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Estimation of Multidimensional Precipitation Parameters
by Areal Estimates of Oceanic Rainfall

J. B. VALDES,! S. NAkKAMOTO,?2 S. S. P. SHEN,? AND G. R. NORTH?

The parameters of the multidimensional precipitation model proposed by Waymire et al. (1984) are
estimated using the areal-averaged radar measurements of precipitation of the Global Atlantic Tropical
Experiment (GATE) data set. The procedure followed was the fitting of the first- and second-order
moments at different aggregation scales by nonlinear regression techniques. The numerical estimates
of the parameters using different subsets of GATE information were reasonably stable, i.e., they were
not affected by changes of the area-averaging size, temporal length of the records, and percentage of
areal coverage of rainfall. This suggests that the estimation procedure is relatively robust and suitable
to estimate the parameters of the multidimensional model in areas of sparse density of rain gages. The
use of the space-time spectrum of rainfail to help in the determination of sampling errors due to
intermittent visits of future space-borne low-altitude sensors of precipitation is also discussed.

1. INTRODUCTION

Hydrologic models of precipitation have improved signif-
icantly in the last decade, evolving from relatively simple
models of point precipitation to models which represent the
time-dependent two-dimensional rainfall field. Some of these
models include those of Bras and Rodriguez-Iturbe [1976},
Bell (19871, Bell et al. [this issue], and the WGR model,
which is used in the present paper [Wavymire et al., 1984,
Waymire and Gupta, 1981]. All of these models are stochas-
tic, requiring data from rain gages or radars for tuning their
inherent parameters.

At the same time there are several proposals pending to
measure precipitation from space, especially over the vast,
mostly oceanic tropical band equatorward of latitudes +35°
[Simpson, 1988; Simpson et al., 1988]). These and other
schemes under discussion use radars and passive microwave
radiometers looking down from a low Earth-orbiting plat-
form to measure precipitation. The rain field models men-
tioned above should play a significant role in the space
missions to recover and map fine-scale rainfall over global
dimensions. First, the rain field models could help in the
planning of missions to check sampling errors due to space-
time gaps between visits [e.g., Bell, 1987; Bell et al., 1989;
Shin and North, 1988]. Rain field models might also play a
role in assessing other errors such as those due to nonho-
mogeneous fields of view for the sensors [e.g., Chiu et al.,
1989; Short and North, this issue]. Finally, one might use the
space-derived data once the mission is operational to tune
the models for special conditions, inaccessible regions, or
over different seasons. In this way the models might actually
be brought into near real-time operational use for such
applications as flood forecasting and hydroelectric planning
as well as for agricultural applications.

In this paper, we wish to approach the possibility of tuning
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hydrologic precipitation models with space-derived data.
This differs from previous attempts to tune the models, since
the space-derived data consist of area averages over sensor
fields of view of dimension ranging from 4 km up to about 50
km, depending upon the sensor and satellite configuration
being considered. Although some satellite data do exist at
present which could be used [e.g.. Short and North. this
issue], we have chosen to test the idea with a mock data set
taken from carefully calibrated surface-based radars taken
over the Intertropical Convergence Zone (ITCZ) region of
the Atlantic Ocean in 1974, the Global Atmospheric Re-
search Program Atlantic Tropical Experiment (GATE) data
set. These rain rate data have been conveniently binned into
4 by 4 km squares, allowing us to aggregate them into larger
squares as desired, imitating various satellite detection sys-
tems.

We illustrate with the GATE data that the WGR model can
be tuned (model parameters successfully estimated) in a way
that is reasonably straightforward and robust. Furthermore,
the procedure does not largely depend upon the size of the
averaging footprint of the data. Our first approach then
seems to indicate that the process can be applied to data
derived from actual satellite data.

2. THE MULTIDIMENSIONAL PRECIPITATION MODEL

2.1.  Introduction

Wavymire et al. [1984] developed a mesoscale stochastic
precipitation model that incorporates many of the physical
features of atmospheric dynamics such as rainbands and cell
clustering both in space and time. The WGR model repre-
sents precipitation in a hierarchical approach. with rain cells
varying in space and in time embedded in so-called cluster
potential centers. which in turn are embedded within the
rainbands. Although keeping a semblance of reality, the
stochastic distributions of all the components were selected
to be at the same time mathematically tractable. They
derived the first- and second-order moments of the precipi-
tation process &x, 1), which represents the rainfall intensity
on the ground at time ¢ and spatial coordinates x with units
(LT™"). In this paper, only some of the assumptions made in
the WGR model are presented. The reader is referred to the
original paper for a thorough explanation. Based on those
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assumptions, Waymire et al. [1984] derived the mean and
covariance of the point rainfall intensity process &Xx, ¢)
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where A, !is the average time between storms (in hours), p;
is the average number of cluster potential centers (CPCs) in
arainband per unit area (km ~1), ois the cluster spread factor
(km), B is the cellular birth rate (hours™!), E[v] is the
average number of cells per CPC, u = (i, u45) is the vector
of average storm velocities (km h™'), a is the attenuation
coefficient in time (hours™!), and D is the attenuation
coefficient in space (km).

