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Abstract Six physical universals and two general relations in the problem of locally forced precursor soliton
generation are found theoretically in terms of the AfKdV equation derived by authors. These six universals and two
general relations are examined by experiment and numerical caleulation of two-layer flow based on the canonical charac-
ter of the coefficients of the fKdV equations. From comparisons among the theoretical, numerical and experimental re-
sults, it is shown that they are in good agreement. There is not any free parameter in this theory, so the theory of the

present paper can be used to predict the wave properties of locally forced precursor soliton generation.
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In the last decade, the problem of the precursor soliton generation (a sort of nonlinear gener-
ated waves by forced sources) has been the subject of many theoretical, experimental and numeri-
cal studies due to its real significance in meteorology, oceanography, hydrodynamics and other
disciplines. Many authors have devoted themselves to the study of the precursor soliton generation
along the frontier of this field to obtain a predictable theory. However there exist two free param-
eters in the previous theories; the intensity of the forced source and the level in the depressed re-
gion %,. It is well known that the generating wave properties of the precursor solitons depend on
the size and velocity of the forced sources and depend on the stratification if the fluid is stratified.
For the same forced source and different velocities there exist a large number of the levels in the
depressed region h; similarly for the same velocity and different forced sources there exist also a
large number of the levels in the depressed region %;. Unfortunately some of the previous theories
are just dependent on this unknown parameter A, at the same time the intensity of the forced
sources was not given in the previous theories, therefore those theories cannot predict the generat-

ing wave properties of the precursor solitons.

The present work is a further study on the theory of the precursor soliton generation. Our
goal in this study is twofold. First of all, we attempt to construct a theory of the precursor soliton
generation without any free parameter. Second, we attempt to discover if there exist invariant

constants, i.e. physical universals, in the problem of the precursor soliton generation.

% Project supported by Foundation of the State Education Commission for The Dynamics of Upper Ocean and grants of Physi-

cal Oceanography Laboratory of Ocean University of Qingdao.




No. 3 PHYSICAL UNIVERSALS IN PROBLEM OF PRECURSOR SOLITON GENERATION 307

1 Derivation of averaged fKdV equation

In this section, a transform among the frame of Shen'' (2, t), the body frame and the abso-
lute frame of Lee et al.'?) is discussed first, the phase frame in the absolute frame is then intro-

duced to derive an averaged [KdV equation.

Shen'!? derived the fKdV equation of two-layer flow over the compact forced source as
m177,(1) + mz’?f}r) * m3’7(1) 779 + ""’477,(21 = f(x) /2, (1)
where m,, m,, ms, myand f(x) are the coefficients of the equation and the forced source re-
spectively, which is expressed by a given sum of the topography A () and the forced pressure
P(z), 77(1) is first-order approximation of the surface wave elevation 7, and 5= 51](1) + &2 77(2) +
O(e*). Based on the canonical character of the coefficients of the fKdV equations, (1) is also a
general form of the fKdV equation. In order to transform eq. (1) in the Gardner and Morikawa’s
frame (GM) into the body frame and absolute frame, we can introduce a laboratory dimensionless
frame z’, v", ¢t" (LDC), topography h~ and surface pressure P’, namely,
z =z /H,y =y " /H,t' =¢t"//H/g, k" = h*(z")/H,P = P*/pgH, (2)
we thus have the following relations between GM and L.LDC frames:

3z = e?3/ax, 9/ar = ¥%a/a:. (3)
Substituting (3) into (1) yields
m177§13 + €mz’7§,li’ + 7713775-1) O+ m477§-,1i’x’x’ = e’ f(z"), /2. (4)

For near-resonant flow C= Cy + €A, in which C is the velocity of the flow, C, the critical veloci-
ty, A the detoning parameter and € the small parameter. For the problem of the precursor soliton
generation, an equality m,= m;A = m;{(C— Cy)/e can also be proved to hold. Using the small
forced source assumption f(z)=¢ 2f(z") (see ref.[1]) and above conditions, we obtained the
fKdV equation in the body frame as

myg,, + m(C— Coly o+ many o+ myy oo = f(27) /2. (%)
Introducing Galilean transform x" = 2"+ Ct”, 1" = t”, where x”, 1" are the absolute frame, (5)
becomes the fKdV equation in the absolute frame as

mig,y — m1Con, ,» + many, o+ myy, e = f(27+ C) /2, (6)
where C also denotes the moving velocity of the forced source in the body and absolute frames. In
the following the superscripts in (5) and (6) will be omitted. It should be also pointed out that
there is not any small parameter in (5) and (6), which appears in the fKdV equation of Lee et
al B,

