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ABSTRACT

This paper provides a concise description of the philosophy, mathematics, and algorithms for estimating,
detecting, and attributing climate changes. The estimation follows the spectral method by using empirical
orthogonal functions, also called the method of reduced space optimal averaging. The detection follows the
linear regression method, which can be found in most textbooks about multivariate statistical techniques.
The detection algorithms are described by using the space-time approach to avoid the non-stationarity
problem. The paper includes (1) the optimal averaging method for minimizing the uncertainties of the
global change estimate, (2) the weighted least square detection of both single and multiple signals, (3)
numerical examples, and (4) the limitations of the linear optimal averaging and detection methods.
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1. Introduction

The detection of forced climate change signals in-
volves three tasks: (1) identifying climate changes
such as global warming, (2) detecting the existence
of forced climate signals in the observed climate data,
and (3) attributing the climate changes to known forc-
ings. Tasks (2) and (3) are often merged in a single
mathematical procedure. The solution to the detec-
tion problem thus answers the questions of how much
warming (or cooling) has happened in the recent past
on both regional and global scales, and whether the
20th-century warming has been caused by anthoro-
pogenic activities. The statistical procedures of sig-
nal detection in communication engineering are used
in detecting climate changes, and the procedures com-
bine signal filtering, climate model simulation, and cli-
mate observations. Gerald North of the United States
and Klaus Hassalmann of Germany pioneered the de-
velopment of the theory of optimally detecting cli-
mate change signals (North et al., 1995; Hassalmann,
1993). Their theories have different mathematical ex-
pressions, but the procedures of their methods are the
same and contain the following five steps.

(1) Simulate the natural variations of climate, such
as El Niño, by using climate models without forcing.
The result is the background noise.

(2) Simulate the forced climate signals by using

climate models with external forcing such as the man-
made greenhouse gases. The result is the forced cli-
mate signal, or the fingerprint of the external forcing
on the climate.

(3) Organize the observed climate data in the same
way as is used to organize the simulated forced signal
data.

(4) Apply a weighted linear regression to the ob-
served data and to the signal data.

(5) Use statistical inference to decide whether the
forced climate signals contained in the observed data
are significant at a given significance level.

For the layman, the above procedures can be ex-
plained as follows. Ten-year-old John had his three
best friends over for a Saturday-night sleepover in his
room. His father slept next door to monitor the situ-
ation. John and his friends not only talked until after
midnight, but also spoke loudly and, worse, played
loud music. Often two or more boys talked simulta-
neously. From the sound next door, the father con-
cluded that the boys were getting more and more ex-
cited. He then attempted to detect who was talking
and what was being talked about. He was familiar
with the music and each boy’s voice, and tried to use
the sounds of several voices to identify who was the
main cause of the excitement. In terms of the above
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climate change detection procedures, the father’s as-
sessment of the sound next door corresponds to the
optimal assessment of the rising global surface air tem-
perature (section 2 of this paper). His familiarity with
the music and other noises (i.e., the background noise)
corresponds to the noise simulation step (1) above.
His knowledge of the boys’ voices (i.e., the signal from
each boy) corresponds to the signal simulation step
(2). The father’s comparison of what he heard with
the boys’ voice characteristics corresponds to the sig-
nal representation step (3) (i.e., the representation of
climate signals and noise in the same framework). The
father’s separation of the boys’ voices from the noises
corresponds to the regression detection step (4). Fi-
nally, the father’s conclusion about who was the main
cause of the continued excitement corresponds to the
inference or attribution step (5).

