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This paper describes the mathematical formulation of the canonical ensemble correlation (CEC)
forecasting model proposed by Lau et al. The model was developed mainly for forecasting the seasonal
precipitation over the United States but also can be used to make long term forecasts of other climate
parameters, In CEC, each individual forecast is made through a multivariate regression using canonical
correlation analysis (CCA) in the spectral spaces whose bases are empirical orthogonal functions (EOF).
Optimal weights are used to make ensemble forecasting and crucially depend on the mean square error
of each individual forecast. An estimate of the mean square error of a CCA prediction is also made by
using the spectral method. The error is decomposed onto EOFs of the predictand and decreases linearly
according to the correlation between the predictor and predictand. Since the new CCA scheme is derived
for continuous fields of predictor and predictand, an area—factor is automatically included. Thus our
model is an improvement of the spectral CCA scheme of Barnett and Preisendorfer. The improvements
include (i) the estimation of prediction error, and (ii) the optimal ensemble of multiple forecasts, The
CEC model is applied to the seasonal forecasting of the United States (US) precipitation field. The
predictor is the sea surface temperature (SST). The US Climate Prediction Center’s reconstructed SST
(1951-2000) is used as the predictor’s historical data. The US National Center for Environmental Pre-
diction’s optimally interpolated precipitation (1951-2000) is used as the predictand’s historical data.
CEC optimally utilizes intrinsic sea surface temperature (SST) variability in major ocean basins. While
the tropical Pacific, i.e., El Nifio, contributes to the largest share of potential predictability in the south-
ern tier States during boreal winter, intrinsic SST variability in the North Pacific and the North Atlantic
is responsible for enhanced predictability in the northern Great Plains, Midwest and the southwest US
during boreal summer, Most importantly, CEC significantly reduces the spring—summer predictability
barrier over the conterminous United States, thereby raising the skill bar for dynamic predictions,
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1. INTRODUCTION

Lau et al. (2002) introduced the CEC (canonical ensemble correlation) method for sea-
sonal climate prediction. The method optimally utilizes intrinsic sea surface temperature
(SST) variability in major ocean basins and yields a remarkable (10%—20%) increase in
baseline prediction skills for seasonal precipitation over the United States for all seasons. This
increase significantly reduces the spring—summer predictability barrier over the conterminous
United States (US). The purpose of this paper is to describe the mathematical formulation of
the CEC method.

CEC is used to maximize the predictability from multiple predictors while the prediction
from each individual predictor is made by a linear regression using canonical correlation ana-
lysis (CCA). For example, to maximally extract precursory signals from global SST, the world
ocean is partitioned into non—overlapping sectors: Tropical Pacific (TPAC), North Pacific
(NPAC), Tropical Atlantic (TATL), North Atlantic (NATL), and Indian Ocean (IND). Each
ocean basin can be counted as a predictor for making a forecast. The CEC forecast is then ob-
tained at each grid box as a weighted average of the individual forecasts. In the making of
each individual forecast, some improvements have been made in the spectral CCA scheme of
Barnett and Preisendorf (1987), called BPCCA: an area—factor is included to reduce the noise
of the data over the high latitude areas, and an error estimate is made to give a statistical as-
sessment of the forecast quality.

CEC is a statistical model for long term forecasting. Why is another statistical model
needed? Despite the great potential of the coupled GCM, its long—term forecasting ability is
still limited because of numerous unknown mechanisms, including land—surface processes
and cloud structure. The chaotic nature of nonlinear dynamics requires both spatially and
temporally dense observations to limit the computing drift when solving a stack of nonlinear
differential equations in a GCM. It is not conclusive yet whether the statistical or dynamic
model is the best for forecasting. At the US Climate Prediction Center (CPC), it was stated in
1998 that “ neither the dynamic nor the statistical models, as a group, perform significantly
better than the other” (Barnston and He, 1998). CCA, OCN (optimal climate normals), and
CA (constructive analogue) are all offcial statistical forecasting models used in CPC
(Barnston and Smith, 1996). These statistical results are compared with the coupled GCM
model forecasts. A subjective determination is made when announcing the NOAA's offcial
long term forecasting. The classical CCA algorithm requires an inversion of cross—covariance
and auto—covariance matrices, In the climate forecasting practice, all these matrices are not
full rank because of the short history of climate observations. The BPCCA scheme in the
EOF space avoided the inversion of matrices of non—full rank. BPCCA was a milestone work
and made the use of CCA possible as an operational forecasting tool. According to Kim and
North (1998; 1999), CCA is an accurate method compared with other statistical methods,
such as the methods of POP (principal oscillation pattern) (von Storch and Zwiers, 1999),
Markov (Xue et al.,, 2000), EOF extrapolation (Kim and North, 1998), and MCA (maximum
covariance analysis) (Lau and Wu, 1999). Because of our error assessment formula, the mean
forecasting quality at a given location is assessed simultaneously as the forecast is issued.
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These error estimates are crucial to optimally combine the forecasts from different models
and data to form an optimal ensemble forecast.

US seasonal precipitation is a difficult predictand because of its large variance, However,
the clear impact of El Nifio / Southern Oscillation (ENSO) on the US recitation indicates that
SST does have potential predictability for the US precipitation, but the prediction skill in tra-
ditional methods drops dramatically in the spring, reaches a minimum in the warm season,
and rises steadily from fall to winter, The dramatic reduction in forecast skill from winter to
summer through the spring season is known as the “ spring predictability barrier,” which has
been endemic in both statistical and dynamic forecasts of El Nifio (Chen et al,, 1997), Recent-
ly, Wang et al. (1999) found significant predictability from tropical and extratropical Pacific
SST on warm season precipitation over the upper Great Plains and Atlantic States of the US
during El Niflo summers. The increased predictability is a quantitative validation of earlier
findings on the relation between the US precipitation and the tropical and North Pacific SST
(Ting and Wang, 1997; Ropelewski and Halpert, 1986). However, the forecasting skill was
still relatively low in summer, even during the time of a strong SST signal in the tropical Paci-
fic.

