
Wave Motion 23 (1996) 39-48 

Energy distribution for waves in transcritical flows over a bump 

Samual Shan-Pu Shen* 
Deparhnent of Mathematics, University of Alberta, Edmonton. Canada T6G 2GI 

Received 4 April 1993; revised 21 June 1995 

Abstract 

Undisturbed water in a two-dimensional long channel obtains mechanical energy from a moving bump on the bottom of 
the channel. When the bump moves to the left at a speed near the critical shallow water wave velocity (gH) ‘12, the free 
surface of the water consists of a soliton zone upstream, and a uniform depression zone and a wake zone downstream. 
Lee, Yates and Wu [J. Fluid Mech. 199, 569-593 (1989)] computed the drag on the bump and the total energy of the 
water waves. In this paper, we answer the question how the total energy is distributed among the zones of the upstream 
solitons, the downstream depression and the downstream wakes. From the energy distribution formulas derived in Section 3, 
we conclude that: (i) The energy of the downstream wake is a decreasing function of the Fmude number F and contains 
almost all the energy when F is small but still in the transcritical range; (ii) the soliton energy is an increasing function 
of F and contains most energy of the system when F is large but still in the transcritical range; (iii) the depression energy 
does not vary significantly with F; (iv) the soliton energy is smaller (greater) than the depression energy when, the Froude 
number is small (large respectively); and (v) the wake energy is greater (smaller) than tbe depression energy when the 
Froude number is small (large respectively). Hence our results analytically show that the drag on a vessel moving at a 
transcritical speed is mainly due to tbe waves ahead of the vessel when its cruising speed is large and the waves behind the 
vessel when its speed is low. These conclusions agree with the pertinent concepts of moving vessel designs. 

1. Introduction 

Ref. [ l] considered the water over a bump on the flat bottom of a two-dimensional open channel of infinite 
length. The water is assumed to be an inviscid and incompressible fluid with constant density. The height of 
the bump is less than half the water depth at infinity. Initially, the water is at rest and the free surface is hence 
flat. Mechanical energy is supplied to the water by towing the bump toward left (upstream) at a speed near the 
shallow wave velocity (gH) ‘/*, where H is the depth of the fluid at infinity and g the gravitational acceleration. 
The water is thus disturbed by the moving bump. The work done by the bump to the water accounts for the 
mechanical energy of the wave motion of the disturbed water. 

When the bump velocity is near the shallow water wave speed (gH) ‘I*, the water motion can never approach 
a stationary state and this intrinsically unsteady state is called the transcritical state. At the transcritical state, 
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Fig. 1. An illustration of the solution T)I(X, t) of the fKdV Fq. (1) for a fixed time 1. The coordinate frame is in the dimensionless 

variables. The dimensionless free surface profile is 1 + l q (x, t) rather than 1 + ~1 (x, t) shown here. 

experiments, numerical simulations and asymptotic analyses all indicate the existence of a train of solitons of 
equal size moving upstream ahead of the bump [ l-31. Immediately behind the bump there is a flat depression 
zone behind which there is a wake zone (see Fig. 1). As time increases, the number of upstream advancing 
solitons increases at a constant rate. The depth of the depression remains the same but the length of the 
depression zone increases (the right-hand end of the depression zone moves to the right at a constant speed 
while the left-hand end remains fixed at the site of the forcing). The length of the wake zone behind the 
depression also increases since the right-hand end of the wake zone moves to the right faster than its left-hand 
end which is the right-hand end of the depression zone. 

Ref. [ l] calculated the total drag on the bump and hence the total work done by the bump to the water 
motion. When neglecting friction and viscous dissipation, the resulting mechanical energy of the water motion 
is equal to the total work. An interesting question is how this total energy is distributed in the aforementioned 
three zones of wave motion: the upstream soliton zone, the downstream depression zone and the downstream 
wake zone. An answer to this question will show how much contribution each wave zone makes to the drag 
on the bump. Hence, this answer is very important in floating vessel designs. The main purpose of this paper 
is to provide such an answer. 