In passing, we present for future reference an analytical
expression for the space-time spectrum S(v, v,, f) of the
instantaneous point rainfall intensity &x, f) derived in our
work:
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where v, and i, are the spatial wave numbers and f is the
temporal frequency. This analytical form of the space-time
spectrum is of interest, since it can be applied in the
numerical evaluation of the sampling errors for various
measurement designs such as space-borne sensors (G. R.
North and S. Nakamoto, Formalism for comparing rain
estimation designs, submitted to Journal of Atmospheric and
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TABLE 1. Typical Numerical Values of the Parameters of the
WGR Modei
Multi-
dimensional
Model Unit of
Parameter Definition Measure Value

pL mean density of cluster 1072 cluster/ 4.0
potentials km?

ETv] mean number of cells per 8.0
cluster

B cellular birth rate h-! 1.2

o cell location parameter km 5.0

a parameter as a measure of h -1 2.0
mean cell age

D parameter as a measure of km 3.0
spatial extent of cell
intensity

Am mean rain band arrival h~! 0.02

ETig) rain cell intensity at cell mm/h 60.0
center at time of birth

u rain band speed relative to km h~! 30.0

ground

From Waymire et al. (1984) and Valdés er al. [1985].

Oceanic Technology, 1988; hereinafter referred to as submit-
ted, 1989).

2.2. Parameter Estimation

The WGR model, as presented in the previous equations
(1) and (2), has nine parameters, assuming that the velocity
vector u = (u, 0) has a single nonzero velocity element. All
of the parameters have to be assigned numerical values
before the model is used for simulations. Even though the
originators have given nominal values for those parameters
and later authors have also provided ranges of some of the
parameters (see Table 1 for some of these nominal values).
the evaluation of these parameters for a particular site is not
an easy task. Extensive analysis of radar information can
provide some values, but in many cases of interest, radar
data are not available. Valdés et al. [1985] developed a
simulation model based on the WGR model and addressed
the parameter estimation problem using the first- and sec-
ond-order moments of simulated rainfall as measured in rain
gages. They also estimated, by an optimization algorithm,
the parameters of the multidimensional process. The results
were not totally satisfactory, since the first- and second-
order moments of the instantaneous rainfall intensity pro-
cess were used, which proved to be very unstable.

Recently, Islam et al. {1988], based on the previous ideas
of Valdés et al. {1985], used historical rain gage information
at the Walnut Gulch basin in Arizona and successfully
derived a procedure to estimate the parameters of the
process. They derived the first- and second-order moments
of the time-aggregated process, fp(x, 1), aggregated over a
time interval T (1 hour, 6 hours, etc.), and used the method
of moments to estimate the parameters of the rainfall pro-
cess. They obtained very satisfactory results. Walnut Gulch
has a dense network of rain gages. Koepsell et al. [1988]
applied the same approach to estimate the parameters in the
more common case of a sparse network of rain gages in
Brazos County (Texas). The results, although still of a
preliminary nature, suggest that the estimates are not as
stable as in the Walnut Gulch data, but still satisfactory. The
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storms used in the above analysis were classified on a
meteorological basis to further explore the capabilities of the
estimation approach.

2.3. Parameter Estimation Using Areal-Averaged
Measurements

The method due to Islam er al. [1988] yields good esti-
mates of the WGR model parameters, provided that rain
gage information is available. In some cases, particularly in
developing countries, this kind of information may not be
readily available. An economic alternative, in the future, will
be to obtain this information by space-borne instruments like
the ones in the Tropical Rainfall Measurement Mission-
(TRMM) and Tropical Rainfall Mapping Radar (TRAMAR),
which are proposed missions to be launched in the 1990s.
Obviously, in the development of this paper, the measure-
ments from these future missions were not available, but an
alternative approach was to use the measurements obtained
in the GATE experiment, pretending that they came from a
space-borne sensor. This idea has been adopted by others in
the past [e.g., McConnell and North, 1987; Short and North,
this issue].

In this paper we propose the use of space-borne radar
measurements, assuming that spatial averages of the GATE
measurements were taken by a space-borne sensor. to
estimate the parameters of the WGR model. The procedure
employed here is similar to the one proposed by Islam et al.
{1988], but the aggregation will be done in space and not in
time. After the first- and second-order moments of the
spatially averaged process instantaneous rainfall intensity at
time t, g(¢), are evaluated, they will be used by means of a
statistical optimization procedure to estimate the parameters
of the WGR model.

The analytical first- and second-order moments of the
instantaneous areal average intensity, g(r), over a square
area L> were derived in our work (see the appendix) as
follows.