It has been suggested that the reduced precipitation predictability in the summer over the
US stems from the weaker and more poleward position of the upper level westerly flow in the
northern hemisphere, making it difficult for tropical SST influence to be transmitted to the
US continent (Lau and Peng, 1992). As a result, the influence of tropical Pacific SST on the
US summertime precipitation diminishes significantly. However, SST variability in other
ocean basins, especially the extratropics, may begin to have an impact on US precipitation in
summer (Higgins et al., 2000). In addition to SST, other factors such as soil moisture, snow
cover and vegetation may influence US precipitation predictability for both summer and win-
ter, The CEC of Lau et al. (2002) provides a scheme that can systematically explore potential
predictability from various factors and be applied to climate predictions.

The numerical results of this paper are generated using the the US Climate Prediction
Center’s reconstructed SST (1951-2000) as the predictor’s historical data. The US National
Center for Environmental Prediction’s optimally interpolated precipitation (1951-2000) is
used as the predictand’s historical data, Our forecast experiments show that the new ensemble
canonical correlation scheme renders a reasonable forecasting skill,

The content of this paper is arranged as follows, The basic concept of CEC is described
in Section 2, The prediction as a multi—variate regression of the canonical variables is pres-
ented in Section 3. Section 4 studies the prediction error estimation. Section 5 shows canonical
ensemble forecasts, Numerical results are displayed in Section 6. Section 7 provides summary
and conclusions,

2. BASIC CONCEPT OF CEC

Fig. 1 shows the basic concept of CEC. Given an initial climate state, denoted by Q;, the
real climate system evolves into a climate state Q, at some future time Az >0, Because of
changing boundary conditions and the chaotic nature of climate evolution from the initial
state, Q; or states very close to Q;, a range of possible future states, within the “event cone”,
R, may be possible. A given predictor, generating a set of canonical variables, may produce
an event cone P, , which maximizes the overlap (or minimizes the distance metric) with R, If
P, and R have a large overlap, then P, is considered a good predictor that can yield useful
forecasts for Q,. Hence, P here signifies the predictor data, prediction model and prediction
results. Other predictors such as P, may produce a lesser overlap with R, but may capture
different climatic states spanned by the event cone R, not covered by P, . This situation can
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be applied to other predictors P, , which span yet other portions of the event cone R. The ob-
jective of the CEC is to construct, based on the totality of individual canonical correlation
predictions, an “ensemble event cone” that maximizes the overlap with R, taking into account
all possible outcomes. In CEC, the number of predictors, represented by P, , is unlimited, and
the predictors are not subject to orthogonality constraints,

Fig. 2 shows the procedures of CEC by using five ocean basins’ SST as predictors for the
US seasonal precipitation: Tropical Pacific (TPAC), North Pacific (NPAC), Tropical Atlantic

Canonical Ensemble
Correlation (CEC)
Predictions

Fig. 1. Schematic diagram illustrating the basic concept of canonical ensemble prediction.

Predictors (SST) Predictands (Prec)
Detrended and standardized Detrended and standardized
HOIGIOIOIONC
‘e
EOF
(Epocf) (6 PCS)

+ Regression Prediction |«
Using Canonical Variables|
« Error Estimation

T=t+At

Ensemble Prediction

Fig. 2. The flow chart of canonical ensemble correlation (CEC) algorithm for forecasting.
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(TATL), North Atlantic (NATL), and Indian Ocean (IND), Separate forecasts each using up
to 6 canonical variables are made based on difierent ocean sectors, This step is crucial, be-
cause predictions from individual sectors allow the natural SST variability in that sector to be
fully utilized in prediction. The CEC forecast is then obtained at each grid box as a weighted
average of the individual forecasts, Various kinds of weighting schemes can be used, such as
uniform weighting, maximum skill weighting, super—ensemble weighting, and error
weighting. The maximum skill weighting uses only the forecast from the predictor that has the
maximum skill for a given grid box, The super—ensemble weights are determined by a linear
regression. The error weights are determined by the error of each predictor by using the prin-
ciple of minimum mean square error, Extrapolation weighting can be used as well. In this
weighting scheme, some weights are negative, corresponding to the forecasts that serve the
role of correction.

The CEC prediction model is based on linear regressions that maximize the correlation
between the weighted integrals of SST and precipitation fields. The discretization of the can-
onical correlation in EOF spectral space for the spatially continuous predictor and predictand
fields leads to an equal area—factor correction, The regression error is estimated for each EOF
mode, The matrix for the correlation eigen—problem is solved in the EOF space to obtain the
maximum correlation between the canonical correlation variables of SST and precipitation.
The predicted precipitation field is then expressed in terms of the canonical variables of
predictors,

3. MATHEMATICAL FORMULATION OF CEC

3.1 CCA for Two Continuous Fields

The CCA forecasting scheme is a regression between two canomnical variables U(¢) and
V(¢), which are weighted integrals of two corresponding variables, predictor and predictand,
Here ¢ and ¢t'= t+ At signify time, and At is the lead time of forecast for the predictand. The
higher the absolute value of the correlation between the two random variables, the more sig-
nificant the regression, and consequently, the stronger is the linear relationship between the
two random variables, To make the regression statistically significant, the absolute value of
the correlation between the two canonical variables is maximized by choosing optimal weight
functions,