Numerous papers on climate change detection have
been published since the early 1990s. However, the
statistical and computational procedures have not
been clear to many scientists in the climate research
community, and a concise summary of the statistical
procedures for a general audience interested in climate
research is still lacking. The purpose of this paper is
to provide such a short summary of optimal averaging,
detection, and attribution, so that a research scientist
working on climate change detection can easily fol-
low the procedures presented here and avoid reading
unnecessary or even confusing mathematical formulas
and statements. The paper pays particular attention
to the assumptions of optimal averaging and linear re-
gression modeling, and to the space-time approaches
in the signal detection procedures. It also discusses
the limitations of the linear detection method. How-
ever, this paper does not intend to provide a review of
the literature on climate change detection, since they
are documented in IPCC (2001, chapters 2 and 12). A
long summary of the detection procedures is available
in Zwiers (1999), and detailed computational examples
can be found in North and Wu (2001).

The remainder of this paper is arranged as fol-
lows. Section 2 describes an optimal estimation of the
climate-warming signal. Section 3 provides the algo-
rithm for detecting a single signal, while section 4 deals
with multiple signals. Section 5 describes a numerical
example in North and Wu (2001). Section 6 provides
conclusions and a discussion.

2. Optimal estimate of global warming

The purpose of this section is to identify climate
changes by optimally estimating the global average
surface air temperature anomalies (SATA). Doing so
is the first step of detection: identifying the climate
change.

The apparent warming trend of the surface air tem-
perature (SAT) since the 1970s in most inhabited parts
of the Northern Hemisphere suggested the need for a
careful study of the global average annual mean of the
SATA. Historically, the surface air and water tempera-
ture were observed at discrete points by fixed stations
or moving vessels. Thus the true SATA global average
defined by

T̄ (t) =
1
A

∫
Ω

T (r̂, t)dΩ (1)

must be estimated by discrete data, where T (r̂, t) de-
notes the SATA field, Ω the region under investigation,
and A the area of Ω. The task is to optimally estimate
the global average from the observed data to minimize
the estimate’s uncertainties. The IPCC (2001) used
an optimal averaging (OA) method based on empiri-
cal orthogonal functions (EOFs) to calculate the global
average and provided an error bound (Fig. 2.8 of IPCC
2001, chapter 2; Folland et al., 2001; Shen et al., 1994
and 1998). The global average is often calculated from
the temperature anomaly data on grid boxes. Let Ti

be the SATA data on the grid box i, 〈E2
i 〉 be the data

error variance for the same box, and 〈·〉 be the en-
semble average. The estimated average of Eq. (1) is
then

T̂ =
∑
i∈N

wiTi , (2)

with a normalization condition on the weights∑
i∈N

wi = 1 ,

where N denotes the set of grid boxes with observed
data, and wi is the weight for the SATA data on the
grid box i. The mean square error (MSE) between the
true average T and the estimated average T̂ has an
EOF representation given by

ε2 = 〈(T − T̂ )2〉 ≈
M∑

n=1

λn(ψ̄n − ψ̂n)2 +
∑
i∈N

w2
i 〈E2

i 〉 ,

(3)

where M is the number of EOFs used, λn is the eigen-
value of the n EOF mode, ψn(i) is the value of the nth
EOF mode in box i, ψn is the “true” spatial average
of the nth order EOF mode and is computed by

ψn =
∑
j∈G

Ajψn(j) , (4)

and ψ̂n is the estimated spatial average of EOF mode
n given by

ψ̂n =
∑
i∈N

wiψn(i) . (5)

Here, G denotes the entire grid, and Aj is the area of
the grid box j (j ∈ G) (Shen et al., 1998).
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The error formula (3) has interesting interpreta-
tions. First, the error is decomposed into two parts.
The first part is the sampling error due to the pres-
ence of climate teleconnections expressed in terms of
the EOF patterns, and the second is the random error
of uncorrelated observational noise consisting of ob-
servational errors. A special case is the sampling of
a spatially-white noise field with a constant observa-
tional noise. In this case, the optimal weights are 1/N ,
and the MSE becomes the familiar sampling error for-
mula MSE=σ2/N , where σ2 is the error variance of
the observed data.

Second, the term in the square brackets is the nu-
merical integration error of the EOF patterns. The
sampling error of the average temperature is thus con-
verted into the sampling error of the EOFs and the
uncorrelated observational noise.