Based on the theory of Xu et al. Bl we know that after the phase frame 8 = x + Ct is intro-

duced into (6), the wave properties of the precursor soliton generation can be found in this frame.
. — 1 9 .
Following the mean procedure of Xu et al.'?! ) = 0—70-—)[ (' )d@, the regional mean
2~ Uilg

fKdV equation upstream is

MyG+ ma2/2 + myf, 9 = f(0)/2+C, 8 € (6, ), (7)
where 7 and ]—‘(9) are the regional mean value of » and f(8) in the upstream region, M, =
m,(C— Cy) and C are the relative Froude number and the integral constant respectively. And

the regional mean equation downstream is
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My + msg?/2 + myTag = C, 6 € (0, bgoun)> (8)
where 0., 6gown and  are the front edge point in the upstream of the forced source, the zero-
crossing point of the trailing wavetrain behind the forced source and the crossing point between
the wave and static level in vicinity of the forced source respectively. Under the asymptotic sense,
for a new generating precursor soliton the forced source f( ) basically remains, so it can be ap-
proximated as f(8) =2p5(8). Hence when t—>90, we can obtain an averaged [KdV equation as

follows:
M277,0+m3;7;7,5+m4;7,eee:0, (—c0 < g < 00), 9
(6 >+ ) =H,, 5 4(x o) =5 u(£) =0,
;7,6(0—) = 7],6(0+) = p/my, (10)
where 0_ and 0, are the left and right zeros of §(0) respectively, H. and H, are defined as
0 6
H-= O—lﬁupjawvde’ H.= 6downl U{J()j"w“,?dg. an

2 Asymptotic mean wave elevation and pseudo mean wave resistance

To determine the asymptotic mean characters of the {fKdV equation, asymptotic mean hy-
draulic falls at the subcritical cutoff points must be found first. Integrating (9) and using (10)
yields

My% + m35°/2 + my¥ g = MyH_+ myH2 /2. (12)
Introducing a transform
=§6+H_, (13)
(12) becomes an ordinary differential equation on § with boundary conditions as

P+ maE2/2+ mab g =0, £(0.) = 0,8 ,(— o) =0, §,00.) = p/my, (14)

where
P= My + miH_. (15)
Multiplying the first equation of (14) with & 4 and integrating the result and employing (15)
yields
pHms— 9 - 228 = 0. (16)
By a transform
& =272 m,, (17)
it follows that
73 - 3Z(Pmi)*P+ Y =0, (18)
where
Y = 2(Pm3")? = 3myim,tpt (19)

For subcritical state (M,<0), there is at least a critical value of Zin (18), i.e. &, so that eq.

(18) has a solution of asymptotic mean hydraulic falls. The subcritical value of 2 is obtained
{1,3]
as

P = Bmip /dm)'? = My + 77131‘01 ) (20)

and

o

H =%- MZL/T)’l3, F = f/)L/m3 = (3?2/47)137714)1/3’ (21)
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o

where 7 is the half-hydraulic fall, M, is the value of M, at the subcritical cutoff point Cp, H

is the upstream asymptotic mean level at the subcritical cutoff point. A solution of (9) is

7= H_+ 27— 1 + 3sech? [ (M, /4m,)2(0 ~ 05) ]/21, (22)
where

8y = 2(ma/ My )Y ?sech 1(2/3)V2. (23)

Let P} + be the asymptotic mean level of the depressed region at the subcritical cutoff point, and
generally I-}+ < 0. Thus when -+ 00, (22) has a limit,

H - H,=2% H,=-%— My/m;. (24)

In the near resonant region, the asymptotic mean elevations upstream and downstream can be de-

termined. Substituting (10) into (7) yields
M, =— ms(H_+ H,)/2, C =-m3(H_ H,)/2. (25)
Xu et al.'*) proved that the solutions of the asymptotic mean elevations upstream and downstream
are unique in the AIKdV system and have the following {orms:
H =3F-m{(C-Cy)/my, Hi=—F— m(C - Cy)/ ms. (26)
Multiplying (7) with % , and integrating the result from — % to % yields

D == 2| 7007640 == my(H.— H)Y/12 == 2m37/3 = = p*/2my, (27

where D is defined as the pseudo mean wave resistance and can also be expressed in terms of
(26), namely,

