can be
expanded in spherical harmonics ½

lm
as

S(nl , t)"
=
+
l/0

l
+

m/~l

S
lm

(t) Y
lm

(nl ). (1)

The spherical harmonic coefficient S
lm

(t) is determined by

S
lm

(t)" :
4n

dnl S(nl , t) ½*
lm

(nl ) , (2)

where * denotes complex conjugate. Our objective is to
calculate the mean squared error incurred in estimating

S
lm

(t) from observations taken at a small number of points
on the sphere.

Suppose we sample the anomaly field at N points
(nl

1
, nl

2
,2, nl

N
). To estimate S

lm
(t) we approximate Eq. (2)

as a Riemann sum

S]
lm

(t)"
N
+
j/1
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j
, t) ½*
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j
) w(lm)
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(3)

in which w(lm)
j

is the area of a region on the surface of the
unit sphere around the point nl

j
. These areas, which we

will simply refer to as weights w(lm)
j

, are of course con-
strained by

N
+
j/1

w(lm)
j

"4n. (4)

Our problem then is to select a set of optimal weights so
that the estimated S]

lm
(t) will be as close as possible to the

exact S
lm

(t) on average. That is, we wish to find the weights
that minimise the mean squared error

e2
(lm)

"SDS
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(t)!S]
lm

(t) D2T, (5)

where S·T denotes ensemble average (i.e., the expectation
operator). We assume, for now, that the monthly means of
S are the output of a 2nd order stationary stochastic
process so that the covariance structure of S is the same at
all times of the year. We also assume that the process is
ergodic to ensure that the covariance structure is esti-
mable. Later we will relax the temporal stationarity as-
sumption. In addition, we make the regularity assumption
that each realisation of S is square integrable on the
sphere so that it can be represented as an expansion in
spherical harmonics.

The MSE Eq. (5) can be re-expressed as

e2
(lm)

"SDS
(lm)

(t) D2T!2 R (SS
(lm)(t)

S]
(lm)

(t)T)#SDS]
(lm)

(t) D2T

": dnl : dnl @ o (nl , nl @)½*
lm

(nl )½
lm

(nl @)

!2 R A
N
+
i/1

w(lm)
i

: dnl o (nl , nl
i
)½*

lm
(nl ) ½

lm
(nl

i
)B

#

N
+

i,j/1

w(lm)
i

w(lm)
j

o (nl
i
, nl

j
)½*

lm
(nl

i
)½

lm
(nl

j
) (6)

where R(·) denotes the real part of (·) and

o(nl , nl @)"SS(nl , t) S (nl @, t)T (7)

is the spatial covariance. This covariance may be viewed
as the kernel of an integral operator on the unit sphere,
whose eigen-functions t

k
(nl ) (called EOFs or eigen-modes)

and eigen-values j
k

(the variances of the corresponding
eigen-function coefficients) are defined by

: dnl @ o(nl , nl @)t
k
(nl @)"j

k
t

k
(nl ), (k"1, 2, 3,2). (8)

Our regularity assumption ensures that the EOFs are
orthogonal so that they form a complete basis for the
square integrable functions defined on the unit sphere just
as is the case for the spherical harmonics. The EOFs are
also the principal axes of the covariance kernel. That is,

o(nl , nl @ )"
=
+
k/1

j
k
t
k
(nl )t

k
(nl @). (9)
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Fig. 1. Standard deviation of CCC GCM2
monthly mean screen temperature in DJF.
Contour interval: 0.5 °C. Standard
deviations greater than 1 °C are shaded

Using this fact, one can then easily demonstrate that the
anomaly field S can be expanded in the eigen-functions as

S(nl , t)"
=
+
k/1

S
k
(t)t

k
(nl ), (10)

where

S
k
(t)": dnl S (nl , t)t

k
(nl ). (11)

These coefficients, often referred to as principal compon-
ents, are uncorrelated and have variance

SDS
k
(t) D2T"j

k
. (12)

The EOFs can be represented by a spherical harmonic
function expansion

t
k
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Using this representation, expression (6) for the MSE can
be re-written as (Shen et al. 1994; Kim et al. 1996)
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The summation with respect to the station number i is
simply a numerical approximation to the integral (14).
Hence, the sampling error for a given spherical harmonic
coefficient is the accumulation of the numerical integra-
tion errors for all the successive EOFs weighted by the
corresponding eigen-values.

3 CCC GCM2

CCC GCM2 is a spectral model with T32 horizontal
resolution and 10 levels in the vertical. The model and its
climate are described by McFarlane et al. (1992). CCC
GCM2 can be run in a variety of configurations. These
include an atmosphere only mode, in which the sea-sur-
face temperature (SST) and sea—ice extent are prescribed
to follow either the climatological annual cycle or time
varying observations, and coupled modes in which the

model is run with either a mixed layer or a dynamical
ocean model. A thermodynamic ice model is used in both
coupled modes.

