CCSR Series Lectures
Fall 1995

Climate Sampﬁng Errors

By

Samuel S. Shen

University of Tokyo




Preface

These notes were written for the lectures I gave at CCSR (the Center for
Climate System Research), the University of Tokyo in the fall of 1995 which
hosted me for half a year during my sabbatical leave from the University of
Alberta, Canada. The purpose of this series of lectures is to introduce the
basic mathematics and statistics related to the estimation of the mean square
errors in sampling climate fields. The topics range from the classical sampling
theorem to the modern optimal sampling network design and are listed below:

1. Exact sampling, a.liasing, and basic statistics on mean square errors,
2. North-Nakamoto method for computing mean square errors,

3. Trigonometric functions, spherical harmonics and EOFs,
4

. Minimal mean square errors, global warming detection and optimal net-
work designs. '

According to the above four topics, the lecture notes are divided into four
chapters. Some of the materials were used in a graduate course on statistics
for geophysical sciences in the University of Alberta in the January term of
1995. Various suggestions were given and many errors were corrected by the
enthusiastic students in the class. I hope that the audience of this CCSR class
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will also give me generous suggestions with regard to correctmg mistakes and
improving the presentation style.
The lectures are directed to both senior level undergraduate students and

graduate students in geophysical, mathematical and statistical sciences, as well.

as interested research scientists. The mathematical pre-requisites of the lectures
include: calculus, linear algebra, elementary ordinary and partial differential
equations.

I would like to thank both my host 1nst1tut10n (the University of Tokyo)
and my home institution (the University of Alberta) for their generous and
sincere support of my research and teaching activities. In particular T would
like to thank Professors A. Sumi and T. Nakajima for their effort to materialize
my visit to Tokyo. Finally my gratitude goes to Dr. M. Takahashi who made
the arrangement for my CCSR lectures.

Sam Shen

Tokyo, Japan

September 1995

E-mail: shen@cake.math.nalberta.ca
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Chapter 1

Aliased Power and
Sampling Theorem

Qur goal is to use limited amount of data for a time series X; (to be detected or
predicted) to reconstruct a realization of X so that the reconstructed realiza-
tion is closest to the true one. We often need to do this when X is a continuous
time series and the measured data are discrete. Let X; be the reconstructed
time series. The mean square sampling error is defined as

& = (X - X)) (1.0.1)

In this book, we consider only the stationary time series, so the sampling error
is independent of time t. :

Therefore our mathematical problem is to obtain an estimated X, so that
¢? is minimal. Then we use X; as an approximate rea.liza.tion‘ of X;. This is
called the sampling problem, in which we need to find both X; and €. This
chapter will devote to the sampling problem of single variate time series.

2

1.1 Exact sampling

One can imagine that the sampling error must depend on the oscillation fre-
quency and smoothness of the function z; = f(t) (regarded as a realization of
a time series X;). For instance, for a low frequency signal z;, the function f(¢)
is smooth and the sampling error should be small. The extreme case is the
zero frequency signal: a constant signal. The sampling error is zero by only
one sampling point.

One may think that if the signal contains only limited number of frequen-
cies, then one can choose finitely many sampling points to have zero error
measurements. This is true and can be proved by linear algebra techniques.

1
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2 Chapter 1. Aliased Power and Sampling Theorem

Consider a signal f(¢) in [0, 1] of n frequencies:

F(£) =Y axsin(2rkt). (1.1.1)
k=1 '
We use N sampling points in [0,1] to sample the signal f(2):
F(t;) = arsin(2rkt;), j=1,2,---,N. (1.1.2)
k=1 :

One can completely determine ay, (k = 1,2,--+,n) as long as the sampling

points are chosen such that the rank of the matrix [sin(27rktj)] is equal to n.

Therefore, for the complete determination of ax (k = 1,2,---,n) (ie. zero
sampling error), it is necessary to have N > n (ie. the number of the sampling
points must not be less than that of the frequencies).

Another related question is more interesting for applications. You know
that your signal has only a finite number of frequencies. But you do not have
enough sampling points for getting zero error sampling. So what is this non-
zero sampling error? This problem is usually called the alising problem and
will be addressed in Section 1.3.

1.2 Fourier transform and Fourier series

‘The motion of a subject usually is associated with sound, colors of light, and,
in general, vibration. In particular, many types of motions are oscillatory or
vibrating, such as the rotation of machines, fluctuations of the climate, the
cycles of human mood, and others. The physical motion may be described
by a displacement function which depends on time ¢. The “sound” is another
physical quantity usually one can readily hear or detect. This “sound” is also
physical and called the spectrum of the motion. When an experienced driver
hears some abnormal sound of a car, he can immediately know which part
of the car is in trouble. It is also quite common that from the sound of an
engine one can tell whether the engine runs fast or slow. There are numerous
examples of detecting the motion (i.e. the displacement function) of a subject
from sound (i.e. the spectrum). As a matter of fact, the displacement signal
can be completely described by the spectral signal, and vise versa. This kind
of principle can be described by the Fourier transform (from displacement to
spectrum) and the inverse Fourier transform (from spectrum to displacement).

In many cases, it is easier to measure the spectra directly. By the inverse
Fourier transform, one can then indirectly determine the displacement function.
Thus to study the detection problem, naturally we need to understand the
basics of the theory of the Fourier transform.

1.2‘.1 Fourier transform

We use f(t) to denote the displacement function and f(w) for the spectrum
- function (called the Fourier transform). Usually, one regards ¢ as time and w
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1.2. Fourier transform and Fourier series 3

as frequency. There are also many cases that ¢ plays the role of spatial coordi-

nate and then the corresponding w is the inverse of the wave length, called the

wave number. In the formality of mathematics, it seems that the difference of

wavenumber and frequency is only a matter of name; but in-quantum mechan-

ics, wave number and frequency have different physical meanings. The former

represents momentum and the later measures the energy of a particle. '
The transforms between f(t) and f(w) are defined by.

flw) = % /oo dt f(t)e“‘"t (Fourier transofrm), | (1.2.1) |

“~ —00

co
) = / dw f(w)e™™?' (inverse Fourier transform). (1.2.2)
-

It is not very hard for one to accept the Fourier transform formula (1.2.1),
since the spectrum (i.e. the sound) should be completely determined by the
displacement as long as the displacement function does not jump too violently.
One may be suspicious about the validity of the inverse formula (1.2.2). The
question is: can the spectrum completely determine the displacement? The
answer is “yes” as long as:(i) f(¢) does not have sudden jumps, (ii) f(z) does
not have too many peaks, and (i) [ _|f()] dt < co.

Mathematically the inverse formula can be easily derived. We start with

[ aw fwee

(o] 1 oo o ,
- dw | — / dt’ f(t')et ) et
[—oo <2ﬂ' —00 ( ) ‘

= / dt' F(#)D(t—1t') (exchange the order of integration),

where L e '
D(t—t)= o /_ _ dw e~ (=t (1.2.3)
The right hand side of the above integral takes the Cauchy principal value:
o R .
D) =liim [ dwe e
= /R
= lim sin Rz (a delta convergent sequence)
R—oe TZ
= §(z).

See Fig. reffipl.1l for the convergeﬁce process of the above delta-convergent
sequence. Another verification is to check whether

* sin Rz

lim dz =1.
R—o00 J__ T

oo

Using Mathematica, we can do




4 Chapter 1. Aliased Power and Sampling Theorem

NIntegrate[Sin[30* x] / (Pi x), {x, 0.0000001, 5}]

The answer is 0.498525 which is very close to 0.5.
Thus,

[t swe-v)= [~ a s -o) = 5o

The last equality requires that f(t) is a continuous function.

10

D_R(x)

Figure 1.1: The convergence process of a delta-convergent sequence..

1.2.2 Fourier series

We just considered the Fourier transform for a function defined on (—00,00).
Now we consider the similar transform for periodic functions in (—oo, o). Since
we can always change the coordinate so that the period of the function is 2.
Let us work in (—m,w]. The integral of the inverse Fourier transform can be
written as an infinite sum:

> cad™ (1.2.4)

n=—00

This infinite series is called the Fourier series. The Fourier coefficients ¢, are
determined by

4ﬂ' . !
Cn = 51; dt f(t)e_mt) n=0,%1,£2,.--. (1‘2‘5)

-7
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1.2. Fourier transform and Fourier series . 5

One may feel that the condition for (1.2.4) to hold should be pretty loose.
Indeed, it is true. If a f(t) is piecewise continuous, then

f(t—0) + F(t+0) i% (1.2.6).

The proof of this formula is similar to the above derivation of the inverse
Fourier transform. It goes as follows:

o -
Z cne'int
—eo
X1 /T s
— ZZ; dt’ f(tl)e—m.t e'mt
—co

= / d FEVK(E— 1),
(exchange the order of summation and integration)
where the kernel function K (¢ —t') is defined by

K(a:) =— Z (1.2.7)

77."‘—'00

We also take the Cauchy principal value of this infinite series

N
1 .
K(m) = A}Enoo .2..7_; Z gine
n=—N

1 _ p(2N+1)iz

= lim —e~® ———-—————1 e
N—ooo 27 1— et

1 e—zN:z: —izf2 _ iNa:ei:c/Z
= Nll_l;l’leo .2—7; e—iz/2 _ giz/2
— m 1 sin[(N +1/2)z]

Nooo 2w sin(z/2)
= §(z).