Let random variables X(x, t) and Y (y, ¢) represent the predictor and predictand fields,
respectively. Here x is the position vector defined in the predictor domain Qy, y is the posi-
tion vector in the predictand domain Qy, and ¢ signifies time. The corresponding weight
functions are u(x) for X and v(y) for Y, which are called canonical correlation patterns and
are to be determined by an optimization. Two weighted integrals are defined by

@)= [ X 0u(x)0y, M
Vo= [ Y0000y, @

The unit of the weight function u(x)is [X —unit] ™ [area] and that of v(y)is [¥
—unit]™ [area]™. Thus, the canonical variables U(¢) and V(¢) are dimensionless. Since the
theory to be developed is still a stationary theory, the processed data of X and Y are often the
standardized and detrended anomalies. The area is standardized by R?, where R is the radius
of Earth,

Weight functions often imply certain physical meanings of U(¢) and ¥ (z). For instance, if

——_
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()= ——
Area of Qy°’

and if X is dimensionless, such as the standardized anomaly, then U (¢) is the spatial average

of the X field over the domain Qy . If X is not standardized, a quantity, such as the average of

the spatial standard deviation, should be included in the denominator of the above formula n

order to make U (z) dimensionless,

The CCA scheme searches for the optimal weight functions #(x) and v(y) so that the cor-
relation between I/ and V' reaches extrema. The extrema can be either positive or negative. As
will be seen later, the canonical patterns will be determined by an eigenvalue problem. The
orthonormal eigenvectors are unique up to a positive or negative sign. Therefore, one can se-
lect the eigenvectors so that the correlations are always non—negative, and the correlation’s
extrema can be regarded as maxima, The details of the eigenvector selection are given later,

The correlation between U and V is denoted by p. Hence, our intention is to find the
optimal weight functions u(x) and v(y) such that

p= max Corr(U, V). (3)

Since the weight functions are to be determined, one can always adjust them so that U
and ¥ have unit variance. The above correlation optimization problem is then equivalent to a
covariance optimization problem

p= max Cov(U, V) @)
under a constraint
Var(U)= Var(V)= 1. 3)

The above continuous theory can become computationally possible only when the
covariance functions and cross—covariance of the predictor and predictand are known, How-
ever, in almost all the climatological applications, they are unknown. The detailed mathemat-
ics of the CCA for two continuous fields can be found in Shen et al. (2001). A discrete version
of CCA must be considered, Here we derive the discrete CCA from integrals; hence, the
area—factor is automatically included. The inclusion of the area—factor is important when the
data are defined over the uniform latitude—longitude grid boxes and when the domains Qy
and/ or Qy contain high latitude regions, since the data over the low latitude boxes represent
larger areas and are, thus, weighted higher. The details of the covariance matrices and EOFs
with area—factor are described in North et al. (1982) and Shen et al. (1998).

Since CCA for the CEC is a spectral model like that of BPCCA, we first revisit the com-
putation of the discrete EOF by following the derivation of North et al. (1982). The exact
eigenvalue problem is

[ ol #W e @)= di ),

Here p(x, x') is the covariance function of the X field, ¥ (x) is the kth EOF (or mode) and 4,
is the variance (eigenvalue) of X(x) on the kth mode (k=1, 2, «++). The approximate
eigenvalues of the above continuum eigen—problem can be estimated by a discretization pro-
cedure given by

Xpy70 = Lol ©)
J

where
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[Py = [\/A—ip(x,-, WA ] )

is the covariance matrix with area—factor, and

70 = v (5, WA, ®)
is the eigenvectors with area—factor, and 4; is the area associated with the grid x;. For uni-
form latitude—longitude grid boxes, one has

A;= cosp; AfAg,

where ¢; is the latitude of x;, and the A9 and Ag are the zonal and meridional box dimen-
sions, respectively, which are measured in radians. The linear spatial unit (i.e., the length unit)
is in the radius of earth: R =6376 km.

With the above preparation, if the area of the region associated with x; is denoted by 4,
and that associated with y; by B;, the covariance matrices with the area—factor are

o= WA <x x4,
7r=WB ¥, Y VB,
Y= W4, <X, ¥ )VB)),
The discrete EOFs are eX and el . They are related to the continuous EOFs by
eX )= v, (x4, en ()= o, (yNB; . ©

Here eX (i) is the ith element of the vector eX . The magnitude of e} is equal to one, since

Ix

Sl OF = X, WA = [ yiwaa, -1,

im

where J, is the total number of grid points in domain Q.
In practice, the discrete EOFs are computed from the eigenvalue problems of the
covariance matrices with area factors,

Yixer=iyer,
fren=Arer,
The correlation p defined by (3) has a discrete version
p=Corr(X, *u,,Yp *vp), (10)
where the vectors are defined by
XA (t)= [“ Al' X(xl': t)])
Yp()=[NB; Y(y;, )L,
uy=[NA4; ulx)),
vp= [V B; v(3)l,

The maximization of the correlation p can then be realized by maximizing the covariance
4
pP= u/Any Vg, (11)

under the constraints
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u Z;XUA =1, (12)
Vg e Us= 1, (13)

In order to find the maximal correlation p by solving a single eigenvalue problem, both
the fields and weight functions are expressed in terms of discrete EOF. The EOF expansions
are

X, = ZX (eX Y,
Yy ()= Z Y (e N Ay

me= |

?

qu Zune;},/‘lnxa

n=1

Zv,,, YUNAY .

m= ]