D =-2m3(H_+ m;(C - Cy)m; 1)*/3,

D, = 2ms(H + m (C - Co)nz3_1)3/3,

where D _ and D, are the pseudo mean wave resistances expressed by the asymptotic mean eleva-

(28)

tions upstream and downstream respectively. Generally D = D, = D_, particularly when

C = C,, the relation D=D, =D _ also holds.
3 Theoretical mean wave resistance and regional energy distribution

In this section the conservation of mass and energy is discussed, and the regional energy dis-
tribution is also given by using the solution of the asymptotic mean hydraulic {all at the subcritical

cutoff point. From (5) we obtain

417 gax =0, (29)

de) w27

(29) and (30) are the mass and energy conservation theorems respectively as defined by Xu et

dJ 1 zdI:_Ji %mlf(;r)mfdx, (30)

al .. Let the total mass of the system be
M = J pdx. (31)

Based on the symmetry of the wave shape of the trailing wavetrain, it is also known that

o

Mup = Azdown) (32)

where M, and M 4o, are the time rate of change of mass in the upstream and depressed region
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respectively, () stands for the time derivative. They can be expressed asymptotically as

M, =— M,m'H_— mym{'H* /2, I\;Idown =— M,m{*H,~ mym; H% /2. (33)

Define the wave resistance as

up

<1 .
D :_,[,oo zimlf(x)ﬁ,xdx, (34)

generally D7D . Its mean value can be defined as the theoretical mean wave resistance->’, name-

ly,
(D) = D/my =-2m:%%/3m,. (35)

From (30), the mean energy conservation is obtained as
E=E +E,+E;= (D), (36)
in which E;, E,, E; and E are the time mean rate of the energy in the generating region of the

precursor soliton, in the depressed region, in the generating region of the trailing wavetrain and

in the whole region respectively. They can be expressed as

E, =— MyH2 /2m,) — msH® /(3my), (37)
E, =— MyH? /(2m,) — myH3 /(3m,). (38)
By the definition of M,, the regional mean energy can also be expressed as
E, == my(F~ Mymy' QF + Mym3')/6m, (39)
E, = my(F+ Mymi)2(Q2F = Myms ) /6m,, (40)
Es == 2msF/3m, + ms(F— Mym3D2Q2F+ Mym3')/6m, "

- m3(.,g/7+ M2m3‘1)2(29— Mzm:;])/6m1.
From (35), (39)—(41), we know that when the moving velocity of the forced source is at the
resonant point, i.e. C=Cyor M, =0, four universals, which do not depend on the intensity of
the forced source and the stratification, of the energy ratios
E\/E : E,JE 1 E;/JE : (D)/E = (1/2) : (= 1/2) : 1 : 1 (42)

are obtained in r.h.s. of eq.(42), they will be examined in terms of the numerical calculation.
4 Two general relations and universals of velocity and width

By the previous theory, the developed precursor soliton can be considered as a free KdV soli-
ton. However for the free KdV solitons, the mass and energy conservation theorems must be sat-
isfied asymptotically. To find the wave properties, we use initial conditions 5( + %, 0) =0,
7..(£9,0)=0 and eq. (5) without the source term. Introducing a replacement

& =9+ My/m; (43)

and transforming eq. (3) and the initial conditions yields
g, t mam('66 .+ mym '€ ..p = 0,
E(+ 00) = Myms', £,( ) =0, (4o

a solution of (44) is
7 =&~ My/my=-3(M, - mU_)m3 sech®((M, - U_ ml)l/2
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X (—4my) YV (x + 29— U t)). (45)
in which x is the initial phase of 7, U _ is the moving velocity of the precursor solitons. We can

suppose that the total energy of the precursor solitons upstream equals the sum of the energy of

single free KdV solitons. Assume the mass of eingle soliton is m, from (45) we have

m =—6(M, - m;U )1/27n§1(—4m4)1/2. (46)
Let ¢ be the generating period of the single soliton, we then obtain
m = t(— Mym{'H_- mymy H% /2). (47)
Let ¢ be the energy of the single soliton, by (45) we have
£ =—6(M, — m U_)"*m3%(— 4my) 172, (48)
and
€ = (- MyH* /(2my) — m3HY /(3my)). (49)