Expected value

E(g()] = E[é(x, n]=¢ (5)

Variance
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Details of the derivation of the above equations are given
in the appendix. The procedure to be followed is. first. to
estimate independently. based upon meteorological analysis
of the area under study. three of the muitidimensional model
parameters: D (attenuation factor in space. km}. o (cluster
spread factor in space. km). and « (scalar of average rain-
band velocity. km h ~'). This approach greatly simplifies the
analysis. The remaining six parameters: a. 8. p;. E[v]. iy.
and A, are unknowns. and they are coupled with six first-
and second-order statistics obtained from the areai averuges
of the rainfall process. forming a nonlinear svstem of six
equations with six unknowns. In an approach similar to that
suggested by Islam et al. [1988]. a relatively rough seuarch
technique was used in conjunction with a nonlinear quasi-
Newton optimization procedure to produce estimates of the
remaining six parameters. The procedure used was the
Davidon-Fletcher-Powell technique [e.g.. Luwenberger.
1984]. and the scalar objective function was to minimize the
sum of the squares of the normalized deviations. 1.e.,

6
min z = 2, [fi(p)/#;]* (8)

f=1

where f; (p) is the least squares estimator of 8; . the ith sample
estimate of the second-order statistics. and p is the vector of
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unknown model parameters. This procedure may be carried
out for several combinations of spatial aggregation level
statistics, e.g., 4 X 4 and 8 X 8 km boxes, to evaluate the
stability of the estimated parameters of the multidimensional
model.

In summary, the steps to follow in the estimation of the
parameters of the WGR model using satellite measurements
are as follows.

1. Estimate from the areal average measurements the
first- and second-order moments of the spatial-averaged
instantaneous precipitation process, g(1).

2. Use (5), (6), and (7) to develop a system of nonlinear
equations with the parameters of the WGR model as un-
knowns.

3. By means of a nonlinear optimization procedure (e.g.,
Davidon-Fletcher-Powell), estimate the unknown coeffi-
cients.

This procedure may be carried out using, as an example,
the mean, variance, lag-1 autocorrelation coefficient, and
several cross correlations for different distances for a given
spatial aggregation level (e.g., a 4 X 4 km box). Then at
another spatial aggregation level (e.g., a 16 x 16 km box),
additional equations may be derived to encompass the
number of parameters to be estimated.

2.4. Sensitivity Analysis

The estimation procedure is based on the space-time
covariance function on the areal average precipitation pro-
cess. Thus it is important to carry out a sensitivity analysis
of the covariance function with regard to particular values of
the parameters and the spatial aggregation levels. In partic-
ular, as may be seen from (7), the autocovariance function is
the statistical moment where all the unknown parameters
play a role. To carry out this analysis, and following the
ideas of Islam et al. [1988], the first-order derivatives of the
space-time covariance function as a function of the muliti-
dimensional model parameters were analytically evaluated
and are shown in section 3 of the appendix. As examples of
the sensitivity analysis, the first derivative of the lag-1
autocovariance function of g(¢), W0, 1) with regard to the
multidimensional model parameters was carried out by vary-
ing one parameter over its plausible range and keeping all the
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Fig. la. Sensitivity analysis of ¥(0, 1) on the parameter a.
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Fig. 1b. Sensitivity analysis of ¥(0, 1) on the parameter 8.

others fixed to a particular value as given in Table 1.
Illustrative results, from the sensitivity analysis of three of
the multidimensional model parameters, a, 8, and p; are
shown in Figures la-lc.

As may be seen from Figure la, the first derivative of Y0,
1) is relatively insensitive to the most likely values of « for
up to 10 x 10 km area sizes, but it changes for larger-area
values, in particular, for a box size of 12 x 12 km. This is
particularly true in the range of values found in the estima-
tion from GATE records. The sensitivity of 0, 1) with
regard to parameter 3, as shown in Figure 15, indicates that
in the most likely range of this parameter, only 12 x 12 km
boxes show relatively larger variations in the first derivative
but still within the same order of magnitude, except at the
very end of the range of values of 8. We attribute this to the
proximity of B to the cell age parameter a, which is pre-
scribed in the Waymire et al. paper, that a™' has to be
smaller than 8~'. This is consistent with the findings of
Islam et al. [1988] for temporal aggregation. Again for the
range of values found from GATE records the first derivative
of the lag-1 autocorrelation function is relatively flat.

Finally, in the analysis of parameter p;, it may be seen
that it is the most influenced by size of the area, in particular,
at the 10 x 10 and 12 x 12 km grid box sizes, and in this case,
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Fig. 2. GATE radar locations within the B- and A/B scale arrays {from Arkell and Hudlow. 1977].

the first derivative is not flat in the neighborhood of the
GATE subset estimations carried out in the next section.
Similar resuits were found in the sensitivity analysis of the
remaining parameters of the model.

3. APPLICATIONS TO TROPICAL OCEANIC RAINFALL

3.1

The procedure for the estimation of the parameters of the
WGR model from space-borne sensors measurements was
tested by using a subset of well-known radar measurements,
the GATE data set. This was done because GATE records
are one of the most comprehensive data sets available, even
though they were obtained by ship-based radars. The GATE
phase | data extend over the period June 28 to July 16, 1974,
and provide insight into the tropical processes of the ITCZ.