Third, the first part of the sampling error formula
indicates that the sampling error is linearly propor-
tional to the eigenvalues λn and is in a quadratic rela-
tionship with the sampling error of the EOF patterns.
This universal physical phenomenon is associated with
spectral representation (i.e., eigenvalue and eigenfunc-
tion expansion): the accuracy of the eigenvalues is
more important than the eigenfunctions in estimat-
ing errors. When considering the integrated behavior
of an electron and an atom in, for example, radiation,
an electron’s energy levels are certainly more impor-
tant than its exact orbit. Thus, exploring the vari-
ous methods that can yield the accurate eigenvalues
of a climate system is worthwhile. An extrapolation
method to refine the eigenvalues of sea surface temper-
ature has been tested and has proved effective (Shen
et al., 1998; Lin, 2002)

The minimization condition of MSE leads to a

group of linear equations that determine the optimal
weights wi (i = 1, 2, . . . , N) and the Lagrange multi-
plier Λ in the constrained optimization:∑

j∈N

ρijwj + 〈E2
i 〉wi + Λ = ρi , i = 1, 2, . . . , N, (6)

∑
j∈N

wj = 1 , (7)

where

ρij ≈
M∑

n=1

λ̂nψn(i)ψn(j) . (8)

is the approximate covariance matrix, and

ρ̄i ≈
M∑

n=1

λ̂nψn(i)ψ̄n (9)

is the approximate spatial average of the covariance
function over the grid box i. Here, λ̂n is the approx-
imate value of λn. These eigenvalues and eigenfunc-
tions may vary from year to year. Folland et al. (2001)
thus used a moving time window approach to calculate
λ̂n and ψn(i) for every year.

Computationally, these equations may become ill-
conditioned when N is too large and M is too small.
The observational error variance 〈E2

i 〉 helps to elim-
inate the ill condition, particularly when these er-
ror variances are large. Folland et al. (2001) used
the annual 5◦ × 5◦ latitude-longitude grid-box Had-
CRUTv anomalies (relative to the 1961–1990 average)
and the corresponding error variances to create av-
eraged anomalies and error variances on a 10◦ × 20◦

latitude-longitude grid. The number N of data boxes
was thus reduced, and the resulting set of linear equa-

Fig. 1. Annual global SATA relative to 1961–2000 with 2σ-wide confidence intervals.
Uncertainties are shown including (light shading) and excluding (darker shading)
those due to changes in thermometer exposures. The overall change from a linear
regression of the optimally averaged SATA from 1861 to 2000 is 0.61◦C±0.16◦C.
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tions (6) and (7) has a unique solution. The global
average annual mean of SATA and its MSE according
formulas (2) and (3) are shown in Fig. 1 [Fig. 3b of
Folland et al. (2001) and Fig. 2.8 of IPCC (2001)].

The above summarizes the optimal estimate of the
history of the global average and hence gives a sig-
nal of the global climate change. The next question is
whether this change is the result of external forcings,
such as an increase of carbon dioxide in the air.

3. Detecting and attributing a single signal

The signal detection of climate change is to find
whether a given set of observed climate data contains
a climate signal forced by a specific external forcing
such as doubled carbon dioxide concentration. The
observed climate random variable T and the simulated
signal random variable S are sampled, respectively, at
the N spatial sites in the detection region and Y years
in the detection period. The essential data are thus
the K = N × Y pairs of the observed SATA T (j, k)
values and the simulated forced SATA signal S(j, k)
values, j = 1, . . . , N, k = 1, . . . , Y defined on the (j, k)
space-time grid denoted by H. The detection is set up
as a regression model between the observed SATA and
the simulated SATA:

T = αS + E . (10)

Due to the strong spatial inhomogeneity of surface air
temperature anomalies, the residue random variable E
most likely carries heteroskedasticity in this regression
model, hence it does not have a uniform variance at all
the data points on the grid H, and the E’s at different
space-time grid points may not even be independent
from each other. Thus, the assumptions of the linear
regression model are violated. Consequently, the lin-
ear regression results for the inference about the slope
α are not valid. However, a weighted regression in
the spectral space has a better chance to satisfy the
assumptions of the linear regression model. Graybill
and Iyer’s (1994, section 3.3, section 8.2) book is a
good reference for the assumptions of linear regression
and the weighted least square regression.