Assume that the generated amplitude and the width of the single soliton are & and & respectively,

we then obtain
d=-3(M, = m U )mi', = (= (My — mU_)/4my)™7, (50)
and m and € can be expressed in terms of &/ and ¥ as
m =244, & = 2:4°(3H)7". (51)
From the above results, we can find that the generated amplitude and period of the precursor soli-

tons are respectively
d = 2F+ m(C — Co)ms  /2)(F = mi(C = Co)ms D(msF + my(C— Co))7H,
r =—83my tmy)V(C - Cy + mym '\ F) HF - m(C ~ Co)ms DL
From (52), we can obtain two general relations of the generating amplitude and period, 1i.e.

when C=Cy, #=2F and = —8mym; '+/ 6my, my 'F 2. These two general relations will

be examined in the next sections numerically and experimentally. Another expression of the width

(52)

of the single soliton is
¢ = 23(masd P32, (53)
from (50) and (53), we can find the moving velocity of the precursor soliton upstream U - is
U =2ms((F+ m(C — Cp)/2m3)*/3my + 3(m(C — Co)/m3)*/4)
X (F+ mi(C = Co)/my) ™.
The velocity of the first zero crossing of the trailing wavetrain is
U,=-m3(F— m(C— Cy)/m3)/2m,. (53)

From (54) and (55), it was known that when the velocity of the forced source is at the resonant

(54)

points, i.e. C= Cy, we can obtain

U_/U,=9 /9. =-4/3, (56)
where U _ and U, are the velocities of the precursor solitons and of the first zero crossing of the
{railing wavetrain at the resonant points. %_ and 9, are the widths of the generating region of
the precursor solitons upstream and of the depressed region downstream at the resonant points.
The ratio —4/3 is called the universals of the velocity and width in this paper due to the indepen-
dence with the intensity of the forced source and the stratification. It was also known that the
obtained results all depend on %, and # depends on the intensity of the forced source p. To exam-

ine the above results with the experiment and numerical calculation of two-layer flow forced by the
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semicircular topography, the intensity of the semicircular topography must be determined. Fol-
1.1, it can be found theoretically as
p = xCi(C3(1 + o) — a)a¥?/4. (57)

For non-semicircular topography, the intensity p can also be determined theoretically in terms of

lowing Xu et a

the area principle of Shen!!!.
5 Numerical and experimental examination of universals
5.1 Numerical calculation of two-layer flow forced by the semicircular topography

To examine the two general relations and the universals, a numerical calculation of two-layer

flow is carried out by using the fKdV eq. (6). The coefficients of (6) are given by Xu et al. 5!

The dimensionless semicircular topography is A(z) =+ a* — %, in which « is the dimensionless
radius of the semicircular topography, the forced source is

flz+ Ct) = (C(1+6) — a)Cih(z + Ct). (58)
The boundary and initial conditions are (+ )=0,5 (x©)=7 (+o)=0and y(z,0)=
0. The FDM is employed to calculate (6) numerically. Following the numerical method of Xu ez
al ., the obtained numerical results are moved in the direction of the moving topography for
each time step. To simulate the generating phenomena of the precursor soliton the predictor-cor-
rector difference equations and conservative numerical scheme are all adopted to reduce the numer-
ical dissipation and dispersion and to ensure the conservation of total water mass. For a real nu-
merical example of two-layer flow, the stratified parameters p, ¢, ¥ must be predescribed and be
in agreement with that used in the experiments. In our numerical calculation, the parameters are
a=0.2308, p=0.835, 6=1.03125and ¥ =1.0, in which p is a ratio of the density in the
upper layer to that in the lower layer, o is a ratio of the depth of the upper layer to that of the
lower layer, 7 is a ratio of the velocity in the upper layer to that in the lower layer. By the given

0) _ (0)
0 =cf

parameters, the critical velocity Co= C =0.978 2 can be calculated. By the given pa-

rameters, the numerical amplitude and period of the precursor solitons at the resonant point are
0.582 and 26.52 respectively, and the
l theoretical amplitude and period are 0.602 and

28.02 respectively, the theoretical and numeri-
cal mean wave resistance are 0.023 771 and
0.024 002 respectively. The numerical widths
of the generating regions of the precursor soli-

tons and of the depression are ~42.5 and 31.5

at the resonant point respectively. From these

results, it was shown that the theory and nu-

1 i 1
0.14 0.16 0.18 0.20 0.22 0.24 0.26  erjcal calculation are in good agreement. The
“ theoretical and numerical results are indicated in
Fig. 1. An examination ol the universals of the energy ratios. i 1—3. A . b he th .
——, Theoretical mean wave resistance {D); — — —, theo- 188. : comparison between the theoreti-
. o ) cal and numerical mean wave resistances and be-
retical upstream energy E|; 42, numerical upstream energy; . .
. ) tween the theoretical and numerical upstream
O, numerical mean wave resistances. Parameters 0=0.835,