The requiremcnt

ZX (X, ()= 6, ZY ()Y o ()= 6

KX =1 Y (=1

forces the lengths of the data streams for predictor and predicatand to be the same, ie,, Ky =
Ky = K. The covariance matrices between the data point / and the data point j with area—fac-
tor are approximately computed by

a1y
Z;X(I,J)= E ZXA (xi, f)XA (xj, t),

t= 1

RPN | c
vy @ D= Fa LY 50y, Y 5 (v, 1),

=1

a1l
;y G, N= X T X (%, 1Y (v, 1)
=1

These matrices allow one to compute the principal components X,(tyand Y, (¢), suchas

X, (0= @YXy = T el X, A, Z J—w W)X, 04, (14)

Using what expression in the above depends on the available types of EOFs. The quantity
Y, (t) can be computed similarly,
The cross—covariance matrix in the EOF space is approximated by

IR WA MO! (s)

Its transpose is

Y= (16)

Xy Yx

The maximization of the correlation p leads to the following eigenvalue problem for &:
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ix’yirx'ﬁz pZﬁ' an

Similarly, the eigenvalue problem for ¥ can be derived as well:
X X v=p'0 (18)

The CCA patterns are thus the solutions of these eigenvalue problems.
3.2 Multivariate Regression for Anomaly Prediction

Our prediction method is a linear regression based upon the data of the predictor and
predictand. The predictand is a linear combination of the predictor. The predictand and
predictor can be defined either on points or regions, although they are often defined on grid
points. Of course, the regression is meaningful only when an approximate linear relationship
exists between the predictor and predictand. The regression is statistically significant only
when the scatter diagram of the data is not too far away from the regression line (or the
regression hyper—plane in the case of multivariate analysis). This condition is equivalent to
that the correlation between the two fields is large.

In the case of a single—variate, the regression line

y= bx+ x,

is statistically significant only when the data points (x;, ;) are close to the line. The slope is
b= po, / o, where p is the sample correlation, and ¢, and o, are the sample standard de-
viations of the x—data and y—data, respectively. Distance between the points and the
regression line is measured by the sample correlation, p, computed from the data. The closer
the absolute value of p is to one, the closer are the points to a line, and consequently, the more
significant the regression, For example, with 15 data points, the 5% significance level requires
that the correlation be not less than 0,514,

Our climate prediction uses multivariate regression, which is a linear approximation to a
nonlinear relationship. The correlation between the two fields is defined in the previous sec-
tions and computed by the CCA algorithms, Our linear approximation is optimal in the sense
of the maximization of the correlation between the two ficlds,

Our linear prediction in the physical space can be written as

Y(y;, )= ZB,-jX(xj, ) (19)

Here, the predictand is at time t'= r+ Av, the predictor is at time ¢, the “slope” matrix B is to
be found, and the “ intercept” vector is set to be zero since both ¥ and X are anomalies. We
will use the canonical variables and canonical correlation patterns, together with EOFs;, to
express the fields and then find the “slope” matrix B. The correlation between the X—field and
Y —field is the key parameter in the regression,

If the truncation order p> g, then the correlation between U™ (¢) and ¥ *® (1) is zero
when k> g. The same is true for the case g> p. Thus, we always make the EOF truncation
order for X and Y be the same: p= q. The CCA eigenvalue problem has p non—zero
eigenvalues. When s= 2p— K+1>0 (where K is the length of the data stream), the first s
eigenvalues are equal to one, which implies a perfect linear relationship that is certainly im-
possible. Thus, choosing a large p may result in an over—fit. In this paper, we always choose
p< (K— 1)/ 2, and none of the eigenvalues is equal to one.

=
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The p eigenvectors are mutually orthogonal. The canonical variables are

U ()= iuﬁ"’ X, ), (20)

n= 1
VO@)= TvOY, @), k=1,2 5 p. 21
n=1

Now, the sign of 2®

late p by using

needs to be determined to guarantee the positivity of p, . One can calcu-

1 4
7= ZUDOV O+ Ao

Ify, is positive, then p, = y; and &% does not change signs. Otherwise, 3, < 0, and then P
= — y, and &® is changed to — &® After this operation, the correlation at each mode (k)
1S non—negative,

The operations above are among the dimensionless variables, Because the matrices
[u® l,x, and [v ) ]px , are orthogonal matrices, their inverses are equal to their transposes.
Such an inverse operation for a matrix is physically meaningful only when the matrix is
dimensionless,

The inverse of the matrix equations (20) and (21) leads to

X, ()= YuU®) | 22)
Y, )= SOy, 23)

k= |

The field X in the spectral space is expressed by the sum of the products of the canonical vari-
able U® and eigenvector i’ . The eigenvector & is the canonical pattern in spectral space.

Its physical space correspondence is 2% given by formula (14).
For the purpose of one—tier pred1ct10n, the predictand time ¢ is larger than the predictor

time ¢ by A¢, and, thus, the cross—covariance matrix », in this section is a lagged
XY

cross—covariance, The lag time is t'— t= At,

The vectors UV, U@, v+, UPY and ¥V, V@ os, ¥ @Y are all in p~dimensional
vector space. A unique transform matrix must exist that transforms one to the other, Let this
transformation be written as

P
yW= Y FaUP+ by, k=1,2,-
{= 1
The formulas
VOUDY=p, 8y,

UWy=0, (UW)y=1,
(v®y=0 (WE)2y=1,

imply that
VO )= p UR(), k=1,2, - p. (24)

The prediction is therefore made for 1= ¢+ Ar when the predictor at ¢ is known:
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X, )2 X, )= UR@)>vEe)=>Y, )= Y, t).