Again, please see Fig. 1.2 for the convergence process of the above limit. One
may also wish to check whether

/2 1 sin(N +1/2)a ‘ : |

. dz =1,
o 2r  sin(z/2) ”
Using Mathematica, we have

NIntegrate[(1/(2 Pi)) * Sin[(n + 0.5) x] / Sin[x/2],
{x,0.00000001,2}]
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The result is 0.501663 which is very close to 1.0.

Therefore,
/ dt' fNK(E-t)= f(t—o);f(t+0), ~r<t<m  (1.238)
12
10¢
— 6 [
x
zl
P

Figure 1.2: The convergence process of K (z) to a delta function.

1.3 Aliasing

The aliasing topic is about the accuracy of computation or measurement. The

knowledge we are going to learn in this section is a useful preparation for

understanding the truncation of spherical harmonic series and the resolution of
a spectral general circulation model (GCM), which will be discussed in Chapter
3. .

From Section 1.1 and our sixth sense feeling, we may think that we perhaps
do not need all the values of f(t) (for every t) to determine the spectrum f(w).
This feeling has certain truth, but strictly speaking, not correct. Then we can
think further: what spectrum do we catch if we have only finite or countable
(infinite) number of values of f(t)? Now our intuition may suggest that the
spectra at the lower frequencies can be caught. This conclusion is again not
completely true. Actually the spectra over the higher frequencies are aliased (or
moved) to those of the lower frequencies. Therefore the spectra derived from
the finite or countable (still infinite) number of values of f(t) is the distorted
spectra over the lower frequency regime. Finally we come fo the question: can
we compute the distorted part of the spectra? The answer is now yes. We

can compute the aliased spectrum, which is determined by the sampling design

.
1
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1.3. Aliasing , ) 7

(i-e., where we sample the values of f(t)) and the spectral property of the f(t)
(i.e. the property of f(w)). ,

1.3.1 Aliasing for a signal defined on (-0, c0)
As defined by (1.2.1), the Fourier transform is

flw)= % /_ Z dt f(t)e™* (1.3.1)

If we have function values at discrete points t, (the index n takes whatever

choice you have made), then the spectrum estimated from the discretinized
form of the above integral is

Fw) = o Z Ftn)e™t (1.3.2)

Here, the index n takes whatever choice (i.e. the sampling design) you have
made, such as n = —o0,--,—1,0,1,:- -, 00, and w, are the weights determined

by certain type of numerical integration method. The above formula can be
written into the form

Fo=g [ @ oEmes, s

where

= an5(t —tn) (1.3.4)

is determined by the sampling design means to choose ¢, and w,.
Next we transform the above expression into the spectral form:

YN
= /;: do' Fw')T{w - ') A

=(f*I)(w) (comvolution product), (1.3.5)

F(w)

where ' o ]
Mw) = L / dt H(t)e™ (1.3.6)
27 e
is called the designed filter. Hence the formula (1.3.5) is in the spectrum-filter
form. The spectrum is of course determined by the property of the function
f(t). It is the property of the subject under investigation, such as the annual
cycle of the climate, the 1l-year cycle of sunspot activity, and the diurnal
cycles of rain fall in some regions. The filter is completely determined by the
sampling design. However, to detect a signal in most eficient way we have to
design our filter according to the properties of the signal. Thus an optimal
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filter (in a well defined sense in the case of practical applications) depends on
the spectrum of the signal. We will talk about the optimal design in Chapter 4.
At this moment, let us put the optimal design aside and consider the simplest
sampling design which is the design of uniform sampling points and uniform

. weighting:

Z

tn=n(l/wy) and w,=At, =1/wy (n=0,£1,£2,---. (1.3.7)

The quantity wy = 1/At, is called the smapling frequency and wy, = 1/(24) =
wo /2 is called the Nyquist frequency. This Nyquist frequency determines where
the aliasing starts. We will see this soomn.

The filter of the design is

: 1
: L) = ), et
dAny o n=-—oco
e - 20 E C\(Y~ -3.) 1 & 1
= 27rw—-0 j;ooﬁ (;;w ".7)
=2 Y 6w jw). (1.3.8)
j=—co
Hence N i )
flw) = f(w) + Af(w), (1.3.9)
where i i
Afw)y="" f(w+ jwo) (1.3.10)
J#0

is the aliased spectrum. So the spectrum estimated from discrete data include
both true spectrum f(w) and the aliased spectrum A f(w) (which is not known
and supposed to be detected). It is the aliased spectrum that distorted the
true spectrum. The spectra over the high frequency region are moved to the
lower frequency region (see Fig. 1.3). This spectra flipping is called the aliasing
phenomenon

There are some cases that the the true spectrum of the signal is contained
in a bounded interval. This type of signals are called the band limited signal.
For a band limited signal, there is always a positive value w, such that f(w) = 0
if w| > w,. For the uniform sampling design, the aliased spectrum is zero if
wo > 2w.. Thisis the famous sampling theorer in mathematics

Theorem 1.1 If f(t) is a banded limited szgnal the signal can be ezactly de-
tected by uniform sampling as long as the half sampling frequency wg/2 (i.e.
the Nyguist frequency) 18 greater than the mazimal frequency We of the signal,
and further

sin(nAt — t)w

f(f) = At n;m f(nAt)—mz, (1.3.11)
with At = 1/wq. | (s
::G S }LF@Z’LQ_

i
6
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h(1)

(a)

Figure 1.3: The aliasing phenomenon: spectra fipping.

Example  The function

_osiny/1412 0
ft) = ————m | (1.3.12)

is a band limited signal whose Fourier transform is

fo={ 30 s

ol > 1. (1.3.13)

where Jgy is the zeroth order Bessel function. So this f(t) is a band limited

signal whose w, = 1. To get exact sampling, we should choose the sampling

frequency wg > 2w, = 2. Let me present you two cases: wg = 2 and 3.

£0t_] := Sin[Sqrtli. + t°2]]1/Sqrtli + t°2];

om = 2A.;

x=0.8;

del = 1.0 / om; :

fx = del * Sum[f[n * del]l * N[Sin[(n * del - x)*
om] /(Pi (n* del -x))],{n, -20,203}]

The result is 0.748514. The exact value is computed by £[x] which gives
0.748224. So the sampling result can be considered as exact.
. A we choose wz= 3 and do the same calculation as above, the sampling
result is 0.747097, which can also be considered as exact.

The first part of the theorem is the direct result of equation (1.3.10). The
second part can be derived as follows

e = /_ Z dw flw)eiet
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= /-wo‘ dw flw)e ™t

—wo
=/ dw (% Z f(nAt)ei“mA‘At> et
51— Z f(nAt)/ dw einAt—t

= At Z f(nAt)___.__Sin}r(ngt: ft))wo].

Nn=——00

The aliased power is defined as
(w) = |[Af(w)]? ' (1.3.14)

If the signal is a stationary time series, then the aliased power is the en-
semble average of the above:

é(w) = (|AfW)?). (1.3.15)

For a stationary time series, the spectra of different frequencies are not corre-
lated, i.e.

| (F)f) = o28w ), (1.3.16)
where 0% = (f2(t)) = (|f(0)[?) is the variance of the signal. Thus, we have
(AF@)) = ST F(w + jwo) ). (1.3.17)
370 '

1.3.2 Aliasing for periodic signals

In this subsection, we study the aliasing of periodic signals in (—oo,c0). Let
us consider the case of period equal to 2. The cases of other periods can be
converted into a 2m-period function by coordinate stretching.

Periodic signal is a special case of the signals we discussed in the above
subsection. The relevant formulas in the above subsection might be simplified.
The simplification is like the reduction from Fourier integral to Fourier series:
integration to summation. Many people in the pre-computer era may not
consider the change from the integration form to the summation form as a
simplification because of the beauty and simplicity of the fundamental theorem
of calculus. People have systematic way to calculate the definite integrals and
tend to forget that the usual integral is a limit of a sum (called the Riemman
sum), But for experienced researchers we all know that the summation form is
a better form for a computer to do the calculation. Discretization of an integral
is a dedicated skill of mathematics and it is a category of numerical analysis.

As defined by (1.2.4), the Fourier coefficients are

1 [ -
Cn = —2—%/_« dt f(t)e™*, (1.3.18)

B

|




1.3. Aliasing .11

Then under certain conditions, we have

o0

fE)= > cae™ (1.3.19)

n=—co

Since f(¢) is a periodic function of period equal to 27, we need only to consider
the function in (—m,n]. Suppose we have N sampling points: —7 < t; <3 <

c < t; < - <ty < 7w Now we use the function values at these points to
estlmate the Founer coefficient (i.e., the spectra):

én }: f(ty)e ™ © (L320)

 where w; are the weights to be chosen according to certain criterion under the

constraint that
N
> wj=2m (1.3.21)
j=1

(A sampling design means to choose both #; and w; for j =1,2,---,N.)
The above formula can be written in the integral form

=5 / dt f(t) t)e"mt, (1.3.22)
where
N
H(t) = 6(t — t;)w;. (1.3.23)
=1 ’

We would like to write &, into the convolution product of spectra and filter
like (1.3.10):

3

é == ( Z e’ )I—I(t)e"i"t

= Z cm dt H(t)eilm—mt
m=—00 -
= Z emI(m —n) = (ex T)(n), (1.3.24)
me=—0co ’
where
1 L |
L) ikt
(k) = 27?;@ w; (1:3.25)

consists the filter.
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The simplest design is the uniform space and uniform weight sampling:
At = 2m[N,t; = —w + jAt and w; = 2 /N. Then the filter is

N
I(k) = (=" > etkiat (1.3.26) -

N
Noticing that I'(0) = 1, we have
En = cp + Ac, (1.3.27)
where the aliased spectra Ac, are given by

Ac,, = > D)™ "em. (1.3.28)
m#0,(m—n)/N=integer '

If the signal is band-limited signal
ca=0 I |f>n, (1.3.29)

then Ac, = 0 when N > 2n,. This conclusion is similar to that in Section 1.1,

- where only sine waves are sampled and hence only half the sampling poinis are
- need to get the exact sampling.