The data used in this study were obtained from an
ensemble of six 10-year AMIP simulations (see Gates
1992, for a description of AMIP, the Atmospheric Model
Intercomparison Project). Each simulation is started from
different initial conditions and is forced with the observed
evolution of the SST and sea—ice extent between January,
1979 and December, 1988. Zwiers (1996) describes the
CCC GCM2 AMIP experiment in detail. Five months of
data were discarded from the beginning of each simula-
tion to allow equilibration of the land surface processes.
The last month was also not used. We therefore had
available 114 monthly means of ¹

s
and Z

500
from each of

the six simulations (i.e., a total of 684 monthly means).
The data were processed in three steps prior to analysis.

First, to keep the eigen-analysis to a manageable size, we
smoothed the data spatially by truncating it to T21 spec-
tral resolution. That is, the time dependent spherical har-
monic coefficients S

lm
(t) for l'21 were set to zero. For

both ¹
s
and Z

500
, the unresolved scales contain very little

variance and therefore do not substantially affect our
results. Secondly, we removed the 114 month means from
each simulation to remove the effects of minor differences
in the way in which the simulations were performed
(Zwiers 1996). Finally, the annual cycle common to the six
114 month time series was removed by fitting the main
Fourier component and its first three harmonics to the
ensemble mean time series.

We now briefly discuss some aspects of the spatial
covariance structure simulated by CCC GCM2 and show
that this structure is both inhomogeneous and aniso-
tropic. It is therefore necessary to use EOFs to fully
account for the details of this complex covariance struc-
ture when deriving optimal weights to minimise the MSE
(Eq. (6)) of spherical harmonic (or other basis function)
coefficient estimates.

Figures 1 and 2 display the standard deviations of
monthly mean ¹

s
and Z

500
respectively in DJF. Figure 1

can be compared with Shea (1986) who displays the in-
terannual variance of January mean ¹

s
(see Shea’s Figs.

TMP-09) as computed from station data. The structure
and magnitude of the screen temperature variability
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Fig. 2. Standard deviation of CCC GCM2
monthly mean 500 hPa height in DJF.
Contour interval: 5 m. Standard deviations
greater than 10 m are shaded

a

b

Fig. 3a,b. The correlation in DJF between
CCC GCM2 monthly mean Z

500
at a fixed

point and all other locations on the globe:
a 47 °N, 90 °W, and b 2 °N, 180 °W.
Contour interval: 0.1. Correlations with
magnitude greater than 0.4 are shaded

simulated by CCC GCM2 compares very well with that
which is observed. Figure 2 can be compared with Oort
(1983) who displays a comparable diagram computed
from 1958—73 NMC analyses (see Oort’s Fig. A26).
Z

500
variations simulated by CCC GCM2 are somewhat

weaker than are observed (see also Zwiers 1996) but their
structure is highly realistic.

Figure 3 displays teleconnection maps for monthly
mean Z

500
simulated in DJF for reference points fixed at

(47 °N, 90 °W) and (2 °N, 180 °W). Figure 3a shows an
asymmetrical wave train in the zonal direction with a de-

correlation length of about 2,500 km. Weak anti-corre-
lated nodes can be seen to the northeast and southeast of
the reference point. Behaviour in the Southern Hemi-
sphere mid-latitudes (not shown) is similar. Figure 3b
shows that DJF monthly mean 500 mb heights are very
strongly correlated every where in the tropics. Zwiers
(1996) shows that most of this coherent variation is driven
by variations in tropical SST. We also see evidence of the
model’s extra-tropical dynamical response to SST vari-
ation in the form of the PNA pattern (Wallace and Gutz-
ler 1981) that can be seen over the northeastern Pacific
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and North America. The JJA teleconnection patterns (not
shown) are similar, except that the PNA is not evident in
patterns centred on tropical locations.

4 The EOFs

Since the GCM output is represented with spherical
harmonic expansions it is advantageous to compute the
EOFs in the spectral domain as well. Therefore, instead of
discretising the eigen-value problem for the linear integral
operator in physical space (see Eq. (8)) we re-express the
operator in the spectral domain. Since the data are trun-
cated at T21 resolution, the equivalent matrix/vector
eigen-problem is

L
+

l{/0

l{
+

m{/~l{

SS
lm

S
l{m{

T t*
k, l{m{

"j
k
t
k, lm

(k"1, 2, 3,2),

(16)

where ¸"21.
In the GCM a fast numerical quadrature scheme is used

to transform back and forth between spectral and physical
space. This operator is a linear transformation acting on
the field at the model’s grid points. Hence there is a natu-
ral discretisation of Eq. (8) that solves the same eigen-
analysis problem in physical space as Eq. (16).