It appears that it is difficult, if not impossible, to measure the drag on the bump caused by each wave zone 
separately in a laboratory. It is also difficult to calculate the drag by numerically solving the Euler equations. It 
seems that the best alternative to quantitatively estimate the drag caused by each wave zone is by asymptotic 
analysis. Both Refs. [ l] and [4] show that forced Korteweg-de Vries equation (fKdV) is an accurate model 
when the bump’s height is in comparable scale to its length. In this case, Ref. [4] further shows that the 
bump forcing in the fKdV can be represented by a Dirac delta function. Ref. [6] (p. 87, before Eq. (38)) 
postulated that the mass of the upstream solitons solely comes from the downstream depression and the mass 
of the downstream wake is almost zero. Our numerical tests show that this mass postulate is accurate (with less 
than 2% relative error) when the Froude number is near unity. With this postulate, one can find approximate 
formulas for the depth of the downstream depression, the amplitude and the period of the upstream solitons as 
functions of the bump velocity and the bump area. This was done in Refs. [ 1,3,6]. Ref. [ I] showed that these 
formulas are very accurate when the Froude number is near unity. To make the paper self-contained, relevant 
derivations of these formulas will be recapitulated at suitable places. The new in this paper are the calculations 
of the energy of each wave zone and the drag caused by each wave zone. Our conclusions are: (i) ‘Ibe energy 
of the downstream wake is a decreasing function of the Froude number F and contains almost all the energy 
when F is small but still in the transcritical range; (ii) the soliton energy is an increasing function of F and 
contains most energy of the system when F is large but still in the transcritical range; (iii) the depression 
energy does not vary significantly with F; (iv) the soliton energy is smaller (greater) than the depression 
energy when the Froude number is small (large respectively) ; and (v) the wake energy is greater (smaller) 
than the depression energy when the Froude number is small (large respectively). Hence our results analytically 
show that the drag on a vessel moving at a transcritical speed is mainly due to the waves ahead of the vessel 
when its cruising speed is large and the waves behind the vessel when its speed is low. These conclusions agree 
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with the pertinent concepts of moving vessel designs. To my knowledge, these conclusions have not been made 
in previous studies on the fKdV. 

Let W, Es, Ed and E, denote respectively the total work done to the water by the bump, the mechanical 
energy of the soliton zone, the depression zone and the wake zone. Thus, W = Es + Ed + E,. Therefore, the 
aim of this paper is to find the functions which describe the dependence of W, Es, Ed and E, on the bump * 
area S = Ji: h*( x*) dx* and the bump velocity c* = (gH)‘/*( 1 + EA), where the asterisk “*” signifies the 

dimensional-quantity. The Froude number is hence F = 1 + EA. 
In Section 2, we derive the expression for the total mechanical energy. In Section 3, the total work done to 

the water by the bump and the energy of solitons, the depression and the wakes are expressed in terms of c* 
and S. Conclusions and discussions are given in Section 4. 

2. The total mechanical energy of the wave motion 

The reference frame (x*, y*) is fixed on the bump. It is assumed that the bump is small and described 
by h*(x*) = l *Hh(x), where the small parameter l is defined by E = (H/L)* << 1 and computed by 

~jarr$Je~;~~ Here lPlloo is the maximum height of the bump, and the quantity L is the horizontal length 
* = XL. The free surface is assumed to be q* =~H~t(x,t)+O(~*).Whenc*= (gH)‘/*(l+EA), 

the function r]l (x, r) satisfies a forced Korteweg-de Vries equation (fKdV) [l-4]: 

3 
7711+ Arllx - pmx 

h,(x) 
- ~?Ixx, = 2’ -cm<x<co. (1) 

When considering a stationary solution, the forcing function h(x) can be approximated by P&x) and P = 

-3/2S/H2 is the dimensionless area of the bump and S(x) is the Dirac delta function. The delta function 
zpproximation for a bump whose base length is comparable to its height has been addressed in Ref. [4]. 
The solution to an initial value problem for the fKdV gives an approximation to the free surface profile by 

rl * x EHTI (x, t). Meantime, the approximate velocity and pressure fields are 

(u*,u*) = (--Erl,,E3’*rl,xy)(gH)“*, p* =pg[-(1 - y*/H) + ~7711. 