With Ac, =0, we can further have:

At Y . cos[(ng +1/2)(t — jAL)]
F#&) =5 f(-m+jht) P R 70 T

j=1 .

(1.3.30)

where ng > n..

Example: The signal
f(t) = sint 4 3 cos 2¢ + sin 4¢

is band limited and n. = 4. Let us choose ng = 4, N = 9 and test the above
formula using Mathematica.

£[t_]:= Sin[t] + 3.0 Cos[2 t] + Sin[4 t];

mm = 9;
del = 2 % Pi / nn;
x = 0.8;

ex =N[ (del / (2% Pi)) * Sum[£[-Pi + j * del] * :
Cos[(4 + 0.8) (x - j * del)] / Cos[0.5% (x - j * del)],
{i,1,nn}] 1; :

fx1;

The sampling result is ex = 0.571383 and the function result is £[x] =
0.571383. They are exactly the same.
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This is the sampling theorem for periodic signals. The derivation of the
above formula is as follows:

f(t) = i cneint

._no |
— Z cnemt
n=—ng
7o 1 & . . .
— Z 5___ z f(tj)e—-z(—-/r-i-JAt)nAt gint
n=-ng d j=1
' N ng .
____,.> — % Zf(tj) Z gin(t—iAt+r)
’ 7I' i=1 n=—ne

At X cos|(ng + 1/2)(t — jAL)]
= o 2= A

If the signal is a stationary time series in (—, 7], then the aliased power is

& = (jacl’) = > lem| . (1.3.31)
ms#0,(m—n)/N=integer ’




14

Chapter 1. Aliased Power and Sampling Theorem




Chapter 2

Sampling Errors

The sampling error refers to the difference of the true value of a climate quan-
tity, such as monthly mean temperature and precipitation, and the value of
the same quantity derived from incomplete samples. In climatology, sampling
errors appear everywhere. The global average of the surface air temperature of
Earth is derived from the data obtained only from finitely many (hence incom-
plete samples) surface stations or satellites. The rain rate of an rectangular
area that includes Japan is derived from finitely many rain gauges and surface
radars (cf: AMeDAS document: Automated Meteorological Data Acquisition
System). In principle the true value of a climate quantity over an area in a
certain time interval, such as the monthly rainfall over Japan, can never be

exactly measured due to either spatial gaps or temporal gaps. However when-

sufficient number of instruments are deployed to sample a quantity in a small
area, the value derived from the measurements (or called samples) may be
regarded as the “true” ome because of small errors. In this chapter, we will
discuss the calculation of the sampling error, in particular for rain rates, but
the methodology can also be applied to other climate quantities.

2.1 Mean square errors

Mathematically, sampling errors can be in various kinds of forms. But the two
which are not strange to climatologists are the absolute error and the mean
square error;

€ = (|Qtrue — Qsample])  (absolute error) (2.1.1)
€ = {(Qirue — Quample)’),  (mean square error), (2.1.2)

where (-) signifies the ensemble average (i.e. the expectation value).
The mathematics for the mean square error (MSE) is relatively easier than

that for the absolute error. In our lectures, we only talk about the computation
of the MSE and the absolute error is replaced by

€= [((Qtrue.v_ Qsample)2>] M . (2'1'3)

15
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16 | Chapter 2. Sampling Errors

Please notice that
eFe o (2.1.4)
in general. ’
In practice the ensemble average is approximated by a weighted average:

N
e = Z 'wn(Qirue - Qn)zﬁ ' (2'15)

n=1

where @, is the Q quantity derived from the nth measurement, which can
be either the nth temporal measurement (for the satellite case) or the nth
spatial measurement (for the case of fixed statlons) The weights w, satlsfy a
normalization condition:

Z wy, = 1. : (2.1.6)
n=1 .
In the past climatological practice, it has been quite often to take the weights

to be uniform: 1

_N’
However, because of the development of the mathematical theory in climatology
and the power of modern computers, people tend to favor the use of optimal
weights. We will talk about the optimal weighting theory in Chapter 4.

The relative error often used in climatology is given by

[((Qtrue - Qsample)z. )]
thrue'

As we mentioned before, usually we do not know the true value Qe (which
is exactly the quantity we desired to measure by incomplete samples), Hence
one has no way to carry out the computations according to the above formu-
las. But in certain cases we want to calibrate a new sampling technique. For
instance, TRMM is a new technology and we need to know its sampling error.
There are two ways to evaluate the sampling error for the new technology. One
needs to use ground truth and the other needs to use models of the field. For
the former, we can regard a very high resolution measurement as the ground
truth. For instance, the rain rate over Japan derived from the AMeDAS data,
whose spatial resolution is 5.0 X 5.0 [km], may be regarded as the truth. Then
the TRMM sampling error over Japan can be computed by

n=1,2,-N. o (217)

Wp =

1/2

(2.1.8)

N TV
[zn-_zz,(RAMeDAS — RorrmMm)* /N ]
Rimenas

Please refer to Oki and Sumi (1994) for details. '

The other way makes use of mathematical models, either a stochastic model
for the field or the statistical model for fitting the data. In this case, the spec-
trum of the field, which is derived from the second moment of the stochas-
tic field, is crucial in the computation. In the rest of this chapter, we will

X 100%. (2.1.9)

|
|
|
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exclusively talk about this method. We mainly discuss the spectrum-filter

theory developed by North and Nakamoto (1989) for computing the mean
square errors (MSE). They considered the measurement of the average rain-
rate whose unit is [unit rain] [unit area] ™ [unit time] ™" in the space-time box
Q= [0,L]x[0,L] X [0,T] by using both satellite and rain gauge devices. For the
rain gauge measurement, there are spatial gaps between the rain gauges and for
the satellite measurement there are temporal gaps (except for stationary satel-
lites) between different visits of a fixed area. They formulated a theory that
can be used to estimate the mean square sampling errors (not including the
instrumental errors). From mathematical view point, their main contribution
is the derivation of the MSE in the spectrum-filter form. Of course, from cli-
matological view point, the implications they derived from the spectrum-filter
formula is perhaps more important. ’

2.2 Spectrum-filter formula for satellite MSE

The accurate measurement of rain rate in an area is of apparent importance
in atmospherics sciences, agriculture, and civil engineering, etc. For example,
from the record of the rain rate one can monitor the release rate of the regional
latent heat which is an important drive of the atmospheric general circulation.
To make the theory simple, we. consider measuring how much rain @ is
contained in the space-time box Q = [0, L] x [0, L] X [0,T] shown in Fig. 2.1.
For instance, if L = 500 [km] and T' = 30 [day], the & is the rainfall in these
30 days over the square area of 250,000 [km|*. The average rain rate in Q is

s ,
U= g (2.2.1)

- The rain rate field (i.e. the instant and point-to-point rain rate) which cannot

be measured directly by an instrument is denoted by v(£,%) [unit rain]{unit
area]™! [unit time]™'. This is a stochastic field whose structure, however, is
quite complicated. First of all most of the time at a place it is not raining and
hardly all the points in an interested area rain at the same time. The PDF of
¥(F,t) has a large peak at the zero rain rate and a fat tale (i.e. the heavy rain)
according to Kedem et-al. (1990). This property can be pretty well described
by a mixed-lognormal distribution.

The stochastic property directly used in the calculation of MSE is the covari-
ance function. Again, to make the theory simple we assume that the covariance
structure is homogeneous in space and stationary in time:

(W&, )P, 1)) = o?p(€,7) (2.2.2)

where o = (1(£, 1)) is the point variance of the field. Since the field is assumed
ot be homogeneous in space and stationary in time, the point variance % is a
constant. The function p(£,7) is the autocorrelation function with £ = # — #/,
T=1t~-1" and p(0,0) = 1. '

b
s
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; rain blob

X}
~

gpece ' Ae )

Figure 2.1: The rain clusters in the space-time box Q = [0, L] x [0, L]} x [0,T].