It is computationally advantageous to solve a global or
hemispheric eigen-problem in the spectral domain rather
than the physical domain because it is more compactly
represented and because area weighting of the model’s
grid points is implicitly taken into account. The spectral
form of the problem is solved using conventional software
by re-expressing Eq. (16) in real matrix-vector form as

R
S
tl

Sk
"j

k
tl
Sk

(17)

where R
S

is the (¸#1)2](¸#1)2 covariance matrix of
the real and imaginary components of the spectral coeffi-
cients of the spectrally truncated anomaly field S, and
tl
Sk

is the corresponding (¸#1)2 dimensional vector that
contains the real and imaginary spherical harmonic coeffi-
cients of the kth eigen-function. When using T21 trunc-
ation the eigen-analysis takes place in a (21#1)2"484
dimensional vector space. In contrast, the Gaussian grid
that corresponds to the T21 truncation carries the same
information but has 64]32"2048 points.

In either case the number of non-zero eigen-values is
limited by the number of non-zero real and imaginary
spherical harmonic coefficients. In the spectral domain the
monthly means are realised in an (¸#1)2 dimensional
vector space. Since the transformation to physical space is
linear and one-to-one, the discretised realisations in phys-
ical space are restricted to an (¸#1)2 dimensional sub-
space of the P dimensional physical space.

To solve Eq. (17) we must estimate R
S
. To do this let

So
S
represent the (¸#1)2 dimensional vector that contains

the real and imaginary spherical harmonic coefficients of
the spectrally truncated anomaly field S and let So

Sq
,

q"1, 2, Q be a collection of Q realisations of So
S
. Con-

struct an (¸#1)2]Q data matrixS that has So
Sq

as its qth
column. Because So

S
represents an anomaly field (i.e., the

annual cycle has been removed) it is not necessary to

remove the mean from the realizations of So
S
. Hence

R
S

can simply be estimated as

R]
S
"

1

Q

Q
+
q/1

So
Sq
So @
Sq
"

1

Q
SS@ (18)

Note that the number of non zero eigen-values obtained
when solving Eq. (17) withR]

S
will be the dimension of the

column space of R]
S

which is minMQ, (¸#1)2N.
We use Eqs. (17) and (18) to estimate the EOFs of

monthly mean ¹
s
and Z

500
simulated by CCC GCM2 in

DJF, JJA and for all months of the year combined. We
assume that the climate is roughly stationary during the
solstice seasons and therefore that the EOFs obtained
from the DJF and JJA samples of monthly means are
representative of the monthly mean spatial covariance
structure during those seasons. The DJF and JJA parts of
the model output data set contain Q"162 and Q"180
monthly mean fields respectively. We can not make the
stationarity assumption for the EOFs computed from the
full data set which contains Q"684 monthly mean fields.
However, the EOFs computed from the full data set can
be interpreted as the modes that capture the model’s
variation on the 2-month to 10-year time scale as in Kim
and North (1993).

The eigen-spectra obtained from our eigen-analyses are
briefly summarised in the Table 1. As others have found,
the magnitudes of the eigen-values decrease almost expo-
nentially with increasing mode number (not shown).
Table 1 shows that the eigen-spectrum of both ¹

s
and

Z
500

is slightly flatter in JJA than in DJF. In the case of
¹

s
greater instability over the NH land surface during

summer probably creates relatively more small-scale
variability in NH summer. Similarly, it is likely that more
Z

500
variability originates from relatively small-scale

thermal sources in JJA than in DJF. Table 1 also shows
that the eigen-spectrum of ¹

s
is substantially flatter than

that of Z
500

reflecting the fact that ¹
s
variations occur on

a greater range of spatial scales than Z
500

variations.
Finally, we see that for both variables a much wider
eigen-spectrum is needed to capture the total variance
structure aggregated over all months of the year. The
reason is that for both fields, the low-order solstice season
eigen-modes are confined entirely to the winter hemi-
sphere. A larger set of EOFs containing both types of
modes is required to capture the strong variations that
occur in both hemispheres in the full data set.

Figure 4 displays the first four DJF ¹
s
EOFs. All four

modes (12.6%, 10.2%, 7.3% and 5.7% of variance) prim-
arily describe variations over NH land masses and ice
covered areas. Similarly, the first four modes in JJA
(18.6%, 8.2%, 6.8% and 6.0% of variance, not shown)

Table 1. The percentage of variances explained by the first ten
modes and, in parentheses, the number of nodes required to explain
90% of the simulated variance

Variable DJF JJA All months

Screen Temperature 57.1 (46) 56.2 (50) 42.5 (84)
500 hPa height 62.4 (30) 57.8 (37) 51.8 (43)
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EOF1

EOF4EOF3

EOF2

Fig. 4. EOFs 1—4 of CCC GCM2 monthly mean DJF ¹
s
explaining 12.6%, 10.2%, 7.3% and 5.7% of variance respectively

appear to describe, primarily, screen temperature vari-
ations at high southern latitudes.