The data are projected onto the modes of the back-
ground noise simulated by control runs of climate mod-
els. The mth eigenvalue and eigenvector of the space-
time covariance matrix ΣK×K of the background noise
are λm and Bm, respectively, where Bm is a K × 1
vector defined on the space-time grid H. The pro-
jected data, i.e., the Fourier coefficients based on the
modes Bm, are used as the data, which are Tm and
Sm(m = 1, 2, . . . ,M). Here, M is the truncation order
of the eigenvector expansion. The strength of the sig-
nal simulated by a climate model is measured by the

“theoretical” signal-to-noise ratio γ with

γ2 =
M∑

m=1

S2
m

λm
.

This ratio depends solely on the accuracy of the cli-
mate model and is independent of the observed cli-
mate data. When γ > 2.0, we usually say that the
climate model can simulate the signal. However, γ2

is an increasing function of the mode truncation order
M . In order to correctly use this formula to calculate
the signal-to-noise ratio, we should also justify that our
calculation is robust. The justification can be done by
calculating γ2 with different truncation orders.

Let Em = Tm −αSm. Transform the spectral data
in the regression form into

Tm√
λm

= α
Sm√
λm

+
Em√
λm

.

Assume that the transformed residue vector is dis-
tributed as [Em/

√
λm] ∼ N(0, ξ2I), where I is the

identity matrix of order M , and ξ2 = 〈E2
m〉/λm is the

ratio of the variance of the residue’s mth mode to the
variance of the background noise’s mth mode. This ra-
tio is usually regarded as unity. The linear regression
model (10) is valid for theM pairs of transformed spec-
tral data (Tm/

√
λm, Sm/

√
λm),m = 1, . . . ,M . The

weighted least square approach can now be applied to
minimize

∑
m

(Em/
√
λm)2; i.e.,

min
∑
m

1
λm

(Tm − αSm)2 .

This implies

α̂ =

M∑
m=1

TmSm/λm

γ2
. (11)

If ξ2 = 1, the confidence interval of the signal ampli-
tude α at the (1− p)100% confidence level is

[α̂− z1−(p/2)(1/γ), α+ z1−(p/2)(1/γ)] , (12)
where z1−(p/2) is the upper 100(p/2) percentile value
of the standard normal distribution. If ξ2 is not unity
and has to be estimated, then the confidence interval
is

[α̂− t1−(p/2),M−2SE(α), α+ t1−(p/2),M−2SE(α)] ,
where

SE(α) =

√√√√√ M∑
m=1

1
λm

(Tm − αSm)2

(M − 2)γ2

is the standard error of the slope, and t1−(p/2),M−2

is the upper 100(p/2) percentile value of the t-
distribution with M − 2 degrees of freedom.

The slope α̂ is the signal amplitude contained in
the observed data of T . If the confidence interval of α̂
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does not contain zero, then the signal amplitude is sig-
nificantly different from zero at the given significance
level p100%, and one can conclude that the observed
data contain the climate change signal due to a specific
forcing, say, greenhouse gases.

