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Abstract A theory of tailing wavetrain generation in the precursor soliton generation in single-layer flow is pre-
sented in terms of Whitham's averaged method in the present paper. The group characters of the tailing wavetrain gener-
ation are represented by the evolution equations of roots of a cubic algebraic equation resulting from the fKdV equation in
the single-layer flow without source term. Based on the evolution equations, the group velocity of the tailing wavetrain is
found theoretically, furthermore a theoretical solution of the tailing wavetrain generation is found in terms of the evolution
equations. To examine the theoretical results, a numerical calculation of fKdV equation in single-layer flow is carried out
in the laboratory frame, at the same time & comparison is also done. The comparison between theoretical and numerical
results shows they are in good agreement.
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The precursor soliton generation is a kind of problem of nonlinear wave generation forced by local
external sources in 2-D system. Since 1986, some authors have devoted themselves to study the wave
factors in the precursor soliton generation: the generating amplitude, period and velocities,
ete. """ In previous studies, the reasonable solution of the tailing wavetrain generation in the pre-
cursor soliton generation could not be given. Smyth!?! studied the tailing wavetrain generation in the
stratified flow over topography near resonance, and gave some solutions of the tailing wavetrain gener-
ation with truncated moduli m, and m,, of the modulus m of the complete elliptic integral of the first
kind. The solutions imply that Whitham s averaged KdV equation cannot be used to describe the tail-
ing wavetrain generation completely or the wave component of the tailing wavetrains can only focus on
the high end of the modulus m . To obtain a reasonable solution of the tailing wavetrian generation in
single-layer flow, a predictable theory taking into consideration all the modulus m is studied in this
paper.

1 Stationary solution of KdV equation in single-layer flow

It is known that the solution of the tailing wavetrain generation in the precursor soliton
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generation satisfies the fKdV equation, however when generating time is long enough, the tailing
wavetrain is far from topography (or forced source), the influence of the topography on the tailing
wavetrain generation can be ignored. Therefore the tailing wavetrain can be considered as a free wave-
train and the fKdV equation without source term can be used to study the tailing wavetrain generation.
The fKdV equation in the single-layer flow without source term is as follows! 3.

2+ (F = g + mpgy + ngpp, =0, (1)

where F is moving velocity of the topography, x' and t' are the horizontal coordinate and generating
time in the laboratory frame respectively, 7 is the wave elevation relative to the level in the rest. In-
troduce transform

u = mn“’Z[q +(F-1)/m]l/6, x = n Y, t=¢, (2)
and substitute eq. (2) into eq. (1), yields
v, + Guu, + u,, =0, (3)

It is shown that there exists the stationary wave solution in eq. (3). Introducing a phase X, namely
X=2-"W, v = u(X), (4)

where V is the velocity of phase, and using (4), we have a related equation to eq. (3):
F(u) = u%/2 =- v®+ Vu®/2 + Bu - 4, (5)

where A and B are the integral constants. From the eq.(5), it is follows that

u = Bx2aen’[Vars?(x - W), 2], (6)
where a is the amplitude of the stationary waves and is defined as
a=(8-a)2, (7)
and s? is the modulus of the elliptic integral, namely,
0<s’=(B-a)/(rv-a)<l, a<f<?, (8)

where @, f and ¥ are the roots of the related equation. It can be proven that the period of the sta-
tionary cnoidal waves in (6) is 2K (s?), where K(s?) is the complete elliptic integral of the first
kind. By analogy to linear waves, the wavelength, wavenumber and velocity of the phase of the waves
are, respectively,

L =2sK(s*)/Va, X = nvas[sK(s®)], V =2[384+2a(2s*-1)/s]. (9)

Formula (6) gives a form of the solution of the tailing wavetrain generation in the precursor soliton

generation in the single-layer flow.
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2 Averaged KdV equation

An averaged KdV equation is derived under condition of @ < A=< 7 in this section' 2] ag follows :
e+ 7) v, (@ - BB - 7)Y -0a)]da +7)

i 1, 1, 7. =0 (10)
where
Q(V,A,B) =_J§§ vV Flu(X)]du (11)
and
- y-! _ (B-a) [(1+ sH)E(s?) - K(s?)
=T aa_ﬁV(y—a) s* +A‘]’

q, = - B=a) [K(ﬁ)- E(s*) _M]'

12
V{7 -a) ; 2)

$

In (12), E(s") is the complete elliptic integral of the second kind and Ay is Jacobian elliptic inte-
gral with even power 4.