Note that there is generally less information in these
patterns than the size of the data set from which they are
computed would perhaps suggest. CCC GCM2 screen
temperature is strongly influenced over the oceans by the
prescribed SSTs. Since these prescriptions evolve identi-
cally in each simulation, there is a substantial overlap in
information content between simulations.

Figure 5 displays the NH part of the first four DJF
Z

500
EOFs. EOF 1 strongly resembles the North Atlantic

Oscillation pattern (Barnston and Livezey 1987) except
that the centre of action over Greenland is slightly exag-
gerated and the entire pattern is rotated slightly eastward.
This mode explains 13.8% of variance in the model while
in Barnston and Livezey’s (1987) analysis of NMC
700 hPa height analyses it explains 11.1% of variance.
EOF 2, which explains 9.4% of variance, resembles the
Western Atlantic Pattern documented by Wallace and
Gutzler (1981). EOF 3 (8.9% of variance) is a somewhat
contorted PNA pattern (Wallace and Gutzler 1981;
Barnston and Livezey 1987) that is shifted slightly east-
ward, has an exaggerated Aleutian low, and a ‘‘centre of
action’’ over the southeastern USA that is too weak. In
Barnston and Livezey’s (1987) analysis, the PNA explains
somewhat more variance (10.8%) than it does in the
simulated climate. EOF 4 (6.5% of variance) appears to be
a mixture of the PNA pattern and the Eastern Atlantic
pattern of Wallace and Gutzler (1981).

The apparent mixing of modes appears to be a problem
with EOF analysis performed in the spectral domain. In
the physical domain one is able to achieve patterns with

‘‘simple structure’’ (Richman 1986) through the use of
a rotation technique such as the varimax rotation algo-
rithm (Kaiser 1958). Barnston and Livezey (1987) is but
one example of many studies that have used these
methods successfully. However, application of such algo-
rithms in the spectral domain results in EOFs that have
simple structure in the spectral domain and regular struc-
ture in the physical domain. Indeed, the simplest pattern
that could be achieved in the spectral domain would have
a single non-zero spherical harmonic coefficient. But the
corresponding spherical harmonic function has a regular,
physical representation extending over the entire globe
that does not fit our intuitive notion of simple local
structure. When we actually applied Kaiser’s (1958)
varimax rotation to the spectral EOFs we did indeed
recover patterns that closely resembled spherical har-
monic functions.

5 Optimal weights and minimal errors

We now return to the calculation of the MSEs described
in Section 2. Minimising e

(lm)
subject to Eq. (4) we find that

the optimal weights are

wl "M~(bl !1l "), (19)

where M~ is the generalised Moore-Penrose inverse of
the N]N matrix

M
ij
"o (nl

i
, nl

j
)R[½*

lm
(nl

i
)½

lm
(nl

j
)], (20)
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EOF1 EOF2

EOF3 EOF4

Fig. 5. EOFs 1—4 of CCC GCM2 monthly mean
DJF Z

500
explaining 13.8%, 9.4%, 8.9% and

6.5% of variance respectively. These patterns are
essentially flat in the SH and tropical regions (not
shown)

bl is the N dimensional vector

b
j
"

(L`1)È
+
k/1

j
k
R[t

k, lm
½*

lm
(nl

j
)]t

k
(nl

j
), (21)

1l is the N dimensional vector of units and " is the
Lagrange multiplier

""(1l @M~bl !4n)/(1l @M~1l ). (22)

Equation (19) is evaluated by replacing covariance o (nl
i
, nl

j
)

in (20) with an estimate

ô
ij
"

1

Q

Q
+
q/1

S (nl
i
, t

q
) S (nl

j
, t

q
) (23)

computed from a sample of Q realisations of the anomaly
field S that were obtained at times t

q
and observed at

network locations nl
j
. This yields a unique set of weights

w
j
when M is of full rank. Otherwise Eq. (19) is one of

infinitely many choices of weights that minimise Eq. (15).
Standard theorems regarding the null spaces of linear
operators (see, for example Strang 1980, p96) can be used
to argue that rank(M)4rank(ô) and that rank (ô)4
min(N, Q, (¸#1)2) . In the examples we consider N varies
from 24 to 210, Q"162, 180, or 684 and ¸"21.