4. Detecting multiple signals

Climate change signals are rarely isolated, for they
occur together. The most important forcing signals
are the changes due to G (greenhouse gases), V (vol-
canic eruptions), S (solar radiation variation), and A
(aerosol particles in the atmosphere). The correspond-
ing signals are denoted by SG, SV, SS and SA, respec-
tively. The background noise field is assumed to be
the same as that described in the last section. The
signal data in the spectral space are Sm,G, Sm,V, Sm,S

and Sm,A(m = 1, 2, . . . ,M). The observational data
are the same as those in the last section Tm(m =
1, 2, . . . ,M). For the same reasons as in the last sec-
tion, to satisfy the assumptions of linear regression, the
multivariate linear regression model is assumed in the
spectral space and is estimated by using the weighted
least square method. The model is

T =
∑

n

bnSn + E , (13)

where n=G, V, S, A.
We assume [Em/

√
λm] ∼ N(0, ξ2I), just as we did

for a single signal in the previous section. The signal-
to-noise ratio γk is still determined by

γ2
n =

M∑
m=1

(Sm,n)2

λm
, n = G, V, S, A .

The weighted least squares

min
∑
m

1
λm

(
Tm −

∑
n

bnSm,n

)2

,

leads to the estimates of the slope vector

b̂ = (S′WS)−1S′WT D . (14)
Here, the prime “′” denotes the matrix transpose, the
matrix

S =


S1,G S1,V S1,S S1,A

S2,G S1,V S2,S S2,A

· · · · · ·
SM,G SM,V SM,S SM,A


is the signal data, the vector b̂

′
= (b̂G b̂V b̂S b̂A)

is the estimator of b′ = (bG bV bS bA), the vector
T ′

D = (T1T2 . . . TM ) is the observational data, and
the diagonal matrix

W = [Wij ]M×M = [δij/λi]
is the weight characterizing the noise level. In the
above, δij is the Kronecker delta, which is equal to
one if i = j, and zero otherwise.

For the estimate b̂, a confidence hyper-ellipsoid can
be calculated with a given confidence level. If the ellip-
soid does not intersect with the coordinate hyperplane,
the signal in the component orthogonal to the plane is
detected from the observational data.

In the case of four signals as discussed above and
of ξ2 = 1, the 100(1 − p)% confidence ellipsoid is de-
termined by the following formula:

(b− b̂)′S′WS(b− b̂) 6 χ2
4(p) , (15)

where χ2
4(p) is the upper (100p)th percentile of a χ2-

distribution with 4 degrees of freedom [see equation
(A12.1.4) of IPCC (2001, p.732)]. If ξ2 is not unity
and is to be estimated, then

(b− b̂)′S′WS(b− b̂) 6 4s2F4,M−4(p) , (16)

where F4,M−4(p) is the upper (100p)th percentile of
an F-distribution with (4,M − 4) degrees of freedom,
and

s2 = (T D − Sb̂)′W (T D − Sb̂)/(M − 4)

is an estimate of ξ2. When the truncation order M is
very large, say, 30, then 4s2F4,M−4(p) ≈ χ2

4(p), where
p is usually between 0.01 and 0.1. The confidence el-
lipsoid (16) is approximated by that of (15).

Johnson and Wichern’s (1992, section 7.4) book is
a good reference for the above results. The above sta-
tistical formulas have been widely used in the existing
detection literature, but in the present summary, both
the mathematics and interpretation of the detection
have been simplified and made transparent and sim-
ple for applications.

5. Numerical procedures and examples

Here, we present a simple and straightforward nu-
merical procedure. Computations of this detection
procedure are made on grid boxes. Three datasets
are needed:

(1) Observational data on selected grid boxes in
the detection period.

(2) Signal data on the same boxes and in the same
period from model simulations with specific forcings.

(3) Noise data on the same boxes and in the same
period from controlled model runs.

The computation steps are as follows:
(1) Construct a space-time state vector. Sup-

pose six grid boxes and fifty years of annual mean
surface air temperature anomalies are chosen as the
climate state variables. The space-time state vec-
tor is then a 300 × 1, where 300 = 6 × 50. U ′ =
[U1

1U
1
2 . . . U

1
50 . . . . . . U

6
1U

6
2 . . . U

6
50].