The Fourier transform pairs for p(€,7) are defined by
S(v, f) = / dt, / dt, / dr ple,r)mEVHIN | (223)
p(€,7) = / dv, / dv, / df S(v, fle 2 {EV+IT) | (2.2.4)

where v = (v1,v;) and € = (€1, £2). The average rain rate in Q is

1 ﬂ |
| =y /ﬂ 4 ¥(E,1). | (2.2.5)

When using a satellite to measure the rain, it take a picture over the area
[0, L] x [0, L] at a time, and then it comes back in a At time to take another
picture. Usually At is designed to be close to 12 hours. The ideal case is that
every time the satellite picture covers the whole area [0, L] x [0, L]. This is
called the flush visit. But of course this is not realistic. When a satellite is over
the area [0.L] x [0, L], its picture often covers part of the area [0,L] x [0, L].
Moreover, when the satellite passes the adjacent area of S = [0, L] % [0, L], its
picture can also cover part of [0, L] x [0, L]. Hence the area S = [0, L} x [0, L]
may have partial coverage for more than twice a day (see Shin and North,
1988; North et al., 1992; and Oki and Sumi, 1994). But that is getting too
complicated to be dealt with here. We still consider the ideal situation: the rain
rate field is homogeneous in space and stationary in time; the visits are flush

§
|
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and twice a day. So the average rain rate derived from the satellite pictures is

1 XL L
T, = I—TLE;/O. d:z:'/o‘ dy P(§, nAt)w,, : (2.2.6)

where At = T/N (see Fig. 2.2) and wy, are the weights subject to

. .
> w,=T. (2.2.7)

n=1

The weights are part of the sampling design. Of course the simplest weights are
the uniform ones: w, = T'/N. The case of optimal weights (often non-uniform
weights) for satellite samplings is still a research problem.

SATELLITE SAMPLING DESIGN

!
|
]

]
!
1

";\\4?
)

L

Figure 2.2: The uniform sampling design for a satellite.

‘We can re-write the ¥, formula into the following form

=g [ 40 KW, O (28)
where
N
K@) =TY 6(t—nAt). - (2:2.9)
n=1

The difference between the true rain rate T and the estimated value from
the satellite ¥, is measured by the MSE:

et = (¥~ ¥,)?), (2.2.10)

i
!
i
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which can be changed to:

¢ = [aa [ a0 oue - KOl - K@)

=g / o / ao / du, / dvy / df S(v, f)e~2mi€v+ir)
nl

K@t — K ()]
=0—2/—wdy1/_wdy2/_wdf S(z/,f)
X /ﬂ in/nl 4o e~ EYHI - k(5] - K@)

The second part of the last expression is the filter we desired to find. It is
denoted by H?. After some straightforward but tedious manipulations, we can
get '

Hy(v, f) = Gn L)G(»n L)G(fT) x [1 - TJ}AT)] , (2.2.11)

and

G(z) = Smm- (2.2.12)

Finally we have a compact and nice spectrum—ﬁl’ﬁer formula:

& = o2 / = i / ~ i / T o S, HEw, 7). (2.2.13)

Hence for given design parameters: L,T, N, the filter can be constructed.
If the spectrum S(v, f) is known, then in principle we can calculate the sam-
pling error by the above formula using a numerical integration method. The
spectrum S(v, f), in general, can be determined by: (i) data, (i) empirical for-
mulas, and (3) climate models. The data approach is not realistic here since we
have assumed the homogeneity, but an observation data set is often inhomoge-
neous. The empirical formula approach attracts lots of criticism lately because
of its difficulty for validation. North and Nakamoto took the third approach:
deriving the spectrum from a ma.thema.txcal model. We will talk about this
model in Section 2.4.

When L, N, T are large, the filter H2 can be approximated by a consid-
erably simpler expression. The numerical integration of (2.2.13) becomes not
necessary. Please bear in mind that the significance of the approximation is
not the simple computational convenience, but the exposition of the properties
of the rain physics and the sampling des1gn

When L is large, we have

inTnL\? 1 :
G?@@):(%ﬁ-) ~z8m), I=12.  (2214)

Fig. 2.3 shows the convergence process of the above as L gets larger. The
figure was generated by the followmg Mathematica commands:

i
|
|
|
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10
8 ﬂ
3 S
X
N
$ 4 1
=
2.
Or 1

Figure 2.3: The convergence process of a delta-convergent sequence: LG*(zL)
~ §(z) as L — oo.

1=4;

Plot[l (Sin[Pi x 1] / (Pi x 1))°2, {x,-2,2}, PlotRange->{-1,103,
PlotPoints->90, FrameLabel->{"x", "LG~2(xL)", "", ""},
PlotRegion->{{0.2,0.8}, {0.2,0.83}}, :
Frame->True, Axes->False]

Similarly,
GA(fT) x [1 - G(; At)} (2.2.15)
sin? (7 fT)

— NI 2
= Nsn®(afAn) [ = Glrfat)]

~ %25( “%t)’ (2.2.16)

n#0

since
co

. Atsin?(NwAtf). n '
arsim AT o E S -—). 9.
Nl'l—ﬁo Nsin®(rAtf) ( At> (2:247)

See Fig. 2.4 for the convergence process of the last limit. We call this limit the
Dirac comb, which is also generated by Mathematica:

del = 0.3;
n=12; .
Plot[ del * (Sin[m Pi del x])"2 / ( n (Sin{Pi del x])"2),
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{x,~-11, 11}, PlotRange->{0,5%},
PlotPoints->120, FrameLabel->{"f", "Dirac comb", "", ""},
PlotRegion->{{0.2,0.8}, {0.2,0.8}},

. Frame->True, Axes->False]

w

Dirac comb
N

o Lot il b, e J!.ﬁ. b oAb AL
-10 -5 0 5 10

Figure 2.4: The convergence ﬁrocess of the Dirac comb.

Therefore, when L,T and N are large, the filter H, can be approximated
by

B0, )~ mambm)am) Y6 (F- 1), (2218)
n#0 .

It follows that the MSE formula (2.2.13) can be approximated by

0.2
¢ = ;} 5(0,n/At). (2.2.19)

Thus the sampling error due to the temporal gaps start to build up from the
sampling frequency 1/At and continues with the multiples of 1/At. The zero
frequency part is exactly sampled since it associates with the uniform fluctua-
tion pattern. '

Although the above formula being quite simple, when the spectrum formula
is known, the formula can be further simplified and malkes the properties of the

physics and the sampling design more transparent. We will see this in Section
2.4.

.
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2.3 Spectral-filter formula for rain gauges

We take the simplest design of the rain gauges: M X M gauges uniformly
distributed over [0, L] x [0, L]. The gap between each pair of the nearest neigh-
borhood gauges is Al = L/M. See Fig. 2.5 for the design. -

These gauges can make the continuous measurement of rain in time but
leave gaps in space. The average rain rate in Q = [0, L] x [0, L] x [0, T} derived
from the gauge data is

1 M M T
\Pg = TM? nz__—l nglA dt z/z(nlAl,ngAl,t). (231)
This can be written in integral form
. o ‘
¥ =t /ﬂ a0 K(E)H(E),  (232)
where
M M

X
\l"j:
!

L* Y N 8(& — niAl) x 8(é — maAl). (2.3.3)

n1=1 ngy=1

RAIN GAGE DESIGN

Figure 2.5: The uniform sampling design for rain gauges in the space-time box:

- Q=1[0,L] x [0, L] x [0,T].

The difference between the true rain rate ¥ and the measured ¥, is evalu-
ated by the MSE:

&€= ((T-9,)%), (2.3.4)
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which can be re-written as

= [an [ ant (oa w0~ K30l - KLY

=q /dQ/’dﬂ'/ du1/ de/ d S(v, f)e—zw,§y+_f1_

x[1 - K@) - ()]
=02/ dy1/ dz/z/ af S(v,f)
X / dQ / ey e~ P&V (1 — K(5)][1 - K(F))-
Q Q
The second part of the last expression is the filter we desired to find. It is

denoted by H, 3. Like the satellite case, after some straightforward but tedious
manipulations, we can get

Hg(V, f) = G(fT)G(VlL)G(VzL) [1 — m:‘ . (2.3.5)

We also have the spectrum-filter formula:

& = ¢? /m dwy /m du /m df S(v, FH:(v, f). (2.3.6)

The rain gauge filter Hj 2 also has an approximation which is similar to that
of H?, when M,L and T are large:

TL2 ORI U %) x 6 (- %Zi) . (23.7)

ke31 ,712;’50

Hiv,f) ~

It follows that the MSE formula (2.3.6) can be approximated by

2 e
62=ZO;_T 3 5(‘;? %;i‘»}é%,o). (2.3.8)

n,n3 0

Hence the sampling error accumulates from the sampling wavenumber 1/Al.
The zero wavenumber part of the spectral power is exactly sampled because of
uniform fluctuation pattern.

2.4 A simple diﬁ‘usive rain model

Here we regard that the stochastic rain rate field is generated and destroyed
by a random and uncorrelated source in space and time (i.e. white noise); the
field of rain rates is modified by the exponential decay of the whole field at an
intrinsic time scale 7p; and finally the rain rates are displaced from one point to

;
I
i
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another by a simple down gradient diffusion process. These mechanisms lead
to the following mathematical model: :

Tg-aa—qf' —A0V2¢+1/)=F(f,t). (241)
Here, )o is the diffusion length scale, and F is the “red” noise forcing (i.e., the
high frequency part of the F is set to be 7€10).