During the GATE experiment, detailed measurements
from rain gages and radar installed on an array of research
vessels were made over an area called the B-scale covering
a 400-km-diameter hexagon and centered on 8°30'N latitude
and 23°30'W longitude off the west coast of Africa (see

Introduction

Figure 2). Arkell and Hudlow [1977] composited the radar
measurements from ships and presented an atlas of radar
echos every 15 min. Patterson et al. [1979] converted the
radar measurements to instantaneous rain rates averaged
over 4 X 4 km pixels.

We did not analyze the whole set of records of GATE,
limiting ourselves to a smailer areal and time size subset of
the phase I records. In this phase we found missing obser-
vations several times. The procedure that we followed was
to interpolate if the time interval among existing observa-
tions was less than 25 min. If the interval was larger, we
discarded that portion of the data set. Thus we had nine sets
of observations sampled every 15 min from the original
phase I B-scale data set with a spatial resolution of 4 X 4 km.
In the final analysis, we selected a period with 71 observa-
tions (*‘snapshots’’), another period with 259 observations.
and finally, one with 408 snapshots. Within those data sets,
we sampled different area sizes of 104 x 104 and 128 x 128
km. The characteristics of the different data sets that were
used in the final analysis are given in Tables 2 and 3. From
the tables it may be observed that the areal coverage of
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TABLE 2. Main Characteristics of GATE Phase 1 Data Subsets
Used in This Study

Rain Areal

Coverage.

Data Starting - % of Total
Set Date Snapshots Area. km Area
1 June 28. 1974 71 104 x 104 19.9
i1 June 28. 1974 71 104 x 104 8.7
11 July 5. 1974 251 104 x 104 13.2
v June 28. 1974 71 128 x 128 13.4

Sampling interval is 15 min.

oceanic rainfall varies significantly from the value found
when the whole GATE data set is analyzed, which was
approximately 12% [Simpson. 1988; Chiu. 1988]. It may also
be observed from Table 3 that larger variations exist for the
first- and second-order moments of the areal-averaged rain-
fall intensity process, e.g., the mean for set III is 0.1356, and
it is 10 times that amount for set I. Similar comments may be
made for the other moments of the rainfall process. These
large variations are going to make the estimation procedure
more difficult, as will be discussed next.

3.2, Applications to GATE Data

The estimation procedure, as outlined in the previous
section. was used to evaluate the parameters of the WGR
model with very satisfactory results. The results for nine
possible combinations of area sizes are given in Tables 4 and
5. As mentioned before, some of the parameters of the model
were preassigned based upon experience with GATE data
[e.g., Simpson. 1988]. For example, the spatial extent of a
rain cell was taken to be of the order of 3-8 km. From this
information a numerical value of D equal to 3.0 km was
assigned. The cluster spread parameter o was assumed to be
10.0 km, and the average rainband velocity. «. was taken to
be 10.0 km h~!.

The estimated parameters are relatively close, i.e., within
the same order of magnitude, as seen in Table 4. During the
estimation procedure, smaller values of the sum of squares
were obtained when a different value of o was used for some
subsets. In the final table, however, only the results with the
same values for the three variables D. . and « are reported.
From Table 5, where a comparison of the first- and second-
order moments is made, it may be observed that the mo-
ments are preserved at aimost all aggregation levels. In this
table, not only the moments used in the estimation are
shown, but rather all moments that were available from our
analysis of the GATE phase I subsets. The only problem, in
our opinion, is the representation of the lag-0 cross correla-
tion, at larger spatial aggregation levels, where the WGR
model parameters give smaller correlation vaiues as com-
pared with those observed from the historic records. It was
mentioned in our previous work [Valdés et al., 1988] that the
autocorreiation times for the multidimensional model, using
a hypothetical climate parameter set, stabilized faster than
the autocorrefation times of both phases of GATE records.
Using better estimates of the muitidimensional model param-
eters, as provided by the estimation procedure, gives closer
estimates to the autocorrelation times but still makes the
model autocorrelation times go to equilibrium before those
of GATE. One possible explanation of this behavior is the
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assumption in the WGR model that the cell spatial spread
within a cluster follows a bivariate Gaussian distribution.
i.e.. they have an exponential decay in space. One possible
solution to this problem is to use the full description of the
bivariate normal by assuming different values of the vari-
ances and to use a correlation coefficient to make the spatial
distribution function nonsymmetric. The price to pay for this
approach is the increase of the number of model parameters
from nine to 11.

As may be seen from the tables, the estimation procedure
yielded reasonably stable estimates of the multidimensional
model parameters. Of particular importance is the result that
the parameter estimates using larger areal-average sizes,
i.e.. simulation run 7 (8 x 8 and 32 x 32 km grid boxes)
produced numerical values of the multidimensional model
parameters similar to those evaluated from moments of
smaller areal-average sizes. Thus it does not seem necessary
to obtain areal estimates of rainfall at relatively small areal
pixels, at least for the pariicular purpose of evaluating the
parameters of the multidimensional model. In other words.
the estimation procedure is reiatively insensitive to the size
of the averaging footprint of the data. and this has important
implications when satellite data become available.

4. FinaL COMMENTS

The results reported in this paper are part of ongoing
research at Texas A&M University to characterize tropical
rainfall and its application to the planning of future satellite
missions. A procedure for the estimation of the parameters
of a multidimensional precipitation model. the WGR model.
is proposed in this paper.