(2) The data of many years of controlled runs of
climate models, say 10,000 years, are divided into 200,
50-year sections. Identify the data of the controlled
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runs for the space-time state vector and construct a
covariance matrix for the vector. The matrix’s order
is 300×300, and the rank is at most 200 (because of
the 200 sections of the controlled runs and because
200 < 300). The eigenvalues (λm) and eigenvectors
(Bm) of the matrix can be computed. Only the first
M(6 200) eigenvalues and eigenvectors are retained.

(3) Organize the signal data and observed data ac-
cording to the space-time state vector U and com-
pute the principal components (i.e., the dot prod-
uct between the signal data and observational data
with the EOFs Bm). This procedure gives Sm and
Tm (m = 1, . . . ,M).

(4) Compute the signal-to-noise ratio γn and see
if the climate model can generate the signal due to a
specific forcing.

(5) Compute the regression coefficients b̂ according
to Eq.(14).

(6) Make an inference about the signal in the ob-
servational data according to the confidence ellipsoid
or confidence interval [see Eqs.(15) or (16)]. The con-
clusion is that either a signal is detected in the obser-
vational data with a certain significance level, or that
the signal is not detected.

The following numerical examples are adopted
from North and Wu (2001). Seventy-two 10◦ × 10◦
grid boxes are chosen: Box 1 (15◦S, 10◦W), Box 2
(20◦N, 20◦W), . . ., Box 36 (40◦S, 175◦E), where the
latitude and longitude are the coordinates of the center
of the grid box. The observational annual mean sur-
face air temperature anomaly data on the grid boxes
are from the Jones 5◦×5◦ dataset. The 10◦×10◦ data
are derived by averaging the data over four neighbor-
ing 5◦ × 5◦ grid boxes. The controlled runs are from
several GCM models, each running for 1,000 years.
The combination of the runs is used as the background
noise data. North and Wu (2001) considered signals
simulated by various climate models. A group of sig-
nals generated by the Hadley Center’s Climate Model
2 (HadCM2) is taken as an example here. The signal
to be detected occurred in the period of 1947–1996
(50 years). The signal-to-noise ratio and the regres-
sion coefficients and their confidence intervals (at the
90% confidence level) are shown in Table 1.

According to this table, the HadCM2 model shows
strong greenhouse gas and volcano signals, and these

Table 1. Summary of the detection results for the forced
climate signals sampled in the 72 grid boxes for the period
of 1944–1993 by using the HadCM2 model.

Signal γn bn Confidence Interval

G 5.53 0.72 (0.62, 0.82)

V 3.65 0.67 (0.38, 0.96)

S 0.77 1.79 (−0.12, 2.76)

A 2.32 0.12 (−0.14, 0.38)

signals are being successfully detected from the obser-
vational data. The model shows a moderately strong
aerosol signal, but this signal has not been detected
from the observational data. The model shows a very
weak solar signal in the 50-year period, and this weak
signal is not detected.

In the case that γn is very small (less than 1.0) and
the confidence interval of b̂n does not include zero, we
will still conclude that the signal is not detected from
the observational data, for we cannot confidently say
that the climate model itself generates a valid signal.

6. Conclusions and discussion

This paper has described an optimal averaging
method to estimate climate changes and a linear detec-
tion technique to detect specific climate change signals
contained in observational data. The signal is simu-
lated by climate models with specific external forcings.
The background noise is simulated by controlled runs
of climate models. The theoretical signal-to-noise ratio
independent of the data shows the strength of a spe-
cific signal manifested by a climate model. A weighted
least square regression is applied in the spectral space
with the EOF basis and yields an estimate of the am-
plitudes of specific signals in the observational data.
For a given confidence level, if the confidence inter-
val for a regression coefficient does not include zero,
then the corresponding specific signal is said to have
been detected from the data with a certain significance
level.