The equation (24) is thus the main prediction equation, The predictand at ¢ is

Yy, t)= i< pzvﬁ")pk U“”(t))«l Ao, (25

=1 k=1

This is the one—tier prediction scheme: knowing the predictor at time ¢ and predicting the
predictand at ¢'= ¢+ At. The CCA scheme can also be applied to the so called two—tier fore-
casting: forecasting the predictor from time ¢ to time ¢’= t+ At by one method and pre-
dicting the predictand at time ¢’ from the predictor also at time ¢/ by another method. CCA
can also be used as the latter method. The CCA scheme is exactly the same, except that the
lagged cross covariance matrix should be replaced by a cross—covariance matrix without time
lag, ie., At =0,

4. ESTIMATE OF THE PREDICTION ERROR

This section estimates the mean square error (MSE) of prediction, The importance of this
error estimate is three—fold. First, it gives the mean property of the forecasting quality. The
smaller the error, the more accurate the forecast. Second, the MSE is directly related to the
correlation skill of the prediction which is often used to assess the quality of a prediction.
Third, the MSE errors are needed to compute the optimal weights to form a canonical
ensemble forecast.

The CCA scheme requires the fields to be stationary. The computing algorithm requires
the fields to be ergodic; i.e., the ensemble mean can be replaced by time mean for a long time,
Qur estimated error, as an ensemble value, cannot reflect the fluctuation of the fields accord-
ing to time. However, if the data used in the prediction are changed, then the error should re-
flect this change. One may regard an observational network as a filter. When a filter is
changed, the filtered results should change accordingly. Thus, the time dependence of the er-
ror is on the observational data and the data processing method, not on the intrinsic fluctuna-
tions of the fields, Thus, for a given observational network and a given data—processing
method, our forecasting error is time independent,

The error field is

£ (9= <Xy, )~ Y (5N, (26)
where Y is the unknown true field to be predicted, and ¥ is the prediction that approximates
Y. The prediction skill of ¥ is often measured by its correlation with the original field Y, de-
fined by

Y?y)

e 27
VY IXY?) : @7

From the above two equations, one can derive
L [y o [<r ¢’ ]
== —= + - = . 28
' 2[ FH T (Y ©8)

Several special cases are interesting, Case 1 is the perfect prediction: ¢=0 implies r=1.
Case 2 is the worst prediction: 2 = (¥ 2>+ (¥?) implies r =0, Case 3 is the random predic-

tion: e2= (¥?) implies r= (1 / 2N{¥2» /{Y?) .
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The MSE can be estimated by using EOFs, The error can be written in two parts:
()= 2N+ e (), (29)

where

g(N= L ehoh(y (30)

=1

is the MSE computed from the first g modes with

tm =Y ()= ¥, ), 31)
and the residual % (y) is the contribution of higher modes to the MSE:
()= L non (). (32)
me= g+ 1

Apparently, this residue error depends on the truncation order, which, in turn, depends on the
resolution of data and the spatial scale of the field. The higher the data resolution, the larger
the g value, In practice, one uses discrete data and obtains only a finite number of modes, say,
q’. The prediction uses the first ¢ modes among the ¢’> g modes, Then, the residual error
may formally written as

Z A @ (9).
m= g+ |

This ¢’ is usually chosen to be K, the length of the data stream. However, when the data
streams are not sufficiently long, they cannot resolve the EOFs of very high order. Because
the higher order eigenvalues are close to each other, the computed EOFs can be very much
distorted from the true ones (See North’s rule—of—thumb, North et al., 1982). Thus, the above
estimate of residual error can be unreliable if the data streams are not sufficiently long.

Usually, the ¢ modes of the predictand should resolve at least 50% total variance, The
residual error should be smaller than or comparable to the prediction error of the first ¢
modes, With the omission of the residual error in the computation, the error 83 (y, t/) com-
puted based on the first ¢ modes can be regarded as the lower bound of the MSE,

The average MSE of the error field is the integral of £2(y, t/)

6 = :14; L, 60,100y, (33)

where A is the total area of the domain Qy . When using the first ¢ modes, the average MSE
error is

A=4 Y 649

This MSE’s unit is still [Y unit]’, as was expected.
The error for the mth mode is computed as follows:

q 2
en = And(¥ ()= T (D= 41, ( LvRv®e)- Zv$f>pkv<">(tf)) >

”{i(V‘“— pkU‘”)vﬁf."} y= a5 i(l— P E N, (35)
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The error is scaled down for higher EOF modes of the ¥ ~field by its eigenvalues 17
since A}, =0 as m— 0, but scaled up by the CCA eigenvalues p} because 1— p2—1 as &
— . If the correlations p? are large, say, close to one, then &n = 0. If the predictability is
low, then the correlation is small, If the largest correlation is even less than 0.4, the factor 1
—ptis larger than 0.84, which is relatively large. If both the predictor and predictand are
spatial white noise, then no correlation exists between the two fields, and pi =0and

2 _ .Y
Em = Am,
and

=T =<[_ ¥i0d0,>.

m

Hence, the prediction error is equal to the total variance of the field and the prediction skill is
Zero.

5. OPTIMAL ENSEMBLE OF MANY FORECASTS

Different data sets of predictor and predictand may yield many forecasts, such as the
forecasts of precipitation by using SST, soil moisture, SLP, SLP, or SST from different ocean
basins, etc. An optimal weight needs to be assigned to each forecasting result at every grid
point in order to form a canonical ensemble forecast. This method is similar to the
superensemble idea proposed by Krishnamurti et al. (2000).

This section will show the method of finding the optimal weights and the resulting pre-
diction error, The spectral method is again used in our computing. The use of the spectral
method requires a stationarity assumption. Because of the requirement, which may be true in
a short period, the forecasting naturally deteriorates rapidly as the lead time of the prediction -
increases,

The spectral representation of the predictand is

Y, 0= XA Y000, ).
Its estimator is
Y, 0= XN 2,0, ).