A schematic solution of Eq. ( 1) is shown in Fig. 1. Refs. [ 1,2,4] show that the above fKdV ( 1) is a very 
good model for the flows under investigation, even when the values of E are relatively large, say, E = 0.5 or 

llhllm = H/4. 
We are concerned exclusively with the initial condition q* (x* , t* = 0) = 0. The mass conservation property 

of the wave motion gives the following identity 

00 

s pq*(x*, t*) dx* = 0 (2) 

for every t* 2 0. Here, the dimension for the density p is [mass] [area] -’ . 
The horizontal momentum Mh of the perturbed flow due to the bump motion is 

cc 
r 

H+I)* 

Mh = / dx* / dy* pu*(x*,y*,t*) 

-m h’ 

co H( 1 +-II) 

= 
.I 

d( E-‘/*Hx) 1 I [P (-?1dxJ)(gH)1/2)] +pH2(gH)‘/*O(eS/*). 

-co c=Hh 
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‘%f,, = --E 3’2pH2( gH) ‘I2 J $(x,t> dx +pH2(gH>“20(~5/2). (3) 
--oo 

The negative sign “-” implies that the horizontal momentum is oriented toward upstream because the impulse 
exerted by the bump to the water is toward the upstream direction. 

Similarly, it can be shown that the vertical momentum M, is of order l 5pH2 (gH) ‘j2, which is negligible in 
relation to Mh. 

The total mechanical energy E of the perturbed flow is equal to the sum of the kinetic energy Ek and the 
potential energy Ep. Here we take the potential with respect to half the depth of the rest water. Hence we have 

E= 7 dx* T’dy- [$ ((~*(x*,y*,t*))~+ (~*(x*,y*,t*))~) +Pg(y* - v)] 

--oo h’ 
Co H(l+m) 

= 
J 

d( d2Hx) 

--oo 
,;I, d(Hy) {z [( 

E(-w(.GY, MgW”*)* + (s’i2(gH)1iz,~~,y)2] 

+pgH y- ;(l +e2h) 
>> 

+ pgH3 0( E”~). 

The above yields 

E = _(gHp2Mh + k!!&/2 

co 

2 I[ ~7: + ;,I: - mh] dx+pgH30(e7’2). 

--m 

(4) 

3. Energy distribution 

The kth upstream soliton solution of the fKdV ( 1) may be expressed in the following form 

Y,+~)(x,z) =2(A+s)sech2{[(3/2)(A+s)]“2(x+sr-x~)}, (5) 

where s is the upstream advancing speed of the soliton, a, 
is the phase shift. For each soliton vik’, one has 

= 2(A + s) is the amplitude of the soliton, and xk 

J m(v;k))2 dx=g (;(A+s))3’2=g($)3’2, 

--oo 
m 

J [(171’k’)3 + ;$:“] dx = 2jl,, + s)~/* = $;I*. 

--DC, 

Let Ns (t) be the total number of mature solitons upstream at 
the upstream solitons is 

Es = pgH3e3’*Ns(t)8 ($)3’2 + pgH3~5~2N,($$;/2_ 

a large time t. Then the mechanical energy of 

(6) 
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The first term is -k&m and 

M 

Mhs = -pgH* &%/*N, (t) s (#‘)* dx = -pgH2@e3’*Ns(t)8 ($)‘I*. 