With this kind of assumption, the stochastic process of ¥ is Gaussian. Here,
again we are in a non-realistic situation. As remarked at earlier in this chapter,
the realistic PDF of 1 is more like a mixed-lognormal distribution. Since our
model (2.4.1) is simpler and has some deviation from a more realistic model, we
obviously ought to have some gain by doing this. The advantage of assuming
this model is two folds. First, the model does have two intrinsic scales: time
scale 7o and space scale Ag. These are the most important scales in all the rain
models available. Hence the model does carry some true physical property of
rain. Further one can also adjust the cut-off frequency of the “red” noise forcing
to fit whatever rain field one desires to model. Secondly, the model allows us
to find explicit spectrum formula. Using it, we can write our MSE formulas
in very simple forms, which clearly expose the properties of the rain field and
the sampling design. Consequently, our understanding of the rain physics and
sampling designs can be improved and extended to more complicated and more
realistic cases.

The Fourier transform pair for ¢ is

B, f) = / d82dt (E,1)e? Y, (2.4.2)
Y(E,t) = / dvtdf (v, fle 2 Y, (2.4.3)

where the integration limits of the triple integral are all from —co to 0.
We now take the Fourier transform of the model equation (2.4.1). The
transform leads to :

F’(u,f)

'Kb(yif) = 27[_2'1.0]: +(1_+ 471'2A%l/2)’

(2.4.4)

where v = |v.

Since the 9 field is assumed to be homogeneous, the spectra of ) should be
uncorrelated at different frequencies and wavenumbers:

B, Y5 (), 1) = a*S(w, 16w ') x 8(F ~ £), (2.4.5)

where * signifies for complex conjugate. This assertion can be verified in the
following way:’

Py, )2 / /
|27Ti”fof(l+ ((1 +ff)1|7r2)\gy2)|25(” ~v') x 8(f - f')
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= (tf,;(y’f)"ﬁ*(yl)fl))
= / di? dt 'gb(f,t)eiz"’(”‘f“l"ft) / di’?dt’ w(i-’,t')e-izw(V“f'H’t’))
- / dedr o?p(e, T)e?"ETHIT / dp2dy e2mlW—v)E+(F~7)]

= oSy, f)é(v— ") x 6(f — f').

Hence,

(£, H)?)/e*

S, ) = (w, HIP) = =2 7 (L ) (2.4.6)
To satisfy the normalization condition
£(0,0) = / W S f) =1, (2.4.7)
the forcing noise must be cut off at a critical wavenumber v, ie.,
ao? if v<uv, :
<|F(V N = { , otherwise. (24.8)
This « is given by
_ 871"7'0A%
* = 4N (249)
Using the spectrum formula (2.4.6) and the summation formula
> 1 1w T :
T; m = 5 [; coth <Z) - l] , a '# 0, (2.410)

we can further simplify the MSE formula (2.2.18) for satellite:

m
]

Z +47r2 ZEQE

T
s [% oA ('zﬂ“%ﬁ) - 1]
: o

At -
=) -1, - 4.
oo <ot ( . O) ] (2.4.11)

In the above, the summation formula (2.4.10) can either be found from a math-
ematics handbook or derived from the the Fourier series of the coth function.

When At/ is small, the Laurent expansion of coth function can be used
to further reduce the MSE formula (2.4.11). The Laurent expansion is

““l “l
R

=Q"‘_L—

cothz = St e Foreey 0<|z| <. (2.4.12)

|
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When At/ is small, after throwing out the (At/7,)* and the the higher order
terms and retaining the (At/7)* term, we have

=== (2.4.13)

We can perform similar calculations for the case of rain gauges, but it
appears difficult to use some summation formulas to get a compact form like
(2.4.13). In any event, the simplest form we can further get from the MSE
formula (2.3.8) is

T i e (24.14)
CTTL L A O0/ADR (] + ) -
ny,n2

2.5 - Interpretations of the results

In the final formulas (2.4.11) and (2.4.14), the quantity o is not yet known,
although we know that it reflects the fluctuations of the noise forcing. One
way to measure it is to use the ensemble average of the all the square of all the
satellite pictures: '

b 04 = y dA ¢%(3,1)). 2.5.1
%’3&5’ 4 2 (0,L]x(0,Z] (&2 (2:5.1)

Since the rain process is assumed to be stationary, the above quantity is inde-
pendent of t. Similar to the derivation of the spectrum-filter formula, we can
also derive the spectral representation of okt

ol = o / @rdf CAnL)G (1 L)S(w, f). (2.5.2)

When L is large, we have

G*(v L) ~ %5(1/1). (2.5.3)

Using this asymptotic approximation and the spectrum formula (2.4.6), we
have : ' '

o1
2 2
Oy & g7 .
A 2T0L2

The percentage sampling errors are therefore:

e [2m [At At nk
ao(msan(E) 1 e

for the satellite case, and

(2.5.4)

1/2

o0

& g’rl)_ 1 . .
72\ T 2, EF (/A _ (25.6)

ny,naFEl

LR
¥ e

A

W
Z—" G {eds)
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for the case of rain gauges.

For the GATE [GARP (Global Atmospheric Research Program) Atlantic
Tropical Experiment] data and TRMM satellite, At ~ 12 [hour] and 75 = 12
[hour], the MSE formula (2.5.5) gives that

€s

=5 =0.0523 = 5.23%. (2.5.7)
A .

This error (5%) is too small compared with the more acceptable result of 10%.
The reason is that we have assumed that the satellite makes flush visits. In the
real situation, a satellite makes only partial coverage of the square [0, L] x [0, L].
Let us look an example on TRMM: altitude 350 [km], inclination 35°, norminal
swath width 600 [km]. For a grid box of 500 [km] by 500 [km] on the equator,
on average every visit of the TRMM satellite covers only 44% of the square
[0,L] x [0,L] where L = 500 [km]. Therefore the actual sampling error is
more than double the error computed from the flush visit case. More detailed
computation shows that the sampling error for TRMM is 11.2% (North et
al., 1993). This is a quite realistic number. But if one takes into account of
the seasonal variation, diurnal cycle, spatial inhomogeneity, and perhaps other
properties of the rain rate field, the sampling error can be significantly larger
than this figure. It may get so large that it reaches 20% or even more for a
single TRMM satellite (see Oki and Sumi, 1994).
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Chapter 3

EOFs

The climate may be regarded as a superposition of a fixed state and fluctu-
ations about the fixed state. The fixed state is called the climatology and
the fluctuations are called the anomalies. For example, when we say that the
monthly average temperature of Tokyo in September is 20°C, this 20°C is the
climatology. The climatology can be a good reference for us to know the cli-

- mate of an area. But for an individual year, the climate may deviate quite a

bit from the climatology. The deviation is described by anomalies. It is these
anomalies which have direct impact to the change of the weather. People have
keen interest to know the patterns of the anomaly field. These patterns may
be regarded as a basis functions in an infinite dimensional space. Weather can
be projected to the these bases. Therefore, these basis functions are helpful for
statistical weather forecasting.

These basis functions are the empirical orthogonal functions (EOFs). They
are the eigenvectors of the covariance matrix of the anomaly field. In this
chapter, we will discuss the basic theory on computing EOFs from observation

“data, simple model and GCM output. We will also point out some possible

troubles in computing EOFs, and unfortunately these troubles, which might
be very serious, are often ignored by most of the EOF fans.

3.1 Covariance matrix and data preparation

The monthly average temperature anomalies at N stations in Kabayamaka
Province are denoted by {Xi,X,, -+, Xwn}. They are RVs whose expectation
values are equal to zero. The matrix
N
C= [(Xz'Xj>]. .
1,J=1
is called the covariance matrix. Here (-) still denotes the ensemble average.
In practice, the first question is how we derive the anomaly data from the
raw data and how we compute the covariance matrix C. The climatology is
a “definite” signal buried in the raw data (although there is no definition of

29
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climatology which yields the unique output). To get the anomaly, we can delete
the climatology and some definite variance from the raw data, i.e.,

anomaly = (raw data) DELETES (definite information). (3.1.2)

The climatology, as a definite part of the climate, may include: mean (the.

most important part), seasonal cycle, land-ocean contrast, trend (e.g., heat
island effect), etc. We present an example for preparing the anomaly of annual
mean temperature from the “raw” data for a station. (Here the “raw” data
is not exactly raw. The instrument errors and human recording errors are
assumed being removed, and the monthly average of the readings has already
been computed.)

1. Seasonal cycle: Up to now, most climatologists regard the 30 years mean
between 1951 and 1980 as the climatology. The raw data is denoted by Z(e, B)
where o and f denote year and month respectively. For instance, if the data
set is from 1910 to 1994, then o = 1910,1911,---,1994 and 8 = Jan, Feb, Mar,
«++, Dec (or simply 1,2,3,---,12). The S-th month mean temperature (as the

climatology) is
1980

05(8) =5 > o). (3..3)

«=1951

This gives the seasonal cycle of the data (see Fig. 3.1). Then the annual mean
temperature (also as the climatology) is

1 12
04 = ﬁ; 85(8). (3.1.4)

We now first remove the seasonal cycle to get the monthly anomaly:

Ora(e B) = Z(cx, B) — 85(8). (3.1.5)

2. Trend: Due to anthropologic forcings, the above processed anomaly may
include a trend, say, a warming trend. As for what type of the trend it is (linear
trend, polynomial trend, or some other curves), it depends on each individual
station. One way to get such a trend is to use the moving average:

Lng
1 ,
gtrend(a, ,6) = 7 % Lng E eM(a + 17, ﬂ) (31-6)
j=—ILng

- This is a moving average of length 2x Lng and the index & runs from 1910+ Lng
to 1994 — Lng. The function 8¢rend(a, B) is a smoothed curve of Ore (e, B) for
a fixed B and may be regarded as the trend.