When Q!rank(ô) is small or zero we should be con-
cerned about the effects of artificial predictability (Davis
1976) on the estimated MSE. In these circumstances, the
optimal weights estimated with Eq. (19) have the freedom
to ‘‘adapt’’ to the data in the network with the result that
the MSE may be under-estimated. We therefore use a
cross-validation procedure to guard against the effects of
artificial predictability. In each cross-validation step the
data are divided into a ‘‘learning’’ data set and a verifica-
tion data set. The learning data set is used to construct
estimates of the model’s EOFs and corresponding optimal
weights. The MSE is estimated from the verification data
set using Eq. (15) and the weights and EOFs derived from
the learning data set. The process is repeated six times,
each time excluding one entire simulation from the learn-
ing data set for use as the verification data set. The six
MSE estimates obtained in this way are averaged to
produce the cross-validated MSE estimate.

We consider five observing networks. Network 1R has
24 stations located on four latitude rings located at 50 °S,
15 °S, 15 °N and 50 °N. Each ring contains six equidistant
stations. One station on each ring is positioned at 30 °E
longitude. The ‘‘R’’ in the designation identifies the rectan-
gular station configuration. Network 2 is a 24 station
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Table 2. The MSE of the (0,0)
spherical harmonic coefficient
estimated with optimal weights
expressed as a percentage of the
variance of the true (0,0)
coefficient. The cross-validated
MSE is displayed in brackets

¹
s

Z
500

Network N DJF JJA All DJF JJA All

1R 24 67 (87) 31 (40) 73 (78) 100 (149) 56 (79) 88 (96)
1D 24 43 (60) 32 (40) 65 (70) 75 (104) 56 (86) 86 (95)
2 24 56 (84) 28 (38) 49 (53) 52 (79) 33 (45) 73 (78)
3 62 13 (40) 7 (18) 20 (24) 13 (35) 11 (27) 19 (24)
4R 64 10 (30) 5 (14) 15 (19) 3 (9) 2 (5) 4 (5)
4D 64 8 (20) 4 (11) 14 (17) 2 (6) 2 (6) 4 (5)
5R 240 0.02 (14) 0.008 (6) 1 (3) 0.001 (0.7) 0.00003 (0.5) 0.08 (0.2)
5D 240 32 (8) 0.0001 (2) 0.3 (0.8) 0.0004 (0.4) 0.0006 (0.2) 0.03 (0.08)

subset of the 63 station Angell-Korshover (1983; see also
Trenberth and Olson 1991) network. Network 3 (62 sta-
tions) is the Angell-Korshover network with only the
South Pole station excluded. Network 4R has 64 stations
arrayed on eight latitude rings located at 70 °S, 50 °S,
30 °S, 10 °S, 10 °N, 30 °N, 50 °N and 70 °N. Each ring has
eight equidistant stations with one station positioned at
23 °E longitude. Network 5R is a denser 210 point
24°]12° network in which first column of stations is
located at 12 °E longitude and the first row at 78 °S latit-
ude. We also consider variants of networks 1R, 4R and 5R
in which every second row of stations is shifted zonally by
half a grid length. We refer to the resulting diamond-
shaped networks as networks 1D, 4D and 5D respectively.

The estimated MSEs of the spherical harmonic coeffi-
cient estimates, obtained from the full data set and via
cross-validation, are compared with the coefficient
variance

p2
(lm)

"SDS
lm

D2T. (24)

This variance can be expressed in terms of the spectrally
transformed EOFs as

p2
(lm)

"

(L`1)È
+
k/1

j
k
Dt

k, lm
D2. (25)

We express the mean squared sampling error in dimen-
sionless units as the ratio e2

(lm)
/p2

(lm)
. The improvement

gained from using the optimal weights can be guaged by
comparing this ratio with that obtained using uniform
weights w

j
"4n/N.

Results for the (0,0) spherical harmonic coefficient (i.e,
the global mean) are displayed in Table 2 (optimal
weights) and Table 3 (uniform weights). We note:

a. The optimal weights (Table 2) very effectively reduce
the estimated MSEs obtained with uniform weights (Table
3). Table 2 shows that the global mean 500 hPa height can
be estimated with less than 10% mean squared error using
a regular, optimally weighted, 64 station network. The
error is approximately an order of magnitude greater
when stations are uniformly weighted. The cross-validated
MSE of the estimated global mean screen temperature is
estimated to be 11% (14%) in JJA and 20% (30%) in DJF
when a regular diamond-shaped (rectangular) 64 station
network is optimally weighted. While the improvement
with optimal weighting is not as great with ¹

s
as with

Z
500

, the optimal weighting still results in cross-validated

Table 3. The MSE of the (0,0) spherical harmonic coefficient
estimated with uniform weights expressed as a percentage of the
variance of the true (0,0) coefficient