Substituting eq. (12) into eq. (11), yields

é’_@ Llve 4asr2K(52) ]a_ﬁ = @, (13)

dt E(s%) - s"2K(s?)13x

where 5’2 is the complementary modulus of s*. Hence, along characteristic

dx 4as'*K(s?)
M= = T - , 14
di g E(SZ) _ erK(SZ) ( )
eq.(13) can be rewritten as
98 g _
PR C, 3, = 0. (15)

Eq. (14) gives the group velocity of the dispersion wavetrains and eq. (15) describes the evolution of
the wavetrains .

3 Tailing wavetrain generation in single-layer flow

According to the numerical results of the precursor soliton generation, the wave shape of the tail-
ing wavetrains possess a self-similar character, i.e. dx/ dt= x/t. To determine the phase of the

tailing wavetrain generation, an averaged value of u can be derived by our definition as follows:
u = a -2aD(s*)/K(s?), (16)

where D(s?) is the standard notation of the complete elliptic integrall'*) . At the first Zero-crossings
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% = Xy, and when k—1 (B = 7), the waves at the first zero-crossings approach to the solitary
waves and (16) gives the exact value of u for the solitary waves. However, the waves at the first zero-
crossings are conoidal waves, but not the solitary waves. Hence, for the tailing wavetrain generation,
the averaged value u cannot be used to find the solution of the tailing wavetrain generation. To deter-
mine the solution, we give the following physical consideration, that is

uw="(a+7)/2= a+ (¥ -a)/2. (17)

As a reasonable condition of the tailing wavetrain generation, the amplitude of the tailing wavetrain at

the first zero-crossing should be equal to twice the mean water level in the depressed water region in
the frame (x,t), i.e. 2H, . Let

a = h, (18)

where h is a distance from the surface of the depressed water region at the end of s = 1 to the bottom
of tank in the frame (x,¢). Thus eq. (17) is converted in to

w=h+H,. (19)

From eq. (17), it follows that
Yy = h+2H,, (20)

and by eq. (8), it follows that
B=h+25%H,. (21)

Substituting eqs. (18) and (21) into eq. (7) yields
a = s*H,. (22)
Thus, the wave factors described in eq. (9) become
L =2sK(s*)//H,, X = n/H,/[sK(s?)], V = 2[3h + 2H, (1 + s*)]. (23)
As s =1, the velocity of the phase of the stationary wave
Vo = 6k + 8H, (24)
can be removed, thus the velocity of the wave group is obtained as
Co =-4H, 1(1 -5 + 2 K(S*Y/[E(s?) - s'2K(sD) ]}, (25)
Integrating eq. (14), yields

% = Cit + C, . (26)
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where C is an integral constant. It is expected that as s =1, x = x,,,., thus C = Ragai= U, 8y

where U, is moving velocity of the first zero-crossing in the frame (x,¢). Hence, it follows that
x = (U,+ €. (27)

Eq. (14) gives two selections on the phases. In order to obtain a wavetrain moved to right, a reason-
able selection is

0 =-[x-(U,+Ctl. (28)
Upon substituting eq. (28) into eq. (6), it follows that
u=h+2s%H,+2*H, en®(/H,O). (29)

It is shown that eq. (29) is a solution for the dispersive wavetrain, but it does not satisfy the generat-
ing conditions of the tailing wavetrains. At the first zero-crossings (s = 1), eq. (29) gives

w=h+dH,. (30)

From eq. (20), it is known that the wave elevation u = Y at the end of s =1, so the term 25%H ,
should be removed from eq. (29). Thus it follows that

u=h+2s°H, en®(/H,O). (31)

At the end of s =0, eq. (19) must be satisfied so that the mean level is equal to the level in the
rest. So at the end of 5 =0, the H, should be added to eq. (31). From s=11t0 s =0, a resulting

contribution is (1 - s*) H, . Finally, an intelligent solution is given as

u=nh+2s°H, en’?(\/H,8) + (1 -s)H,. (32)