Or one can assume a linear trend or other types of known functions. Then
using the least square method to fit the function to get the trend.

With the trend, one can process the above anomaly fpr(e, B) again:

gMT(a;ﬂ) = 9M(Ot,,@) - gtrend(a,,@)- (317)

j
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Figure 3.1: Climatology of the monthly average temperature.

This 8arr(e, B) is the anomaly with both seasonal cycle and trend removed.
3. Variance: We know that the variance of the temperature over land is
much larger than that over ocean, and the variance over the higher latitude is
larger than that over the lower latitude due to the land-ocean distribution and

- the inclination angle of the earth’s process around sun. Therefore, this land-
ocean contrast may also be regarded as a definite signal. Since the variance is
a property of second moment statistics, we do not call it climatology. So we
cornpute the variance: :

1994 . ‘
B = 3. Farlesb) (3.1.8)
«=1910 .

When we do this computation, we have assumed that the time series 6%,+(c, 8)
is stationary in « and the relevant stochastic process is ergotic. The variance
is removed by: '

Orrr(e, B)
Ts(e, f) = ————=. 3.1.9
‘ S( ﬁ) UV(ﬁ) ( )
This is called the standardized anomaly.
Finally we can compute the annual mean anomaly:
1 &2
T(a) = ﬁﬁz::ng(a, B). - (3.1.10)

In summary, the standardized anomaly of the annual mean temiperature
can be computed by: ' ’

T(a) —_ __1_ = Z(Ot,ﬁ) - es(ﬁ) - etrend(a,ﬂ)'

pD 7 (B) (3.1.11)

i
I
i
1
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With the prepared anomaly data, we can talk about the computation of
the covariance matrix. Let T;(c) be the anomaly data for jth station and ath
year for N stations. The length of the data stream is My, years. We assume
the relevant time series are stationary and the relevant stochastic processes

are ergodic (ergordicity = ensemble average is equivalent to the time average).

Then the covariance matrix can be computed by

My,

LS T)Ty(a). (3.1.12)

C=
Myr o=

Ideally, this matrix is symmetric and positive definite.

Notice that the rank of this matrix is not larger than min(My.,N). For
a given total number of stations N, if My < IV, then the covariance matrix
necessarily does not have full rank. Consequently, its last a few eigenvalues
must be zero, its determinant must vanish and the covariance matrix is not
positive definite! Thus when the data stream is short, our replacement of the
ensemble average by the time average can cause a problem. As for how serious
is this problem, it is still a research topic and no definite answer has been given
yet. :

There are some preliminary research results on this short data stream prob-
lem based upon the perturbation theory. The idea is that the time averaged
covariance matrix is regarded as a “small” perturbation of the true ensemble
averaged covariance matrix. Then the mathematical question is that if the
matrix has a small perturbation, what are responses of the eigenvalues and
eigenvetors (North et al., 1984; Penland and Sardeshmukh, 1995). However,
nobody knows what is the exact definition of the “small” perturbation.

The research on errors in computing EOFs (the eigenvectors of the covari-
ance matrix) is challenging yet important. It is also an important research
topic of modern mathematics. There are some pure mathematicians on linear
operator theory who also worry about this problem. It is quite often that an
infinite dimensional operator is represented by an infinite long matrix. When
approximated by a finite matrix, how does it affect the characteristics of the
operator: eigenvalues and eigenvectors? Therefore, before we know the answers

to this “perturbation” problem, I would like to suggest the EOF fans be careful .

with the interpretation of their results.

3.2 Empirical orthogonal functions

We learned how to prepare the anomaly data. Suppose that the annual mean
temperature anomalies at N stations in Kabayamaka Province have been ob-
tained and are denoted by {Xy, X3, ++, Xn}. They are RVs whose expectation
values are equal to zero. The matrix
N
¢ = [(xx5)],

o (3.2.1)

i
i
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is called the covariance matrix. This is a symmetric matrix and is asually
positive definite. Its eigenvalue problem is

Ce=M\e (3.2.2)

where e is called the eigenvector and X is called the eigenvalue. The solutions of
this eigenvalue problem are called the eigenpairs (An,en), n =1,2,--+,N. The
eigenvalues can be ordered A > Ay > -+ > Ay. The eigenvector corresponding
to the largest eigenvalue is called the gravest mode (or the gravest eigenvector).
‘When people say “the first a few modes”, they refer to the order Ay > Ay > ---.

The eigenvalues are usually different and the eigenvectors are usually nor-
malized in the sense that e, -e, = 1 for n = 1,2,---,N. The eigenvectors
corresponding to different eigenvalues are orthogonal:

e;-e;=0 when i#j. (3.2.3)

Hence, {e;,es,---,en} forms an orthonormal basis of an N-dimensional Eucli-
den space. This set of eigenvectors are called the empirical orthogonal functions
(EOFs). .

There are cases that two or three eigenvalues are the same. Hence for one
eigenvalue, there might be two or more eigenvectors. Namely, this eigenspace
is of more than one dimension. One can orthogonalize the eigenvectors in this
eigenspace. So we still have a set of N orthonormal vectors.

From linear algebra, we know that for a-symmetric matrix of no repeated
eigenvalues, there is a similarity transform B such that this symmetric matrix
can be diagonalized by B. Namely,

BCB™! = {)\iﬁij}ﬁ'j=1 4 (3.2.4)

where §;; is the Kronecker delta. The trace is invariant under this transform:

N N
YAXE =2 "N (3.2.5)

i.e., the sum of the eigenvalues is equal to the sum of the variances of all the
RVs. o

This leads us to exploit the meaning of the eigenvalues one step further.
As we know that in a mechanical vibration system or a quantum mechanical

'system, the eigenvector represents the vibration pattern (or mode) and the

corresponding eigenvalue measures the energy level of this pattern. Similar
explanation can be made for EOFs.

Let x = {21,%3,+--,zN} be observations of the RVs {X;,X;,---, Xy}
This observation can be expressed in terms of the EOF's:

N
x = Z Cn€n (3.2.6)

n=1
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where ,
th=X-€, n=12-,N. (3.2.7)

Then the variance of ¢, is

() = T xcTen (3.2.8)

Since (xx”) is the covariant matrix, the right hand side is equal to A, i.e.
(ch) = An. (3.2.9)

Therefore, the eigenvalue is the variance of observations at the corresponding
mode: The percentage variance explained by a given mode ¢, is

N .
A/ D Aj | % 100%. (3.2.10)
s

(This is similar to the relative energy level in a mechanical system.) Thus
the equation (3.2.5) not only gives the total energy B = S  (X?) but also
separates the energy according to the importance of the modes.

If an observation is expressed in terms of a sum of EOFs expansions, the
signals (i.e. the variances) are in the superposition form. The gravest mode
reflects the strongest signal. The weaker signals correspond to higher modes.
But it is very often that people are only interested in the first a few modes.
There are many reasons for this. First of all, the eigenvalues usually decrease
really fast. It happens very often that the first ten eigenvalues explain more
than 90% of the total variance, i.e. 3 oo, An/ 2;\;1 Aj X 100% > 90%. The
second reason is that the higher modes are associated with complicated patterns
and small length (or time) scales. The observation network is not dense enough
to resolve these smaller scales. Hence the higher modes, even though being
computed, are far away from the real situation. Usually it is suggested to use
a new observation network for detecting the signals of smaller scales. In this
new network, the pattern of the smaller scales become the gravest modes. The
third reason is that there can be large numerical errors in computing the higher
modes, including both eigenvalues and eigenfunctions.

But, life is not easy. For some climate fields, their eigenvalues decay slowly.
One sometimes has to include many (say, more than 40) eigenmodes. Fur-
ther, some of the eigenvalues can be so close to each other that the eigenspace
becomes two dimensional. Then it is quite hard to identify the eigenspaces
when the resolution of a data set is not sufficiently fine. The relevant top-

.cs are worries of the modern statistical climatology and are under intensive

investigations.

3.3 EOFs of a stochastic field

Consider a stochastic field ©(x,1) defined on a spatial domain Q and a temporal
domain [—-T/2,T/2]. Still the expectation value is assumed zero. Hence the

L
b
|
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|
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signal of the field is its variance. The covariance function is defined as
K(x,x,t,t') = (0(x,)0(x',t')). (3.3.1)
We say that the stochastic field is stationary (in time) if K(x,x',t,¢) =

K(x,x',|t — t/]) < oo for any t and t'. We say that the stochastic field is -

homogeneous (in space) if K(x,x’,t,t') = K(|x — x'[,t,¥) < co. In physics
and chemistry, this property is often referred to as the “isotropic” property
since this property implies that the covariance is not only independent of the
rigid shift but also independent of the rigid rotation. We have seen in Chapter
2 that if one assumes both stationarity and homogeneity, he can greatly simply
his analysis. However, for a highly nonhomogenecus field, the homogeneous
approximation may yield misleading results, and one should retain the inho-
mogeneous property and use EOFs. Nevertheless, the stationary assumption
is often retained for the following two reasons. First of all, the non-stationary
characteristics in many cases are not prevailing. Secondly, there are no effective
and systematic mathematical tools that deal with the non-stationarity.