The estimation procedure uses areal averages of instanta-
neous rainfall measured by radar. A subset of GATE records
is employed to obtain these numerical estimates with satis-
factory results. Although. in theory. these results only apply
to oceanic tropical rainfall. since the GATE records mea-
sured this particular phenomenon. it is our belief that the
estimation procedure may be applied to other types of
precipitation. We are presently looking to radar measure-
ments of precipitation over land gathered during the Florida

TABLE 3. Areal-Averaged GATE Phase | Subset Rainfall
Statistics
Data Set
Statistic 1 1 m v
Mean. mm/h 1.1841 0.3441 0.1356 1.0999
Variance, 4 x 4 km 258050 5.4037 26679 26.2184
Lag-1 corr. 4 x 4 km 00,5860 0.3830  0.3910 .5480
Variance. 8§ X 8 km 19.1583 4.4101 2.2121 19.5991
Lag-1 corr. 8 X 8 km 0.7160  0.5510  0.5620 0.6780
Variance. 16 X 16 km 14.5604
Lag-1 corr. 16 x 16 km 0.8250
Variance. 32 x 32 km 11.5664
Lag-1 corr. 32 x 32 km 0.9050
Lag-zero cross
4 X 4 km 0.3540 0.3860  0.3550 0.3680
8 x 8 km 0.2850 0.2910  0.2260 0.2880
I6 x 16 km 0.1910
32 x 32 km 0.1010

All lug-zero cross correlations were computed at a distance equal
to the length of the box size vn the v axis. measured from edge to
edge.
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TABLE 4. Multidimensional Model Parameter Estimation Resuits

Parameter

Spatial Aggregation, km

Run A, B, Elv), a, P Elio], Data Sum of

No. 4 x4 8 x8 16 x 16 32 x 32 bands/h cells’h cells/cluster 1/h  cluster/km? mm/h  Set  Squares
1 u, 02, pl, p0 a2, pi 0.0168 0.1991 3.04 1.34  0.00867 63.95 I 0.1109
2 w02, pl, p0 a2, pl 0.0128 0.3552 3.82 1.73  0.00383 55.06 II 0.0207
3 w02, pl, p0 a2, pl 0.0111 0.6818 4.60 1.78  0.00215 46.17 1II  0.1260
4 w02 p1, 0 a2, pl 0.0146 0.1849 9.44 1.32  0.00244 7777 IV 0.0632
5 w02, pl, 00 a2, pl  0.0131 0.2275 8.66 1.32  0.00294 78.77 IV 0.1794
6 u, 02, pl, p0 02, pl 0.0235 0.4688 5.38 1.33  0.00383 55.06 IV 0.0229
7 u, a2, pt, g0 a2, pl  0.0235 0.63919 3.30 1.32  0.00600 5704 IV 0.1155
8 w02 pl, p0 a2, p2 0.0168 0.2274 3.04 132 0.00837 6395 IV 0.0705
9 n, 02, pl, 00 a2, pt 00167 0.6817 7.62 1.33 0.00985 2049 IV 0.1419

Here, u, areal-averaged instantaneous mean; o2, areal-averaged variance; pl, lag-1 autocorrelation; and p0, lag-zero cross correlation.

Area Cumulus Experiment (FACE) to perform a similar
analysis.

We acknowledge the fact that the results reported in this
paper are related to a small subset of GATE and some
further analysis may be required. However, it is our feeling
that the subset actually reproduced most of the characteris-
tics previously reported for the entire GATE data set. Since
radar measurements like the ones obtained in GATE may be
used to simulate space-borne measurements, we believe that
the WGR model and the precipitation information obtained
from space-borne sensors in future planned missions will
complement each other. Remote sensing of tropical precip-
itation will cover areas of sparse density of rain gages and
should resuit in a better estimation of the parameters of the

WGR model. This will greatly increase the applicability of
this multidimensional model to the field of hydrology.

The space-time spectrum for instantaneous point precipi-
tation intensity that was analytically derived from the mul-
tidimensional model equations may be used in several ways.
One is to further analyze the capability of the WGR model to
represent tropical oceanic rainfall. This can be done by
comparing spectra for data and model. For a study of GATE
space-time spectra the reader is referred to S. Nakamoto et
al. (Frequency wave number spectrum for the GATE phase
I rainfield, submitted to Journal of Applied Meteorology,
1989). Another application is to the analytical estimation of
the sampling errors for various measurement designs by
spectral methods (G. R. North and S. Nakamoto, submitted