6=1.03125, y=1.0 and « varies from 0.14 to 0.26. energy is indicated in figure 1.
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Fig. 2. An examination of two general relations on the Fig. 3. An examination of the velocity and width univer-
amplitude and period. ——, Theoretical amplitudes; sals. &, Experimental width ratios; O, experimental
— — —, theoretical periods; O, cxperimental amplitudes; velocity ratios; , theoretical results. Parameters p =
4, experimental periods. Parameters p = 0. 835, o = 0.835, 6=1.03125, y=1.0 and « varies from ). 14 to
1.031 25, ¥=1.0 and a varies from 0. 14 10 0.26. 0.26.

5.2 Experiment of two-layer flow forced by the semicircular topography

An experiment of two-layer flow was carried out in Physical Oceanography Laboratory of
Ocean University of Qingdao, China. The tank is 18 m long, 0.15 m wide and 0.33 m deep.
The upper fluid is kerosine with density 0.829 g/cm’, and the lower layer fluid is fresh water
with density 0.993 g/cm®. The tank system includes the body of the tank, the towing system of
the models and the monitoring system of the velocity of the model. The varying range of the ve-
locity of the model (or the topography) C is from 0.1 to 1.8. The instantaneous velocities of the
model were measured by two optico-electric digit recorders (ODER) which were set in two given
locations. The mean velocity is a mean value of the velocities at two locations. Generally the de-
parture between the instantaneous velocities and the mean velocity is less than 0.5% . The wave
pattern was recorded by two cameras RICOH-10 and NICON with fish eye lens. The RECOH-10
was used to record the developed second wave, and the NICON was used to record the developed
third wave. From the experiments, it is known that the developed third wave is just the first pre-
cursor soliton. Assume RICOH-10 is at the location L1, NICON is at the location L2, the mean
velocity of the model in the same run is Cy;, the number of the precursor solitons is N, the gen-

erating period then can be calculated by T* = (L2 - L1)(CyN) !, the dimensionless generat-
ing period is T=T" H '/ gH. The generating amplitude of the precursor solitons can be read

with the vertical rulers directly. An examination of the amplitude and period relations is indicated

in figure 2.

The moving velocities of the precursor solitons U _ can be obtained with U_ = = (U, —

Cy), in which U, and Cy; are the absolute velocities of the precursor solitons and the mean veloc-
ities of the model respectively. The mean velocities are calculated by Cy = (Cy + C;)/2, in
which C; and C; are the velocities of the model at 1.1 and L2 respectively. The widths of the
generating region of the precursor solitons and of the depression are 9_ = (x, ~ z) and 2, =
( Z gown — x ) respectively, which can be read from the photos directly. Fig. 3 is an examination on

the universals of the velocity and width.
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5.3 Conclusions

The theoretical results of this paper all can be reduced to that of Lee ez al. (1989). For the
single layer flow, there are m; =1, m3;= =3/2, m4= — 1/6, Cy=1and C=F, (5) becomes
the fKdV equation of the single layer flow in the body frame to be defined by Lee et al. 21 By
our definitions H, = — 8, M,/ ms= —2(F —1)/3= —28, (24) thus becomes §=F—-24§, in
which 8 and & are the symbols used by Lee ez al. (2] gubstituting this result into our theoretical
formulae, we know that our results all can be reduced to that of single layer flow of Lee ez al. (2],
It should be pointed out that (54) is not obtained by Lee et al. (2] ' The universals of the velocity
and the width can also be examined with the numerical calculation of the single layer flow, from
fig. 2(b) of Lee et al. (2] it is known that U _ is equal to —0.185 and U. is equal to 0.140 ap-
proximately, so U /U, = —1.321 4~ —4/3. Obviously @ /%, =~ — 4/3. The universals of
the energy ratios can also be examined with the numerical results of the two-layer flow!*! directly.
Finally it should be pointed out that due to the canonical character of the coefficients of the fKdV
equations, the theoretical results of this paper hold for locally forced two-dimensional flow under
the condition f(x)>0, which is the most general case in the nature.
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