In order to examine the theoretical results (28) and (32), both must be converted to the laboratory
frame (x', ¢'). From (2), it follows that

U= o8¢ .. (33)
Because H, >0 and H', <0, a scale transform of the H , is
H,=-(m/6)n"H', (34)
and
h= (m/6)n" Pk = (m/6)n "1+ H +(F=1)/m], (35)

where h' is a distance from surface of the depressed water region to the bottom of the tank, and U’ i
and H', are the velocity of the first zero-crossing and the level in the depressed water region in the

laboratory frame (', ¢') respectively, which were found by Xu et al,[57:8:10] theoretically as fol-
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lows
U,z=-m[F-(F-1)/m]2, (36)
H,=-%-(F-1)/m. (37)

Substituting eqs. (32)—(35) into (2) yields
7 =1+ H +2H  en’{[/ - (m/6)nPH 0], s*} -(1-sD)H,, s> =0, 1,

(38)

where
@ =-ne - [U,+4H , (m/6)Q' ¢}, (39)
Q2 = (1-35%) + % 2K(s2)/[E(s?) - s'2K(5Y)], st =0,1. (40)

Eqs. (38)—(40) are the solution of the tailing wavetrain generation in the precursor soliton genera-
tion in the single-layer flow in the laboratory frame with the parameters m = - 3/2 and n = - 1/6.

4 Comparison and conclusion

A numerical calculation of the fKdV equation in the single-layer flow by using the difference
method"*) is carried out to examine the theory in Section 3. The fKdV equation in the absolute frame
18

/i (1 + m?)v-t' + gy = f(x' + Ft')z'/z' (4])

where m = -3/2 and n = - 1/6. The semicircular topography function is

o' + Ft') =7 - (& + F')?, (42)

and the boundary and initial conditions are

7t ®) = p(x ®) = g.(x ) = 5(2,0) = 0. (43)

(a) A numerical result with a radius of the

- %‘_ii lllll semicircular topography r = 0.230 8 at the reso-
:([))}_2 i 200 nant point is shown in fig. 1 (a), in which £
is the amplitude of the tailing wavetrain. From

0.2& ©) the numerical results, it is shown that the gen-

= _g:— """ 200 erating period of the precursor solitons and the
-0.2[ level of the depressed water region at the reso-

nant point are 74 =31.5013 and H' , (F=1)
= - # = -0.265 95 respectively. In fig. 1
(a), it is also shown that as there are 5.8 soli-

Fig. 1. Numerical (a) and theoretical (b) results of tailing

wavetrain generation

tons in the upstream of the topography, the tailing wavetrain includes 28 wave crests. By ref. [5],
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the theoretical generating period of the precursor solitons and the level in the depressed water region at
the resonant point are 7, =28.894 3 and H' , (F=1)= - %= -0.283 209 5 respectively. Sub-
stituting the theoretical results into eqs. (39) and (40), we have the total coefficient of the phase of
the conoidal wave 30.932 87. Using eq. (38), we calculated theoretically the tailing wavetrain gen-
eration under the condition of 5.8 precursor solitons in the upstream of the topography. The theoreti-
cal results is shown in fig. 1 (b) with parameters m = -3/2, n= - 1/6, p=0.087 09 and ¢’ =
t =5.879=167.586 94. From the fig. 1(b), it is known that there are 29.5 wave crests in the tail-
ing wavetrain. From the above results, it is known that the theoretical and numerical results are in
good agreement. It should be pointed out that the accuracy of the numerical and theoretical calculation
is restricted by the truncation of the difference and the asymptotic approximation, and a departure be-
tween the numerical and theoretical result at the resonant points for this example is 5.084 7% . Final-
ly, it must be pointed out that the theory in this paper is a predictable theory of the tailing wavetrain
generation in the problem of the precursor soliton generation in single-layer flow as long as the ambient
parameters such as the depth of water, density of fluid, topography, velocity of topography are given .

From the theoretical eqs. (38)—(40), it is shown that as the moving velocity of the topography
is at the resonant points, there exists an invariable in the problem of the tailing wavetrain generation
in single-layer flow, i.e. the ratio of the width of the generating region of the tailing wavetrain to that
of the depressed water region is 4. This conclusion will be examined in the future.
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