TABLE 5. Comparison of Estimated and Historic Moments of GATE Phase I Subsets
Spatial Aggregation, km
Means 4 x4 8 x8 16 x 16 32 x 32
Run
No. Data Estimated Moment Data  Estimated Data Estimated Data  Estimated Data  Estimated
1 1.1732 1.2106  Variance 26.8050 24.9025 19.1583  19.6678
Lag-1 autocorr. 0.5680 0.4897 0.7160 0.5710
Lag-zero crosscorr.  0.3540 0.4252 0.2850 0.2329
2 0.3411 0.3372  Variance 5.4037 5.5673 4.4101 4.3264
Lag-1 autocorr. 0.3830 0.4128 0.5510 0.4882
Lag-zero crosscorr.  0.3860 0.3932 0.2910 0.2023
3 0.1356 0.1610  Variance 2.6679 2.3764 2.2121 1.8742
Lag-1 autocorr. 0.3910 0.4246 0.5620 0.4976
Lag-zero crosscorr.  0.3550 0.4223 0.2260 0.2302
4 1.0999 1.1175  Variance 26.2184  27.7957  19.5991  21.9246 14.5604  13.4863  11.5664 6.8161
Lag-1 autocorr. 0.5480 0.4878 0.6780 0.5691 0.8250 0.7091 0.9050 0.8151
Lag-zero crosscorr.  0.3680 0.4226 0.2880 0.2304 0.1910 0.0787 0.1010 0.0028
5 1.0999 1.1213 Variance 26.2184  30.6798  19.5991 24.6275 14.5604  15.7552  11.5664 8.2634
Lag-1 autocorr. 0.5480 0.5204 0.6780 0.6007 0.8250 0.7349 0.9050 0.8325
Lag-zero crosscorr.  0.3680 0.4578 0.2880 0.2630 0.1910 0.0868 0.1010 0.0030
6 1.0999 1.1361 Variance 26.2184 24,7887  19.5991  20.3933  14.5604  13.7387  11.5664 7.5319
Lag-1 autocorr. 0.5480 0.5571 0.6780 0.6324 0.8250 0.7518 0.9050 0.8342
Lag-zero crosscorr.  0.3680 0.5081 0.2880 0.3076 0.1910 0.8342 0.1010 0.0032
7 1.0999 1.1333 Variance 26.2184  27.1114  19.5991 22.5164 14.5604 15.4584  11.5664 8.6048
Lag-1 autocorr. 0.5480 0.5669 0.6780 0.6391 0.8250 0.7510 0.9050 0.8265
Lag-zero crosscorr.  0.3680 0.5278 0.2880 0.3245 0.1910 0.1006 0.1010 0.0032
8 1.0999 1.1692  Variance 26.2184 24,7526 195991  19.6459  14.5604  12.2878  11.5664 6.3104
Lag-1 autocorr. 0.5480 0.5003 0.6780 0.5812 0.8250 0.7185 0.9050 0.8206
Lag-zero crosscorr.  0.3680 0.4372 0.2880 0.2441 0.1910 0.0822 0.1010 0.0029
9 1.0999 1.1047 Variance 26.2184  22.2684 19.599! 20.2053 14.5604 16.1811 11.5664 10.0262
Lag-1 autocorr. 0.5480 0.7386 0.6780 0.7788 0.8250 0.8330 0.9050 0.8708
Lag-zero crosscorr. 0.3680 0.7214 0.2880 0.4750 0.1910 0.1276 0.1010 0.0037
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1989). Of special interest is the case of a low orbiting satellite
which makes visits at fixed intervals. The WGR space-time
spectrum presented in this paper provides another example
for which the spectral method can be applied.

If the WGR model is to be used to represent multidimen-
sicnal precipitation traces for simulation of future satellite
missions, it must account for the fact that the space-borne
sensor will cover partially only the area under study (grid
box) during each visit. The effect of this on the sampling
errors should then be analyzed. To approach this problem,
Bell [19871, Bell et al. [this issuel, and Shin and North [1988]
took calculated satellite orbits to determine the fraction of
the grid box covered in each pass. In our earlier work
[Valdés et al., 1988] we made the assumption that the whole
area was observed at each visit. In a future study we expect
to apply the WGR model to the sampling problem, making
use of the true coverage on each overpass as computed from
exact satellite orbits.

APPENDIX

Introduction

For the point rainfall intensity process &x, t) Waymire et
al. [1984] derived the expected value E[£(x, #)], the variance
Var [&x, 1], the covariance Cov [&X, #), &x’, t')], where x =
(x4, xp) and X' = (x}, x3).

The areal average of the random variable &x, t) over a
square area L’ is defined as

1 L L
g(t)=—2f d-nf dxé(x, 1)
L 0 0

Since the precipitation process was assumed to be weakly
ergodic by Waymire et al. [1984], the expected value of g(¢)
is obtained by performing time averages. Namely, the ex-
pected value for g(¢) can be computed by

(AD

(A2)

T—=

1
E[&L, )] = lim —fT dig(1)
T Jo

Since the expected value operator E[ ] commutes with the
spatial integral operator in (Al), the expected value of the
area-averaged rain intensity is not affected by the area-
averaging process, i.e., the mean value for the point process
is equal to the mean value for the area-averaged rain rate

E[g(n]=E[¢(x, n]=¢ (A3)
The variance and covariance of g(¢) defined as
Var [g(n] = E{(g(r) - E[g())*} (A4)

Cov [g(n), g(t)] = E{[g() — E[g()])g(t') — E[2(t)]]}
(A5)

must be affected by the area averaging, since the expected
value operator £ ] apparently does not commute with the
products of the integral operator in the right-hand sides of
the above two equations. In practice, smoothing is widely
used to filter sequences, in order to diminish the effect of
measurement errors and other high-frequency disturbances.
We expect that the area-averaging process will reduce the
variance of the random variables.
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Waymire et al. [1984] did not provide an analytical spec-
trum of the instantaneous point intensity, &x, #). This is
important for the evaluation of sampling errors of precipita-
tion by intermittent visits by space-borne sensors.