¹
s

Z
500

Network N DJF JJA All DJF JJA All

1R 24 267 141 197 253 226 265
1D 24 277 138 221 246 213 235
2 24 259 118 208 243 126 180
3 62 138 50 101 132 80 110
4R 64 87 65 93 67 62 63
4D 64 89 83 109 67 60 64
5R 240 71 47 72 115 84 102
5D 240 67 44 66 106 84 102

MSEs that are 3—7 times less than their uniformly
weighted counterparts.

b. Mean squared errors are somewhat less in JJA than
in DJF for both ¹

s
and Z

500
. The effect is more pro-

nounced for ¹
s
than for Z

500
. The explanation is that the

variance of both variables is spatially more homogeneous
in JJA. To illustrate the effect of eliminating variance
inhomogeneity completely, we standardised ¹

s
and Z

500so that the fields have unit variance everywhere at all
times of the year. After doing this the cross-validated MSE
estimates are reduced substantially beyond those shown
in Table 2. For example, when using network 3 (62 quasi-
regularly spaced points), the cross-validated MSE for the
global mean is reduced in DJF to 20% for ¹

s
and 9% for

Z
500

.
c. MSE estimates for ¹

s
are greater than those for Z

500
,

even when the fields are standardised so that they have
unit variance everywhere at all times of the year. The
explanation is that Z

500
has a ‘‘larger’’ spatial correlation

structure (i.e., teleconnections operate over longer distan-
ces, especially in the tropics) than ¹

s
. Hence Z

500
has

fewer spatial degrees of freedom than ¹
s
and consequently

the global mean of Z
500

can be specified more accurately
with the same number of points than can the global mean
of ¹

s
.

d. The network configuration affects the MSEs. When
stations are laid out on a diamond-shaped grid, the cross-
validated MSEs are smaller than for the corresponding
rectangular networks (Table 2). Also, the 62 point network
does not perform as well as either 64 point network (at
least for the global mean). The diamond-shaped networks
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do better than the corresponding rectangular networks
because their stations have greater mean separation dis-
tance and hence sample more non-redundant (i.e., corre-
lated) information than the rectangular networks.

e. The real (i.e., cross-validated) MSEs are, with one
exception, greater than the MSE estimates obtained from
the full data set. This is partly accounted for by the fact
that the learning data set used in the cross-validation
procedure is only (5/6) th the size of the full data set. Hence
there is additional sampling uncertainty in the covariance
structure estimates that are used during cross-validation.
However, adaptation of the weights to the data (i.e., the
artificial skill phenomenon) is also a factor. In the small
networks, where the data are used to determine only
a small number of weights, there is less opportunity for
adaptation than in the larger networks. One speculates
that the increased MSE estimates obtained with cross-
validation for small networks are due primarily to the
increased uncertainty in the covariance structure esti-
mates that are used. Note that this source of uncertainty is
greatest in DJF (Q"162) and least when all months are
used (Q"684). The effects of the increasing opportunity
for adaptation of the weights to the data can be seen as the
networks grow. As the networks become large, the relative
discrepancy between the cross-validated MSE and un-
validated MSE estimates increases. The combination of
small sample and large network (when the rank of matrix
M in Eq. (19) is less than the number of points in the
network) leads to the greatest uncertainty in the un-
validated MSE estimates. Thus, while the cross-validated
MSE estimates are somewhat inflated because not all data
are used to estimate the covariance structure, they are the
only reliable guide to the accuracy with which a spherical
harmonic coefficient can be estimated from a given net-
work when the sample size is small relative to network
size.

The cross-validated DJF MSEs are displayed for all
spherical harmonic coefficients in Figs. 6 (¹

s
) and 7 (Z

500
).

The diagrams display the MSEs as a function of the
Legendre polynomial index l on the vertical axis and the
Fourier index m on the horizontal axis. We show only the
MSEs for m50 because they are symmetric about m"0.
To make the diagrams easier to read we display 100]
¸og

10
(ê2
(lm)

/p̂2
(lm)

) so that the zero contour indicates MSEs
equal to 100% of the corresponding coefficient variance.
Coefficients in regions outside the zero contour cannot be
estimated from the network considered. The contour in-
terval is chosen so that each contour increment represents
a doubling of the MSE. The spectral region in which the
MSE is less than 50% of the coefficient variance has light
shading, and the region in which the MSE is less than
10% of the coefficient variance has dark shading.