While detecting forced climate signals in the spec-
tral space has advantages, such as dimension reduc-
tion, carrying out the optimal detection in the space-
time physical space is more straightforward, particu-
larly when the number of spatial sampling points N
is not very large. One can transform the linear re-
gression models (10) and (13) in the physical space
to remove the heteroskedasticity and then carry out a
weighted least squares estimation. Let T, R, and E
be the K-dimensional vectors of observed data, sig-
nal data, and regression residue, respectively, on the
space-time grid H. The background noise’s space-time
covariance matrix ΣK×K is used to transform E so
that Σ−1/2E ∼ N(0, ς2I), where ς2 is the ratio of
the residue variance to the background noise variance
and is usually regarded as unity, and I is a Kth order
identity matrix. The weighted least square algorithm
minimizes E′Σ−1E; i.e.,

min(T − αR)′Σ−1(T − αR) . (17)

This leads to an estimate of the signal amplitude

α̂ =
TΣ−1R

rsn
, (18)
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where rsn is the signal-to-noise ratio defined in the
space-time physical space:

rsn = R′Σ−1R . (19)

If ς2 is unity, then the confidence interval for the am-
plitude of the single signal is

|α− α̂| < z1−(p/2)(1/
√
rsn) . (20)

If ς2 is not unity and has to be estimated, then

|α− α̂| < t1−(p/2),K−1

√
(T − αR)′Σ−1(T − αR)

(K − 1)rsn
.

(21)

Similarly, one can derive the approximate formula
for the amplitude of four signals. The signal amplitude
vector is

b̂ = (X ′Σ−1X)−1X ′Σ−1T , (22)

where X is the K × 4 signal data matrix.
If ς2 is unity, the confidence ellipsoid for the signal

amplitude b is determined by

(b− b̂)′(X ′Σ−1X)(b− b̂) 6 χ2
4(p) . (23)

If ς2 is not unity and has to be estimated, then
the confidence ellipsoid for b is determined by an F -
distribution:

(b− b̂)′(X ′Σ−1X)(b− b̂)

6 4(T −X ′b̂)′Σ−1(T −X ′b̂)F4,K−4(p) . (24)

One can prove that the signal amplitude and the
signal-to-noise ratio calculated in the physical space
are the same as those calculated from the spectral
space in sections 3 and 4 when ignoring the trunca-
tion errors in the eigenvector expansion.

Numerous other problems remain in climate change
detection and attribution. The first lies in the errors
contained in the three essential datasets used in our de-
tection procedures. Errors in climate models (model
errors), errors in computing the EOF coefficients Tm

from the station-based observational data (sampling
errors), and an insufficient length of the controlled
simulation for computing the covariance matrix of the
noise field (the EOF error) can contribute to the un-
certainty of a conclusion. The fidelity of climate mod-
els and the accuracy of the observational data are of
crucial importance in correct detection. The accuracy
of regional climate models still needs to be improved;
hence, the detection of regional climate change has
more uncertainties than detection on the global scale.

The assumptions of the linear regression model
under the transform in either the spectral space or
the physical space need to be systematically checked.
The check is to validate the linearity, uniform vari-
ance, and independence of the residues. There are
standard statistical procedures to perform the model
checking (Johnson and Wichern, 1992, pp. 308–314).

In fact, the linear superposition of the climate signals
expressed in the regression model (13) is problematic
since climate signals have strong nonlinear interactions
because the climate models are built on the first prin-
ciples of physics and the parameterization of chemistry
and physiology. However, in some circumstances, the
linear model (13) can be a good approximation for
some climate models when the forcing amplitude is
small (Gillet et al., 2004).

Thus, after learning from signal analysis in com-
munication engineering, we should develop a detection
method that does not depend on climate models as
crucially as the linear regression approach described
here. The nonlinearity and non-stationarity of the
climate process in the data must be reflected in the
new method. Experimentation in detection-without-
a-model has been conducted by Oh et al. (2003) us-
ing wavelet analysis and statistical regression. The
recently-developed Hilbert-Huang Transform (HHT)
may be another effective tool for the development of
detection-without-a-model and for the consideration of
both nonlinearity and non-stationarity (Huang et al.,
2003).
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