Suppose that there are H forecasts. The ensemble forecast for the principal component ¥, (¢)
is

H
7,0)= Zw®y®), (36)
h=1
where w* | to be determined, is the weight for model 4 and mode n. The weights satisfy a
constraint

X

wh =1, (37)
i

=

but they do not have to be all positive,
The truncated MSE forecasting error is a function of yand is written as

e
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¢ H 2
EX(y)= <(¥ (s, )= Pls, )= ¢ [ 5 ( Y. 0- 3 wﬁPfi")(r))J 7 %(y)] ;

n=1 A= 1

-~

The principal components of different modes are independent. The errors ¥,— ¥,
(n=1,2,3, ---) are assumed to be independent. Then, the error function becomes

EX(y)= XEIol(»), (38)
where
H
El= 2T, 0— LwP PPy (39)
A= 1
is the MSE error for forecasting the nth principal component ¥, (¢).
The forecasting errors are caused by noisy data or inaccuracy of the forecasting model,

For each EOF coeffcient, the forecasting errors for different prediction models are assumed to
be uncorrelated. With this assumption, one then has the following:

Ei= A {Xwl (@, ()= TP ()= A¥ i(WE,")Y(aff”)z, (40)
where
€P) = (Y, )— FP@)?. (41)

The minimization of &2 expressed as above under the constraint (37) leads to the optimal

weights. The weight for a model is inversely proportional to the model’s forecasting error,
Thus,

1/(8(h))2
hy
Wg,)_ _H_”__

. (42)
21/ 6D
I=1
Then the resulting MSE error for the mode # is
H
Ej=(X1/ M) 43)
h= |

That the errors from different prediction models are independent is an important as-
sumption, The different models usually mean different predictors, but the same prediction
scheme. Thus, to ensure the independence of the errors, one should choose the predictors
which are not strongly correlated. This practice is intuitively correct, since the information
from the similar sources is redundant.

A special case occurs when all the models have the same amount of errors, (69)? | In this
case, the optimal weights are all equal to 1 / H, and the resulting error is
(6,(,0) )2

H

en= (44)
This is the conventional error—formula of homogeneous statistics.

The method of finding optimal weights here is slightly different from that of
Krishnamurti et al. (2000), although the purposes of the two methods are the same: optimal
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combination of multiple forecasts. Krishnamurti et al. (2000) used the multivariate regression
to determine the weights, and they did not require the sum of the weight to be one, Since their
regression is for the best fit of the linear superensemble model to data, the forecasted expected
values are approximately the same as the observed expected values and hence the constraint
of the sum of all the weights equal to one is not needed, In our case, however, the constraint is
needed to guarantee that the forecasted expected values are approximately the same as the
observed expected values, Otherwise, the weights might be too large, and, consequently, the
forecasted expected value will be out of the range of possible climate and hence, the forecast is
not valid, Despite the difference between the present method and that of Krishnamurti et al,
(2000), the results are actually close, We applied the formula (43) to the Y—component of
their Fig. 5b. Formula (43) provides an RMSE 1.7, which is about the same as that of
Krishnamurti et al. (2000).

6. DATA SETS AND THE RESULTS OF THE US PRECIPITATION FORECASTING

6.1 Data Sets

Our predictor’s data set is the historical monthly SST reconstructed by Smith et al,
(1996). The spatial coverage is from 45°S to 69°N. The spatial resolution is 2° x 2°, The tem-
poral coverage is from January 1951 to December 2000, The temporal resolution is a month,
The data are available via ftp at: ftp: / / ftp.ncde.noaa.gov/ pub / data / ocean / rsst/ . Qur
linear regression scheme cannot resolve the nonlinear process imbedded in small scales, Thus,
the 2°x 2° SST data are further averaged into a data set of 4—degree latitude by 6—degree
longitude. This average removes the noise of smaller scales,

The predictand’s data set is based upon the latest version of the Xie—Arkin global land
monthly precipitation data set as reported in Chen et al. (2001). The temporal coverage of the
precipitation data is from January 1948 to December 2000, but only the part overlapped with
the reconstructed SST period, January 1951-December 2000, is used in our forecasting calcu-
lation, The spatial resolution is 2.5° x 2,5°, The gridded data result from the interpolation of
over 17,000 stations collected in the Global Historical Climatology Network (GHCN) Ver-
sion 2 and the Climate Anomaly Monitoring System (CAMS), The data are available via ftp
at ftp.ncep.noaa.gov/ pub / precip / 50—yr.

The anomaly data are computed according to the 1961~1990 climatology. These anoma-
ly data are further detrended and standardized before they go into the EOF computing. After
the forecasting on the standardized data, the forecasting results (for dimensionless quantities)
are converted back to the anomaly data with dimension, However, the conversion uses only
the mean and standard deviation, and the trend is not included. The forecasting results are
then compared with the observed detrended anomaly field to assess the forecasting accuracy.

6.2 Forecasting Results

The 50 years (1951—2000) SST and precipitation data are used in our forecasting experi-
ments, Hence, 49 years of data are used for computing the EOFs for both SST and precipita-
tion, and these data are used to predict the remaining year’s precipitation, Our scheme re-
quires that the lengths of the data streams for both SST and precipitation be the same. The
reconstructed SST data are only for the preiod of 1951-2000. The precipitation data before
1951, although awvailable, are not used in our forecasting experiments, The EOFs of the US
precipitation are presented for two seasons: DJF (winter, Fig. 3) and JJA (summer, Fig. 4).
For both precipitation and SST fields, we show only the first six EOF modes. The number of
modes used for actual forecasting is ten or another number,
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Fig. 3. First six EOFs of US precipitation in DJF. The computation used the
three—month mean precipitation data, which had been detrended and standardized.