Using the Wiener-Khinchin relation [Bras and Rodriguez-
Iturbe, 1984), the wave number frequency spectrum for the
point process may be computed as

S(v, vz,ﬂ=f zdaf " dg

+= )
. f dr Cov [£(x, 1), £x’, (t')]e2mvisr+ vz +fm) (A6)

where {l =X - X’l, {2 =Xy - X&, and T = ty — 1.

In our application to the GATE data, which have a 4 x 4
km areal resolution, the space correlation function of 4 x 4
km area-averaged rain intensity is g(¢). Thus the value of g(x,
#) is the area-averaged rain intensity over a square of area / 2

1 x1+1 x2+1
q(x, 1) = ﬁf dx f dx £(x, t)
X1 X2

where [ is the length of the averaging area, which is specified
by its lower left end point of the integration (x;, x3). The
space-time covariance for the area-averaged rain intensity is

Cov [&(x, ), &x', t)] = E{{q(x, 1) = )lg(x", t') — E]}
(A8)

(A7)

Notice that the above-defined covariance is reduced to the
covariance for the area-averaged rain rate in (A6) ifx = x' =
0 and ! = L. The next section of this appendix is devoted to
deriving analytical expressions of the space-time spectrum
S(v, v5, f) and the covariance Cov [g(x. t), gx’, (t)].

Covariance and Spectrum

Inserting (A7) into (A8) and using the commutability of the
ensemble operator E[ ] with the local areal integration over
1%, the covariance of the local area-averaged rain intensity
may be expressed as

Cov [g(x, 1), g(t', x')]

1 Xy + 1 2+ ! x+1 '+
=—4f d.vuf d}’zf dy, f dy2
! X x2 X/ X7

- Cov [£(2, ¥y, ¥2), &', ¥i. 39)]
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=ll4[1(x1 +Lxa+Lx{+1,x3+1) S(vy, v2, f) = 8 f:" d{, f;” d{; f:: dr
—~Hxy+ L, xp+ 1L, x{+1,x3) - exp {—alt=[({i—u1)? + ({2 — ua7)?]
-l(x 1+, x;+ 1, x{, 55+ 1) + 20iLos + Ly + 1)
+H{x1+1, x2+ 1, x{, x3) ), N N ~
~Hx Lz, x4 L X+ +(92+m) .L dhf_m ds'sz dr
H - (Be - P exp {[(¢) — uyT) 2+ ({1~ ua7)?]

~ It box xi, o ) = Mo+ Lo, i 3 +2mi( vy + Lava + o)D) (A12)

—Hxp o+ Lxi,xit g+ The integration of the right-hand side is essentially reduced

F Iy, X+ Loxl+ 1, 1) to the estimation of the following integral:

+ Kxy, %2+ 1 xiy x5+ 1) = I(xy, x3 + 1, x{, %) K= J’*‘” dx, J’*“‘ dx;

+ I(xy, x3, X1 + 4, x5+ 1) — Kxy, x2, x{ + 1, x3)

2
_I(xl, X2, X]’, xz’+l)+l(x|, X2, X]’, XZ’)] (A9) - exp {:_<2x—ll)_27rDVli> _4#2D2v;~’
where 3
*2 . 2n2.,2
—\=—=—2%wDvisi | —47°Dv;
2D

I 2 h N
Iy, 1y, 13, L) =f dylf dnf dyllf dy;
0 0 0 0

Cov [&(t, y1. y2). €, ¥, ¥3)]

= G,e _alflj(— uy T, 2D, 1|, 13)1(— Uus7, 2D, 12, 14)

“+®
. (f dx; exp [—ax; + 21ri(v1u1+v2u2+f)x3])
0

+ exp [—ax3 = 27i(v ey + vair + f)x3]

93 _ B 472Dy + 2
+ (02 - T(FZT_Z))[Be airl _ o =BT _ danD exp [—47 D (vy ubZ] AL3)
" d a’ + 167X v uy + vaus + f)?