-co 

is the total horizontal momentum of the all upstream solitons. 
To find the mechanical energy of the downstream depression, we evaluate 
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(7) 

(8) 

where hd 2 0 is the depth of the depression and Xd 2 0 is the length of the depression zone. The depression 
depth hd may be determined by the mass postulate that the soliton mass comes solely from the depression (See 
Ref. [ 61, p. 87, before Eq. (38) ). The average height of the upstream is hs, that is, the average of r]t (x, r) 
with respect x over a period ds, the distance between the two peaks of any two adjacent solitons. When time is 
large, we regard h, as an upstream uniform state which falls to the downstream uniform state hd. Both of these 
uniform states extend to infinity as time I -+ 00 and form an “imaginary” stationary state u(x). This stationary 
state is governed by the following boundary value problem: 

AU, - i”“, - i”,,, = $%(x), -oo<x<oo, (9) 

C-co) = h, and u(oo) = -hd. ( 10) 

Let U(X) = c(x) + h,. Then the above two equations become the hydraulic fall type of boundary value problem 
for l(x) [4,5]: 

This boundary value problem is solvable only when l(x) is a smooth fall from the upstream zero solution to 
a downstream solitary wave tail (see Eqs. (33)-( 44) in Ref. [ 51). Hence A - ih, < 0 and l(x) = 0 for all x 
in ( -co, 0). The first integral of the above boundary value problem in (0,oo) results in 

4’ - al2 - icxx = 0 when x > 0, 

L-to+) = 0, 5X(0+) = -3P 4“(=~) = -(h, + ki). 

Another first integral of this boundary value problem results in 

when x > 0, 

5(m) = -(hs + hi). 

This problem is solvable only when the third order polynomial on the right hand of the differential equation 
has a double zero. This double zero condition is 

(11) 

The amplitude of the fall of the downstream solitary wave tail is 
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which has to be equal to h, + hd. This leads to the important formula for h,j 

hd = (12) 

This formula is the same as formula (4.30a) given in Ref. [3] with different coefficients. It shows that the 

depression depth hd is a linear function of A. This conclusion agrees with the numerical results in Ref. [ 13 

(see the p-curve in Fig. 9 of Ref. [ 11) . 
The quantity X,j can be determined by the same mass postulate used above that leads to 

Km, = Xdhd 

where m s = 4[ (2/3) (A + s) ]‘I2 = 4(a,/3) ‘f2 is the mass of an upstream soliton. 

Eqs. (4) and (8) t ogether with the above equation lead to 

Ed = l 3’2pgH3N,4hd 
a, 112 

( > 
5 - pgH3d2N,4(a,/3) “‘hi. 

Here the first term is equal to -Mh,jm and 

(13) 

(14) 

‘%d = -cz3i2pH2&iNS4h,j (15) 

is the momentum of the depression zone. Again, the negative sign for this quantity means that the impulse 
exerted to the flow by the bump is toward to the upstream direction, 

It seems not easy to find the wake energy EW directly. So we evaluate the total work W done to the water 
by the bump. Then the wake energy E, can be found as W - ES - Ed, 

Let xD be any point in the depression zone. The long time average of the operation ST_< 1) x 71 (x, t) dn 

yields 

XD 

where CW = 
J 

71(x, t)h,(z) dx 

--oo 

is the drag coefficient. Making use of formulas (ll), (12) and (35) in the Appendix, the total drag on the 
bump is 0;; = CwpgH’ and is equal to 

In the following, we need other formulas derived in [ 1 ] . They are 

(16) 

a, = 2( hd + !A) (hd + $)/hd, (17) 

(18) 

In order to make the paper self-contained, in the appendix we include another derivation of the above two 
formulas which follows the same line as that given in Ref. [ 11. Numerical tests show that these two formulas 
are very accurate when IA] is small. 

The total work done by the bump up to the time N,T,( H/g) ‘1’ when iVs solitons are mature is 

W = D;NST,(H/g)“2( 1 + l h)(gH)“~. 
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This yields 

w = ; ~,pgH~e~/~p~T,( 1 + l A) . 