The characteristics of summer precipitation are very much different from that of winter,
The EOFs clearly reflect the difference, For example, the DJF EOF1 demonstrates a strong
north—south pattern, while the JJA EOF1 supports a northwest—southeast pattern, The dif-
ferences are also reflected in higher modes.

The CCA patterns are linear combinations of the EOFs, The first two winter CCA pat-
terns can sometimes be highly mode—selective, preferring only a few from the six retained
EOF modes. When performing the SON (SST field)-DJF (precipitation) CCA analysis, the
first SST CCA pattern is mainly contributed by 0.75 EOF1 and 0.61 EOF2, Since the first
SST EOF is the El Nifio mode, the first SST CCA pattern looks like the El Nifio mode plus
some North Pacific oscillation (see Fig. 5). The contribution from other EOFs is negligible.
The first precipitation CCA pattern is mainly contributed to by 0.68 EOFI, 0.38 EOF2, and
0.34 EOF5 (Fig. 5). The contribution from other modes is small. The northwest positive is
mainly contributed to by EOF1.

With this pair of CCA patterns, the CCA correlation between the SST and precipitation
field (i.e, p,) is 0.87, a relatively large value indicating that a good forecasting result is
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Fig. 4. Same as Fig. 3, except for the summer season JJA.

expected, However, the summer CCA patterns are more uniformly distributed among the ten
retained EOFs and do not have apparent dominant modes, For example, the first precipita-
tion CCA pattern selects not only EOF1 and EQOF?2 , but also EOF6, EOF7, EOF8 and EQOF9
(Fig. 6). Comparing Fig. 6a and Fig. 5a, one can see that DJF’s first canonical pattern is
much more coherent than that of JJA. The same is true for the SST canonical patterns (see
Figs. 5b and 6b). This result reflects the diffculty of predicting the summer precipitation,

The 2000 DJF precipitation is predicted by the 1999 SON SST. The observed precipita-
tion anomaly is shown in Fig. 7a and the predicted anomaly in Fig. 7b. The predicted and the
observed anomalies agree in most of the southeast areas, The spatial pattern correlation, de-
fined by the formula (45) below, between the predicted and observed is 0.47, The corre-
sponding pattern correlation is higher for El Nifio or La Nifia years, but the year 2000 was
neither an El Nifio nor an La Nifia year. '

The DJF precipitation forecasts are made for every year from 1951 to 2000 by using the
previous season’s (ie. SON) SST. The pattern correlation and the Heidke skill score are
shown in Fig. 8. Heidke score accounts for only the correct anomaly sign. Pattern correlation
accounts for both sign and amplitude. Only the perfect forecast, with both correct sign and

"'-------"!!!!!!IllIIIIIIIIIIllllIIlllllIIIIIIIIIIIIIIIIlIlllllllllIllllllllllllllllllllllr
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Fig. 5. First two canonical correlation patterns for SON SST and DJF US precipitation.
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Fig. 6. First two canonical correlation patterns for MAM SST and JJA US precipitation.
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Fig. 7. Observed and predicted precipitation field of DJF 2000. The prediction was
made from the previous season SON SST. The time lag is hence one season. The unit
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amplitude, has pattern correlation equal to one. Fig. 8 indicates that our forecasting results
are reasonable.

The spatial pattern correlation is the correlation between the forecasted (R;) and ob-
served anomalies (R ;) for a given season:

YRR,

When the pattern correlation reaches 0.4, the forecasted field has a good similarity to the
observed. Among our 50 years of forecasts, 29 years have the pattern correlation equal to or
greater than 0.4. Our maximum pattern correlation is 0.78, which indicates an extremely good
forecast (see Fig. 8a).
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Fig. 8. Forecasting skills of using previous season’s SON SST to predict DJF precipi-
tation: (a) pattern correlation (defined by Eq. (45)), and (b) Heidke score (defined by
Eq. (46)). The EOFs were computed by using the data from 1951-1999.

The Heidke score (HS) is another commonly used index to indicate the prediction skill
(van den Dool et al,, 1997). The two—class HS is defined as

H-E 100

HSTE \

(46)

where T is the total number of forecasts (i.e., the total number of grid points in our case), E is
the expected value of correct random forecasts (i.e., E= T/ 2), and H is the actual number of
correct forecasts. Since the two—class Heidke score is used, a forecast is defined as correct if
the forecasted anomaly has the same sign as the observed anomaly. The maximal value of HS
is equal to 100, when every forecast is correct, The HS score for random guessing is zero be-
cause H= E; hence, the random forecasting model does not have a skill, The HS reaches its
minimum value if every forecast has missed and the score is ~100x E/ (T— E), which is
equal to ~100. Our forecasts show positive skill scores in 45 years of the total of 50 years. The
maximum Heidke score is 76 (see Fig. 8b).