. 2 212
Juyr, 2D% + 0% 15, 1) Using the above integration, the wave number frequency

Jupr, 2D + )V, 1y, 1] (Al0) Spectrum (A12) can be written
d s( PR %
an v fl=80 ——————+| 8, + —————
v f ! al+ 147202 © 4x(D -+ o)
b‘\/; a
fa, b )= - a)erd | 5 - «BED, o) - 1 (Al4)
’ a’+ 147°0% B2+ 14707

rf a—1, 1 ert Lh=-L+a " a 0
— + — —_— -
e 5 5l e p e P where

E(D, o) = 8m(D* + o) exp [4m3D* + o D)(v] + »3)]

LI +a li—li+a
erf b - erf —_5-_— O=vu + vaur + f
b2 a-hL\? a\?
+ —é_ exp | — 5 —€Xp | — ‘5 Sensitivity Analysis

In this section the theoretical lag-1 autocorrelation coeffi-

2
+exp [_ (a - l‘) } cient p(0, 1) is defined as
b
2 0. n=200 (A15)
+14 -1 po, b=
el EE)

The gradient of p(0, 1) with respect to a particular parameter

Inserting the covariance for the point process Cov [4x, 1), p, keeping all other parameters fixed. will be investigated to

&', (1), the wave number frequency spectrum for the point illustrate the interplay between the parameters and the
process is autocorrelation function of the rainfall process.
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ap(0, 1)_ 1 av(0, 0} ©.0) 3y(0, 0) ©. 1
w yoo\ p w

(A16)

where p represents the parameters of the multidimensional
model: a, B, A, pr, Eligl, and E[»]. The lag-1 autocovari-
ance %0, 1) and covariance {0, 0) are expréssed as

1
y(©, )= T [, G + (Be @ — ae P)(8,+ TVH] (AIT)

1
¥(0, 0) = 7 [6,A + (B — a)(0:+ T)B] (A18)

where
A=J%0,2D,1, 1)
B =JZ(0, 2(D2 + 0.2) l/2' 1’ 1)
G=J(—uy, 2D, 1, )J(—u3, 2D, 1, 1)
H=Juy, 2D + o)V, 1, D J(uz, 2D* + aDV2, 1, 1)

T 5
" 4n(D? + o))

Notice that 6, is a function of a, B, A, pr, Elipl, and E{v].
The derivatives of the covariance in (A16) are written as

¥(0, 0) = I*¥(0, 0)

30,0 (300 o 20, oT
o M\a) TBEr DA BB\

50,0 (00N 30,  oT
r— — + — ——
3p T (62+T) + BB — a) aE[i0]+BB

50,0 (30\ 00,  oT
£t \aEwel) T E® T N\ skt aET]

0.0 ( 90 36,  aT
PE] aE[v]) B aE[v]+aE[v]>

a%(0, 0) a6, {968 oT
=A 5— +BB-~a)l —+—

OA m A A

3%(0, 0) 98, 36, aT

=Al— ) +BB-a) +—

apL dpL apr 9pL
Similarly, the derivatives of the lag-1 autocorrelation with

regard to the model parameters are

¥(0, 1) = I*y(0, 1)

a¥(0, 1) a8,
= -Gl *+ G| — e *+ H(Be™ ™ — e B
da Ja
a6, oT
- (0, +T)+ HBe ™™ —ae )} —+—
Jda Jda

a7(0, 1)

=+He *+ae B)0,+T)
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H . _/3) 302+3T
(Be ae YRET

37(0, 1) 26, \ _.
3Eli] G<a£[io]>e
+ H(Be™ ™ - ae—B)< 592 + o >
3Elig)  3Elig]
370, 1) 26,
GE[v] G(aE[v]>e )
e g 96 o
+ Hipe "~ ae )(aE[u] +aE[u]>
3%(0, 1) 36, 36, oT
= G(_—)e-a +H(Be - a ‘B)( + —)
A m A m IAm  OAm

350, 1) 20\ _ ) (a6, T
=+G|—)e *+ HBe * - ae™®) + —
apL 9pL dpL  9PL

The derivatives

30,  E[vlpiAnEliglwD’
P
a6,
i
38,  E{vlp A mElig]nD?
dE(ip) B 2a
30,  pLARElilnD?
dE(v] - 2a
38, E[v]p.Elig]wD?
A 2a
30, E[vIAnElig]mD?
o 2a
_a;g =2 %3:—2;2 ’\mE[i(%]E[l’]zplz_‘n':D4
2 2
82 _ 4 BElig)E[v]*pi m*D*
dETio] - X (B -a’)?
362 4A nBEid)E[v]pi = D*
aE[V]=_ aX(Bl-al)?
862 4BE[iG1Evpin D*
A aXBl-ad)?
36:  _AAnBE(RIE[v)*p m D"
E=- a’(B?-a’)?
2
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303 Bla®+28%) , -
— = ~2 55— AE[GIE[v) ;w7 D*
613 ag(B__a_)_ m [l()] [V] pLT
803 4AmBE[]E[]pi= D"
oE[ie] = a*(B?—a?)?
303 4x,,BE[i]E[v]pi m*D*
E[v] a*(B* - a?)?
a6, 2BE(JE[v) i mD*
a,\m‘ az(Bz_az)z
36, 2A . BE[iS1E[v)?p m*D*
opr a¥(B? - a?)?
oT 905/
da 4m(D* + &?)
aT 365/0B
B 4mD + o)
oT 363/0E[iy)
3Elig] 4m(D?+ o))
oT aeg/aE[V]
dE[v] - 4m(D> + o}
aT 365/
oA, - 47(D? + o)
aT aO;/apL
opL - 47(D* + g
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