From Eqs. (7), (15), (19), (6), and (14), we can obtain the following energy distribution results: 

E, = NSpgH’i2$a;3’2(4&H + 3&f), 

2a 
Ed = N,pgH’12Th;a;“2(2H - hi), 

w= ; N,~~H-~E-~~~S~T;C*, 
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(19) 

(20) 

(21) 

(22) 

where TS* = l m3i2TS( H/g) ‘I2 is the dimensional soliton generation period, hi = EHhd the dimensional depth of 
the depression, af = l Has the dimensional amplitude of the solitons, and S = l 3l2H2P as defined after Eq. ( 1) 
is the area of the bump. The above energy expressions can be normalized by the energy dimension pgH3 and 
further by the number of solitons NS. The expressions for the dimensionless energy per soliton are: 

NspgH3 9 

- = ec312hd+2(2 _ Ehd), Ed 

ed = N,pgH3 3 

W 
w = ~ = ze3j2P2TS( 1 + EA), 

N,pgH3 2 

W - ES - Ed 
e, = 

N,pgH3 
= w-ee, -ed. 

(23) 

(24) 

(25) 

(26) 

Over a long time, the energy on the short zone over the bump is negligible in comparison with e, and ed. 
Hence we have equality (26). 

In Ref. [5], the transcritical range has been found to be (AL, AC) with AL = -(3/4)(6P2)‘j3 and AC = 
(3/4) (3P2/2) . ‘i3 If A = AL, then hd + (4/3)A = 0. Hence T, ---+ co as A + AL + 0 by Fq. ( 18). Consequently, 
it takes infinitely long time for a soliton to mature and to be radiated upstream. Therefore, the mass postulate 
becomes invalid and formulas (17) and (18) become inaccurate when A is near AL. Numerical results in 
Ref. [ I] agree with this conclusion. 

Despite that W takes a finite value when A = AC, the above energy distribution formulas again become 
invalid at A = AC. The reason is that at AC, the wake energy e, is negative if it is calculated according 
to Eq. (26). The soliton energy is an increasing function of A and the increasing rate becomes larger and 
larger when A approaches AC from below. From formula (26) it happens that e, = 0 when A = AO < AC. 

Hence e, calculated from Eq. (26) is negative when I\0 < A I A C. For example, in the case of semi-circular 
bumps R = 0.1 H and 0.25H, the corresponding values of the Froude number FO = 1 + .eAo are 1.02407 and 
1.02410, respectively. Therefore, the largest interval in which the derived energy distribution formulas are valid 
is ( 1 + EAL) (gH) ‘j2 < c* < ( 1 + eAe) (gH) ‘i2. In this interval, ES, Ed and W are smooth functions of A for a 
given P. The energy distribution formulas have been plotted against the Froude number F = 1 + EA in Figs. 2a 
and 2b for two semi-circular bumps R = O.lH and 0.25H, where R is the radius of a semi-circular bump. In 
these figures, E = ( R/H)‘i2 and P = (7r/2)~ 3/2. When R/H = 0.1,0.25, the transcritical range 

(FL, Fc) = (1 + l AL, 1 + eAC) = (1 - ( 1/2)(9S/(2H2))2’3, 1 + ( 1/2)(9S/(4H2))2’3) 

for the Froude number F is (0.9146,1.0539) and (0.7100,1.1827), respectively. The energy formulas are 
plotted in subintervals of the above transcritical ranges: (0.9146.1.02407) for R = 0.1 H and (0.7100,1.02410) 
for R = 0.25H. These plots show how the quantities W, e,, ed and e, vary with the Froude number F for a fixed 
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Fig. 2. The relationships e,, ed, ew and w vs. F. Here, F = 1 + aA is the Froude number, l = (R/H) I/* the small number for the asymptotic 
analysis and R the radius of the semi-circular bump: (a) R/H = 0.1 in the interval (FL, Fo) = (0.91460,1.02407), and (b) R/H = 0.25 
in the interval (FL, Fo) = (0.71000,1.02410). 

forcing. From Fig. 2b, we notice that the e, curve has a sharp turning point around F = 0.72. When F < 0.72, 
e, and ed almost vanish while e, absorbs almost all the external energy w which is supplied to the water by the 
bump. The energy accumulated by the downstream wake is now infinite relative to the energy of an upstream 
soliton. The phenomenon is the manifestation that the downstream wake becomes dominant. This explanation 
is supported by Fig. 2a in [ 11. 