The conclusions that can be drawn from these diagrams
are in many respects similar to those derived from Tables
2 and 3. We note that:

a. The size of the spectral region in which coefficients
can be reliably estimated increases with network density.

b. Comparing ¹
s
(Fig. 6) with Z

500
(Fig. 7), we see that

the spectral coefficients of Z
500

are more easily estimated
from a given network than those of ¹

s
. This happens

because Z
500

has larger correlation structures than ¹
s
.

c. For ¹
s
, the regular networks (Fig. 6a, c) perform

similarly to the irregular networks (Fig. 6b, d) of compara-
ble size.

d. For Z
500

, the 24 point irregular network (Fig. 7b)
provides slightly better estimates of the low order real (i.e.,
m"0) spherical harmonic coefficients than the regular 24
point network (Fig. 7a). In contrast, the regular 64 point
network (Fig. 7c) performs better than the 62-point irregu-
lar network (Fig. 7d). The regular network is able to esti-
mate a number of coefficients with cross-validated MSEs
of less than 10% while the irregular network is not able to
do this.

e. The regular networks are more strongly affected by
aliasing error than the irregular networks. For example,
compare the upper left hand corners of Fig. 7a and 7c with
those of Fig. 7b and 7d.

f. The effect of network configuration (whether rectan-
gular or diamond-shaped) can be seen by comparing
panels e and f of Figs. 6 and 7. For ¹

s
(compare Fig. 6e, f )

the low-order spherical harmonic coefficients can be esti-
mated with greater precision with the diamond-shaped
network. For Z

500
(compare Fig. 7e, f ) the estimates of

the high Fourier index coefficients improve, particularly
for the Legendre polynomials of order l"6 to l"10. In
both cases these improvements occur because the dia-
mond-shaped network extracts more non-redundant in-
formation from the climate field than the rectangular
network.

g. Optimal weighting expands the domain in which
useful coefficient estimates can be made and very substan-
tially improves the accuracy that can be obtained at the
largest scales. This can be seen by comparing Fig. 8, which
shows the MSEs of DJF spherical harmonic coefficient
estimates made by uniformly weighting the rectangular
210 point network, with Fig. 7e, f. Note in Fig. 8b that
useful coefficient estimates cannot be made for Z

500beyond zonal wave number m"7. This is all that can be
expected from a rectangular network that has 15 points in
the zonal direction. The diamond-shaped network (not
shown) is able to slightly exceed this bound because of the
staggering of grid points on adjacent latitude circles. Be-
cause Z

500
de-correlates relatively slowly in the meridi-

onal direction, the staggered grid points in adjacent rows
provide information about the behaviour of Z

500
on

a zonal scale that is somewhat smaller than the zonal grid
spacing. A hint of this phenomenon can be seen by com-
paring the zonal wave number m"6,2, 10 regions in
Fig. 7e and f.

h. In JJA the performance of the regular 64- and 210-
point networks improves while that of the irregular 62-
point network degrades slightly. Apparently the regular
networks are able to take advantage of the greater homo-
geneity in JJA. Figure 9 displays the cross-validated MSEs
in JJA for the optimally weighted 210 point rectangular
network. Comparing with Figs. 6e and 7e, we see that the
domain in which useful spherical harmonic coefficients
can be made expands in JJA for both ¹

s
and Z

500
. Also

note that the zonal wave number m"7 resolution bound-
ary can be clearly seen in Fig. 9b.

i. The ‘‘optimal’’ weights we compute for the larger
networks for DJF and JJA are far from being truly opti-
mal. The reason for this is the substantial uncertainty in
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Fig. 6a–f. Cross-validated MSE for
DJF ¹

s
(see text) for a 24 point

rectangular network, b 24 point
subset of the A—K network, c 64-
point rectangular network, d 62
point A—K network, e 210 point
rectangular network and f 210 point
diamond-shaped network

the spatial covariance structure estimates computed from
the modest amount of GCM output available (Q"162 in
DJF and Q"180 in JJA) at the scales resolved by the
larger networks considered. Some impression of the effect

of error in the estimated covariance structure can be
obtained from Fig. 10 where we display the cross-
validated MSEs for the optimally weighted 210 point
rectangular network when all Q"684 months of data are
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Fig. 7a–f. As Fig. 6, except that
the cross-validated MSE for DJF
Z

500
is displayed

used. Comparing Fig. 10 with Figs. 6e, f, 7e, f and 9, we see
that imperfectly estimated EOFs have a large impact on
the precision of spherical harmonic coefficient estimates at
all scales. As an aside, note that the m"7 resolution

boundary is now seen clearly for both ¹
s
and Z

500
. For

¹
s

this boundary becomes parallel to the l axis only
asymptotically, indicating that ¹

s
becomes isotropic

much more slowly than Z
500

.
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6 Summary and conclusions

In this study we have reviewed a methodology for optim-
ally estimating spherical harmonic coefficients from ob-
servations taken at a small number of observing points.
The estimates are made by weighting the observations so
as to minimise the mean squared error. The method can
be generalised so that it applies to any pattern coefficient,
including the greenhouse gas fingerprints that are used in
climate change detection studies.