In our book, we consider only two cases: (i) homogeneous and stationary
flelds, and (ii) nonhomogeneous and stationary fields. :

Let 7 =t —1t'. Then K(x,x’,7) may be expressed in terms of Fourier series

K(x,x',7)= Z Ko (x,x")elfr(m/T)m, (3.3.2)
n=—o .
Here K,(x,x') is the covariance at the frequency n. Sometimes, one wants to
look at the covariance of the field in a frequency window N; <7 < Nj. This
band covariance function is defined as

Kpo(x,x') = Fo— z Ka( xx) (3.3.3)

The EOFs of the a stochastic field are defined according to the band co-
variance function:

/ Ko X n(x)dx = Atha(x), n=1,2,3,--.  (3.3.4)
Q

Here we omitted the subscript w of K for simplicity. Of course, 9,,(x) are the
EOFs (eigenfunctions) and the A, are the variances (eigenvalues), and K (x,x')

" is also called the kernel of the above integral equation. Similar to the matrix

case, the eigen\falues are also ordered: Ay > Ay >
In statistics, EOFs are also called Karhunen-Loeve basis functions. They

are apparently simple mathematics. But, it is a kind of surprise that the EOFs

were not used for engineering analysis and natural science until 1940s.
EOFs have the following properties

/ Ym(%)9Pn(x) dx = 6,  (orthonormal property),  (3.3.5)

Z¢n YWn(x') = 6(x —x') (completeness property). (3.3.6)

n=1




36 ‘ Chapter 3. EOFs

These two properties imply

(%) = 3 Atbal)in(x). (3.3.7)

n=1

Mathematicians call this K (x,x’) a Hilbert-Schmidt kernel.

3.4 FEOFs on a unit circle

3.4.1 Homogeneous real EOF's

Consider a homogeneous stochastic field on a unit circle (Fig. 3.2). The co-
variance function depends only on the open angle between the two points in
question:

((x)e() = K(0) (a4

where 8 is the angle between x and x’ (Fig. 3.2). Let x = exp[i¢| and x =
éxpli¢’). Then 8 = ¢ — ¢'. The EOFs are defined by

/ TR ) db=Mnld) (342)

Figure 3.2: Open angle and homogeneous field on the unit circle.

The covariance function in this case is certainly a periodic one with its
period at most equal to 27. Hence it can be expressed in terms of Fourier
cosine series (since X is an even function) '

K(p—-d) =3 K;oosli(— &) (3.43)

i=0

l
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The Fourier coefficients are

2r
K= [ K(®)cos(j0) db for j=1,2,3,-- (3.4.4)
™ Jo )
and
L x(6) as 345
K= [ KG) a0 (3.45)

We substitute this into (3.4.2) and find that the solution of (3.4.2) (i.e., the
eigenvalues and EOFs) as follows. When n = 0,

)\0 = \[2;1:K0, ’l/)o((}s) = —\'/}—27"% (346)

When n > 1, each eigenvalue corresponds to two eigenfunctions:
A =7K, (eigenvalue) : ' (3.4.7)
v () = T cos[ng], ¥ () = T sm[nq,’)] n=12,---.(3.4.8)

The above EOF result can be derived by a simpler way. The Fourier ex-
pansion (3.4.3) of K can be written in terms of the form of a Hilbert-Schmidt
kernel:

5

K(p—¢) = \/—_Ko)% + Z [(WKn)sm‘j_@ sin\(/n;

os(né

/

N

n=1

3

~—r

cos(ng')

+ (1K< }  (8.49)

N
N

Since - A . _

form a complete orthonormal set for functions of period 2w, they must be the

"EOFs for our covariant function K(¢ — ¢').

With EOFs, any function on the unit circle can be expressed in terms of
the EOFs expansions, which are exactly the Fourier series expansions.

3.4.2 Homogeneous complex EOFs

The symmetric kernel K can be complex (called Hermitian kernel) and the
eigenfunctions can also be complex valued, although the eigenvalues must be
real and positive. The complex EOFs can be defined in thé following way:

/ﬂ K (e, ) () = Aathn(), (3.4.10)
/ S (KL)% = by (3.41)

an(x ) =68x-x), (3.4.12)

n=1l
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where * still signifies the complex conjugate.
For the case of a homogeneous field on a unit circle, we have the complex
Fourier expansion:

=% Kne"“<¢"¢'>, (3.4.13) .
where o
K, = L / K(s)e™"¢ ds. (3.4.14)
27 '
Hence, .
K(p—¢) ‘Z Knen? (em4). (3.4.15)

This is a Hilbert-Schmidt kernel whose eigenpairs are
(Kn,e™},  n=0,%1,%2, . (3.4.16)

The eigenspaces are two- dlmensmnaJ for n # 0 since K_,, = K,.

3.4.3 Inhomogeneous EOFs on a unit circle

If the field is not homogeneous, the trigonometric functions are no longer EOFs,
rather each EOF is a linear combination of the trigonometric functions (1 e.,
Fourier series):

Z Yrme™ (3.4.17)
me=—co .
One can solve linear algebralc equations for ¥pnm, to find the EOF 1,(¢). For
our climatology applications, there is no need to get into too much detail of
the EOFs on the unit circle, instead later in this chapter, we will talk about
computing EOFs for more complicated case: spherical harmonics on a unit
sphere.

3.5 EOFs on a unit sphere
3.5.1 Simple orthogonal bases

The simplest orthonormal basis for functions over a domain is the one generated
by the eigenvalue problem of the the simplest second order differential operator, -
which, mathematically speaking, is the simplest possible non-trivial self-adjoint
operator. '

Example 1.  Orthonormal basis over [—,7].
The solutions of the eigenvalue problem

———:u = )\U, . (3'51)
wz=-m)=ule=m)=0 (3.5.2)
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are:

{ ——nz,exp['inm]/\/z—vr-}

o
n=

(3.5.3)

o0
Notice that {exp[in:u] / \/27r}
over [—m,7].

Example 2.  Orthonormal basis over [—m, 7] X [, 7].
The solutions of the eigenvalue problem

<.8‘92_2$ + aaziy) v =, D
wz = -my) =ulz=my) =0, (3.5.5)
w(z,y=~7) =u(z,y=m)=0 (3.5.6)
' ' { — (m? + n?), expli(mz + ny)] /(2@}:’“_@. (3.5.7)
Notice that : .
{ expli(mz + 17.3/)]/271'}171,11:.‘oo

is the regular two-dimensional Fourier orthonormal basis over (=7, 7] X [, 7].

Example 3. Orthonormal basis over a unit circle. (Mathematically the
unit circle is denoted by S*.)

Because the circle has a 27 - period (mathematically denoted by mod(2r))
the solutions of ‘

d? :
—de—zu = A’U., ' (3.5.8)
must be -
{ - nz,exp[z'né)]/\/Z_r} . (3.5.9)

[~}

Notice that {exp[in&] / \/271‘} is the Aregular Fourier basis over [—m,7].
N=—000

The functions exp[ind] are called harmonics.

-3.5.2 Spherical harmonics

Following the same philosophy, we try to find the simplest possible basis for
functions on a unit sphere. (Mathemticians like to denote the unit sphere in
3-dimensional space by S%.) This basis consists of spherical harmonics (or
normalized spherical harmonic functions).

The spherical coordinates are defined by (6, ¢): ¢ being the latitude and #
being the longitude (Fig.3.3). Then the unit vectors are

fi = (cos ¢ cos §, cos P sin 8, sin ¢),

fi' = (cos ¢’ cos 8, cos ¢ sin ¢',sin ¢').

is the regular Fourier orthonormal basis
—Q0 B

_A,'_._..,_.A:.__A,‘.,..
e N7 0
o [ AN

i
!
3
i
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=S

¥

Figure 3.3: A unit vector on the unit sphere.

On the sphere, the simplest self-adjoint operator is the i,a,place operator
(in ‘spherical coordinates). In terms of the spherical coordinates (4, ¢), the
eigenvalue problem for the Laplace operator on the sphere is

[ L o (cos¢ 0 ) ! —(?—2—] u = Ay, mod(2m X 7). (3.5.10)

cos ¢ 3¢ 8¢ cos? ¢ B>
The method of the separation of variables can be used:
= 0(0)&(¢). O (3511)

Then the above eigenvalue problem can be decomposed into two ordma.ry dif-
ferentla.l equations

20 2

-@-2— = —-m @, . (3.512)
1 d d® —m? .

m-c—ig <COS q&%) + m@ = AQd. ) (3.5.13)

To satisfy the 2m-period condition for ¢, we must have m being an integer
according to (3.5.12). The general solution of (3.5.12) is:

© = explim#)]. (3.5.14)

As for (3.5.13), we let z = sin§ be the latitude height.from the the equator
plane. Then the ODE becomes

d [(1 - ﬂ%} + [-A - Iﬁ‘] & =0. (3:5.15)

dz — g2
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This form is the standard ODE: associated Legendre equation as long as
— A= +1) (3.5.16)

The solutions of the Lengendre equation are the associated Legendre functions
P™(z) (when m is an integer). If we require that [ be a positive integer and
|m| <1, then P™(sin ¢) is a periodic function of period equal to 27. By the
uniqueness of the eigenspace of equation (3.5.13), P/*(sin ¢) are the solutions
we desired to find. Therefore we adopt

2
[( - )dg]+[l(l+1)“l7fw2:|§=07 1=0,1,2,--, lmISl-

: (3.5.17)
When m = 0, the associated Legendre functions become Legendre polyno-
mials P;(z) which are given by the Rodriques’ formula:

14d,, .
—(z* = 1)}, 1=0,1,2,--+, |z] <L (3.5.18)

Pil=) = g7

(Of course, the derivatives of polynomials are polynomials.) The first nine
Legendre polynomials are

Po(ﬂ?) = 1,
Py(z) = =z,

B(e)= (35 - 1)
Py(z) = (55" - 3), |
Py(z) = %(3 - 302 + 352*),
Ps(z) = ?:8-(15 ¢ — 702 +632°),
Ps(z) = -11—6(—5 +105 2 — 815 m‘f +2312%),
Py(z) = -1—(-35 z + 315 m3 - 69325 +429z27),
Py(z) = 128 (35 — 126027 + 6930 z* — 12012 2% + 643528),

Py(a) = Eg(315 z — 4620 ° + 18018 2° — 2574027 + 12155 2°).