Again from Fig. 2b, we notice that when F is close to 1.024, for each upstream soliton produced one needs 
to supply almost no energy to the wake zone and hence the wake zone is relatively short. This is supported by 
Fig. 2c in Ref. [ 11. 

4. Conclusions and discussions 

Based upon the approximation that the upstream soliton mass comes solely from the downstream depression, 
we have analytically found the mechanical energy distribution of transcritical water wave motion over a bump. 
For a fixed bump area, the wake energy per soliton is a decreasing function of the Froude number F while a 
single soliton energy is an increasing function of F. In the transcritical range (FL, Fc) of the Froude number 
F, when F is approaching FL from the right, the downstream wake energy e, per soliton becomes infinite 
according to formula (26) and the wake absorbs almost all the input energy W. When F is approaching FO from 
the left, the upstream soliton zone contains more energy than that of the wake zone and that of the depression 
zone. 

The energy of the depression zone does not vary significantly with the Froude number F. The soliton 
energy is smaller (greater) than the depression energy when the Froude number is small (large, respectively). 
The wake energy is greater (smaller) than the depression energy when the Froude number is small (large, 
respectively). Hence, the drag on a vessel moving at a transcritical speed is mainly due to the waves ahead 
of the vessel when its cruising speed is large and the waves behind the vessel when its speed is low. These 
conclusions agree with the pertinent concepts of moving vessel designs. 

The long time average of the total drag 0; = ( 3/2)c3/2P2pgH2 does not vary with the Froude number. This 
conclusion is supported by Fig. 6 in Ref. [ 11 when 0.8 < F < 1.05. It is clear to us that the drag is caused 
by waves. The contributions to the total drag from the upstream soliton zone, downstream depression zone and 
downstream wake zone can be described respectively by the following formulas 
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D’ = es 
ws T,(l + Eh) 

pgH2 = l 3f2$z:f2(4fi + 3&as)pgH2, 

Dzd = ed Ed 
T,(l +EA) 

pgH2 = - = 2Jj,3f2hda:f2(2 - l hd)Pg 
NspgH3 3 

H2, 

D;, = 
w - es - ed 

G,(l + l A) 
PN2. 

Whether it is possible to reduce the upstream radiated waves at a larger transcritical speed and suppress the 

downstream wake at the lower transcritical speed is an interesting question for optimal shape designs of moving 

vessels. 

Appendix. Derivation of formulas (17) and (18) 

Now, it is appropriate for us to estimate the soliton amplitude a, and the soliton generation period T,. The 

following two first integrals are obtained by doing J!,( 1) dx and 1:; 71 (L I> x ( f > dx 

ms 
- = --+l(O, t) + $&o, t) 9 

Ts (27) 

#I) - = -A&O, t> + 9:w, t) + ;171co, f)rllxx(L t) + ~q:,(O-, f> 1 6 (28) 

where ML:’ is the horizontal momentum of an upstream soliton. After adopting the following approximation, 

T 

lim !. 
T-cc T s 

VI (0, f> dt = hs, (29) 

0 

T 

lim _! 
T+co T s 

T&O, t) dt = h;, (30) 

0 

T 

lim L 
T+ca T s 

r);(O, t) dt = h;, (31) 

0 

7” 

lim !_ 
T~oa T s 

rl1(0, t>rldo-, t) dt = 0, (32) 

0 

T 

lim !_ 
T-w T J ~&(0-,t) dt =0, (33) 

0 

the long time average of the above two first integrals becomes 

4 - =--Ah 
Ts 

+ 2h2 
s 4s’ 

/#) 
hs 

TS 
= -Ah: + hz. 

(34) 

(35) 



48 S. Shari--Pu Shen/Wave Motion 23 (19%) 39-48 

The operation (35)/( 34) results in 

a, = 
2(hd + ;A) (hd + ;A) 

hd 
(36) 

To find T,, perform the operation ST, ( 1) dx where XD is any point in the uniform depression zone. This 
integral yields 

(37) 
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