The summer precipitation skill is consistently lower than that for winter, Among the 50
years of experiments, there are only 18 years whose pattern correlations are equal to or great-
er than 0.4, The skill varies strongly with near—zero skill in many years, but the maximum
skill can still be high. In our example, the maximum skill is 0.83. The pattern correlation for
the 2000 prediction is very low and the forecast is not good. We have chosen to show a fore-
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cast of a bit less—than—average skill. The year is 1997. The training period of the predictor
and predictand is 1951-1996. The 1997’s JJA precipitation is predicted by using the same
year’s MAM SST. The observed JJA precipitation is shown in Fig. 9a. The predicted result is
shown in Fig. 9b. Comparing these two figures, one can see that the forecasting skills are
mainly from the Northeast and Southwest. In almost 50% of the US, the forecast has a wrong
sign. Both the pattern correlation (0.18) between the forecasted and observed and the Heidke
skill score are low (almost zero) (the furtherest bar to the right in Fig, 10). This result is a de-
tailed indication of the diffculty of forecasting the summer precipitation,

Of course, for an actual forecast one does not know the observed precipitation. The reli-
ability can be assessed by the expected value of prediction errors, as was discussed in Section
5. Fig. 11 shows the prediction root mean square errors (RMSE) for two seasons: DJF and
JJA. The predictor is the previous season’s SST. The errors measure the mean square differ-
ence between the actual and forecasted precipitation. In the region where the precipitation va-
riance is large, the error is also large. The variance is proportional to the precipitation

SoN (a) Obsﬁ:ervedw‘(lmym/dqy) JUA 1.997
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3Nd - < .........
20 W 126w 11bw 100W  90W 80W 76w
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(b) Predicted
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20N ; '. . : — r
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Fig. 9. The observed and the forecasted 1997 JJA precipitation. The predictor was the
1997 MAM SST.
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Fig. 10, Forecasting skills of using MAM SST to predict JJA precipitation: (a) pat-
tern correlation (defined by Eq. (45)), and (b) Heidke score (defined by Eq. (46)). The
EOFs were computed by using the data from 1951-1996.

climatology. The DJF error map has a Northwest—Southeast pattern (Fig. 11a), and the JJA
error error map has a Northeast-Southwest pattern. These patterns are consistent with US
precipitation climatology (Higgins et al., 1996).

The RMSE error is the expected value, The regions with large errors are likely to have
the wrong prediction, but for an individual forecast, the region with a large error may still
have a good forecast,

The optimal combination of two forecasts may enhance the forecasting skill, but one has
to be careful when combining them. Since both weights are positive, the optimal combination
is an interpolation process, which prefers two good forecasts. Thus, one should combine the
two forecasts of reasonably high Heidke scores. Fig. 12¢ shows the optimal combination of
the 2000 DJF precipitation forecasts from the previous season’s SST by using the Pacific (Fig.
12a) and Atlantic oceans (Fig. 12b), respectively. The pattern correlation and Heidke score
for Pacific forecast are 0.43 and 35, respectively, and those for Atlantic are 0.04 and 31. The
optimally combined forecast is shown in Fig. 12c. Its pattern correlation and Heidke scores
become 0.47 and 40.

Compared with the observed precipitation in Fig. 7a, the combined forecast has a better
skill and is more similar to the observed than the two individual forecasts. If both forecasts
are very good, the optimally combined forecast can have a much higher skill,

F—-—
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Fig. 11. Expected values of the forecasting error when predicting the (a) DJF precipi-
tation by using the previous season’s SON SST, and (b) JJA precipitation by using
the same year’s MAM SST.

7. SUMMARY AND CONCLUSIONS

This paper has described the mathematical formulation of the canonical ensemble corre-
lation (CEC) forecasting model of Lau et al. (2002), The mean square forecasting error is es-
timated and gives a quantitative, mean quality assessment of forecasting. The error’s spatial
distribution reflects the physical interaction mechanisms between the predictor and
predictand, The third is the optimal combination of the multiple forecasts. The third is possi-
ble only when the error estimates are made in the second.

Our forecast experiments show that the new ensemble canonical correlation scheme ren-
ders a reasonable forecasting skill, For example, when using September—October—November
SST to predict the December—January—February precipitation of the next year, the spatial
pattern correlation between the observed and predicted is positive in 46 of the 50 years of
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Fig. 12. (a) Predicted 2000 DJF precipitation by using the previous season’s SON Pa-
cific SST, (b) Predicted 2000 DJF precipitation by using the previous season’s SON
Atlantic SST, and (¢) the optimal ensemble forecast, which is the optimal combina-
tion of the CCA forecasting results from (a) and (b). The spatial pattern correlations
between the predicted and the observed (Fig. 7a) are 0.43 for (a), 0.04 for (b) and 0,44
for (c).

experiments. The positive correlations are equal to or greater than 0.4 in 29 years, a result
which indicates the excellent performance of the forecasting model, The forecasting skill can
be further enhanced when careful selection of ocean basins is made and more predictors are
used.

From the results presented in this paper, we may conclude that (i) the CEC model of Lau
et al. (2002) is an effective prediction tool, (ii) the error estimate of the new prediction tool is
crucial in finding the optimal ensemble forecasting, (iii) other predictors, such as sea level
pressure and soil moisture, should be considered, (iv) the GCM simulation data may be used
to find the CCA statistical structure, and (v) further research is needed to determine the
optimal EOF truncation order. ,

Of course, precipitation over some areas is not directly related to SST anomalies, but
more related to SLP or other predictors, The CEC model has much flexibility and can easily
include several predictors. Using multiple predictors can be an effective way to increase the
forecasting skill. Therefore, a careful tuning of the model and a careful selection of predictors,
such as soil moisture and SLP, can enhance the skill of prediction, Thus, our next project is to
include other predictors in our optimal ensemble forecasting model,
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The prediction skill can be further enhanced by using an extrapolation type of optimal
combination of forecasts. Some of the forecasts with negative temporal correlation signs can
also help with enhancing the skill of the optimal ensemble forecasting skill. Some of the
weights of the forecasts can be negative. The weights are computed from a linear regression
scheme similar to that of Krishnamurti et al. (2000). The assumption of the independence of
the forecasting errors of different models is no longer needed. This work is deferred to future
studies.
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