In Sect. 2 we analysed the structure of the errors incur-
red when using a small observing network to estimate the
time dependent spherical harmonic coefficients of a field S.
The estimates are constructed (Eq. 3) as a weighted linear
combination of field values at the network locations. First,
for convenience and mathematical clarity, the spatial
covariance structure of S is decomposed into EOFs. Each
EOF is then given its own spherical harmonic function
expansion (Eq. 14). Next, the EOFs are evaluated at the
network locations and Eq. (3) is used to approximate the
EOF’s spherical harmonic coefficients. Finally, Eq. (15)
shows that the MSE of the estimated (l, m) spherical
harmonic coefficient of field S is a linear combination of
the errors incurred when using Eq. (3) to approximate the
corresponding spherical harmonic coefficient of the
EOFs. The approximation error for each EOF is weighted
by the corresponding eigen-value.

In Sect. 5 we showed how to weight the network loca-
tions to minimise the MSE of the estimator of a given
spherical harmonic coefficient. The weights, which are
different for every spherical harmonic, see Eqs. (20), (21)
and (19), are determined by the station locations and the
spatial covariance structure of the field.

We applied the methodology to an ensemble of six 10-y
AMIP simulations performed with the Canadian Climate
Centre 2nd generation general circulation model (CCC
GCM2). We estimated the covariance structure of the
simulated monthly mean ¹

s
and Z

500
fields and used it

to determine optimal weights for a number of small net-
works. The MSE of estimation was subsequently calculated
for each spherical harmonic coefficient and network config-
uration. A cross-validation procedure was used to protect
against the artificial skill that accrues from using the same
data set to determine the weights and estimate the MSEs.

CCC GCM2 was described briefly in Sect. 3 as were the
variance and correlation structures of the model’s
monthly mean ¹

s
and Z

500
in DJF and JJA. We saw that

both the variance and correlation structures are highly
inhomogeneous, and that these structures change with the
annual cycle.

The EOFs of the simulated monthly mean fields were
computed in the spectral domain (Sect. 4) because, in this
study, the eigen-analysis problem has a convenient and
compact spectral representation. The EOFs of the model’s
monthly mean Z

500
fields were seen to compare well with

patterns obtained from observations. The ¹
s

EOFs are
likely less reliable because they have been heavily in-
fluenced by observed SST and sea—ice extent during the
AMIP decade (1979—88).

We analysed the performance of eight small networks
in three configurations. Specifically, we considered 24,
64 and 210 point regular networks in rectangular and

diamond-shaped latitude—longitude arrangements and
also considered 24 and 62 point versions of the Angell-
Korshover (1983) network.

We found that it was very important to cross-validate
MSE estimates, particularly when the sample available for
estimating EOFs is small relative to the number of points
in the network. Without cross-validation the expected
MSE is underestimated because uncertainty in the esti-
mates of the optimal weights is not taken into account.

Despite our caution, we found the optimal weighting to
be very effective at reducing the expected MSE in com-
parison with uniform weighting. The number of coeffi-
cients that can be estimated with a given precision was
seen to depend upon the covariance structure, the net-
work density and the network configuration.

We saw that cross-validated MSEs were smaller in JJA
than in DJF and we attributed that to reduced variance
inhomogeneity in JJA. We illustrated the effect of variance
inhomogeneity on MSEs by standardising ¹

s
and Z

500
to

eliminate variance inhomogeneity.
We argued that spatial correlation structure also affects

MSEs. Given a particular network, spherical harmonic
coefficients of fields with larger spatial correlation struc-
ture have smaller MSEs for the scales that are resolvable
by the network.

Finally, we saw that the network configuration has an
effect. The diamond-shaped network improves on the
rectangular network by sampling more non-redundant
information. The rectangular networks generally did bet-
ter than the irregular networks on the scales that they
resolved. But, the irregular networks were less affected by
aliasing error than their regular counterparts.

Several lines of investigation remain open for us at this
point. First, our results for ¹

s
are likely to be strongly

influenced by the SST and sea—ice extents observed during
the AMIP decade. Thus, our calculations will be repeated
with a coupled atmosphere-ocean version of CCC GCM2.
Also, longer simulations are needed to reduce EOF uncer-
tainty and artificial skill. Second, larger, but much more
heterogeneous networks that more closely reflect the cur-
rent operational observing networks should be examined.
Third, aliasing error that results from the interaction
between the network configuration and a field’s spatial
covariance structure is but one source of uncertainty in
coefficient estimates. Random observational error is an-
other source that should be accounted for. Finally, the
methods we have described in this work should be re-
visited to make them robust to outliers that result, for
example, from data transcription error.
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