Legendre polynomials are a set of orthogonal polynomials

1 :
2
Pz)Py(z) = —bw, 3.5.19

and :
P(1)=1. (3.5.20)

!
|
i
i
{
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Py(z) has I zeros in (—1,1).
The associated Legendre functions are defined by

PP(z) = (-1 - ) Bya). (3.5.21)

(Again, this derivative gives only polynomials.) This is also a set of orthogonal.

functions with respect to the index I

[_1 le(a;)P[,n(m) dr = 51—%_—1 Ei i_ :;ié-m. (3.5.22)

P/™(z) also has I — |m| zeros in (—1,1) and P[™ (il) =0.

In Mathematica, you can type LegendreP[n,x]. The machine will give
you the expression of P,(z). To get the associated Legendre function, you
type LegendreP({1,m,x]. For plotting, you can type Plot [LegenreP [6,x]1,
x,~1,1] for the graph of Ps(z).

The spherical harmonics Y,,(6, ¢) must be proportional to

P"(sin ¢) exp[im8). (3.5.23)
The normalization condition
4 Vien(8, 8 (6,8) 4R = 6B (3.5.24)
determines that
Yim(8,0) = 214: 1 8 1— m% P (sin @) explimb]. (3.5.25)

In the above, * signifies the complex conjugate, i.e. (a + ib)* = a — b for real
number ¢ and b. And

Y6, 6) = (~1)"Yim(6, ). (3.5.26)

Y10(8, ¢) has [ zeros along a longitude line (not including the two pole points)
and Yim(8,4) 2m zeros on a latitude circle. We say that it has [ north-south
waves and 2m east-west waves. So the wave patterns become more complicated
when [ and m are large. For a fixed [, when m = 0, there is no wave in east-
west direction. So, Yjo signifies a longitude average (also called zonal average
in meteorology) of a physical quantity.

Using Mathematica, you can type SphericallarmonicY[2,1,phi,theta]
to get the expression of Y31(8,¢). But be careful with the coordinates
Mathematica uses. Mathematica uses § to denote latitude and ¢ for longitude.
" That is why I phi, theta order in my Mathematica command. In most of
mathematics books, authors use ¢ to denote the longitude and their 8 is counted
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from the north pole (i.e. § = 0 at the north pole). According to our coordinates,
the first several spherical harmonics are:

1
Yoo =‘\/—4'——7—r',

(no wave),

5
Y21=—3\/24 cos pe'?

5 219
Yo =3 ————sm pe

A
"-\5{ - |
Yir = g4/ = (1 - 5cos? §) singe?,
T 219
Yip =15 Ton cos ¢ sin® ¢e

- 5 7 319
Yas = 81/57rs1n pe

The spherical harmonics form a complete basis. The completeness means
that

(o)

! ) )
S Yin(B Y8, ¢) = 66— 6)o(sing—sing). | (3.5.27)

=0 m=-—{

With this completeness property, you can do series expansion

v(d) = Z Z Vi Yim (B) (3.5.28)

=0 m=—I

where the expansion coefficients are
Vi, = / Q w(R)Y (4). (3.5.29)
4m

These coefcients Vim are also called the spectra and |v;, [* are called the power
spectra.

The spherical harmonic series expansion of P(# - &) with respect to &
results in only finitely many terms. This is the Addition Theorem:

P(d-d") = ar > YVim(B)Yp, (). (3.5.30)
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This theorem can be regarded as the 3-D sphere extension of the cosine law on
a unit circle in 2-D space:

cos(a — b) = cos a.cosb + sin asin b. (3.5.31)

The Addition Theorem will be used in the next subsection.
We may summarize the most useful properties of the spherical harmonics:

VYim(8) = —I(1 + 1¥im(8), (3:5.32)
f 40 Vi (8, 8V (8, 8) = 611 By (3.5.33)
4 .

3.5.3 EOFs for a homogeneous field on a sphere
On the unit sphere in 3-D, the EOF's are defined by -
K (8,8 )n(R) dQ = Antn(D) (3.5.34)
4w

where 47 denotes the integration domain and also signifies that the total solid
angle of the sphere is 4.
- Let us first look at the homogeneous case:

K(8,7') = K(a - &), (3.5.35)

Let ¢ = fi-&t/. Then K(z) is a function defined on the interval [—1,1] a.nd can
be expressed in terms of Legendre polynomials:

m):ZKnPn(m). o (3.5.36)

n=0

Now we can use the Addition Theorem for spherical harmonics:

P(a-d) = 8)Y: (¢, 9’) . (3.5.37)
m=—-l
Hence,
oo i
4
K(m) = ZK[W z Ylm(d)7 H)Y-l;'l«<¢,$6/) (3538)
=0 m=-

This expression is already in the Hilbert-Schmidt form. As we know that the

spherical harmonics are orthonormal and complete, they must be the EQF's.

For each elgenva.lue
4w

there are 2/ 4+ 1 eigenfunctions

Vim($,0) m=~l,~=l+1,-, =1L - (3.5.40)
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3.6 T-truncation and R-truncation

3.6.1 Spectral truncation

G

(b) .

-J

m

Figure 3.4: Truncation method of spherical harmonic functions: (a) T-
Truncation, and (b) R-truncation.

For practical machine computation, the spherical harmonic expansion -

i

wW8)=3" Y vn¥im(s) (3.6.1)
’ =0 !

m=-—

must be truncated at a certain level of m and [. Usually people use two types
of truncations: T-truncation (triangular truncation) and R-truncation (rhom-
boidal truncation) (Fig. 3.4). Both of these truncations are widely used in the
spectral GCM models.
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T-truncation expansion is

N l l
)= > vmYim(d) (3.6.2)
=0 m=

This is called the TN truncation. The indices are hence in a triangular region
(Fig. 3.4a) T42 truncation means that N=42. '
Parallelogram expansion is

M |m|+J
v(f) = Z Z v;mYzm(uvn (3.6.3)
m=~M I=|m|

The indices in the above summations are in two parallelograms. Usually people
take M = J. The parallelograms become rhomboidals. The truncation is now
called the rhomboidal truncation RJ. The R21 truncation means that

21 |m|+2l

v@)= Y, Y, vimYin(R) (3.6.4)

m==21 l=|m|

The indices are in two rhomboidal regions (Fig. 3.4b).

Here I would like to recommend every graduate student interested in climate
modeling to take a look at the book by Washington and Parkinson (1986) (in
particular, pp. 200-204).

3.6.2 Spatial resolution

Tn this subsection we discuss the basics of the transforms between the grid
point data and the spectral data. We will examine the criteria by which the
spatial resolutions are determined for various spectral truncations.

Let us illustrate our analysis by using the TJ truncation and M X N grid
points. Usually both M and N are even integers. The anomaly field is denoted
by Z(d). The transforms between the spectral space and the physical space
(i.e., the grid points) are:

i = — z quZ(npq)Y* npq) {from grids to épectra)(3.6.5)
p—l g=1 :

g = Z z ZimYim(Bpe)  (from spectra to grids), (3.6.6)

=0 m=-l

where w, are the Gaussian weights. As usual, we take the Gaussian grids: The
latitude circles are determined by the zeros of the Legendre polynomial of order
M2 and the longitude circles are uniformly distributed with separation angle

AB = 2r/N. When M is large enough (say, greater than 14), the distribution
of the zeros of the Legendre polynomial Py, is approximately uniform. For
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the GCMs used in most of research centers in the world, it is required that
the integration of the vorticity equation be exact with all the modes in the TJ
truncation. This condition requires the number of the grid points be sufficiently
large: .

‘N>38J+1, M>BJ+1)/2 (3.6.7)

For example, If J = 9, then the grid points are: 28 x 14; and If J = 21,
~the grid points are: 64 x 32. The above condition can be easily derived. The
vorticity equation is in the form:

o _

= = ABY). (3.6.8)

The expansion of ¥ is:

£,8) = 3 i ()Yim (). - (369)
Then the vorticity equation becomes

(hfi_?l = L 40 A(W)¥in () (3.6.10)

The nonlinearity of the operator A is of second order. The highest order of the
trigonometric polynomials in T'J truncation is J. Hence the highest order of the
trigonometric polynomials of A(%)Y%,(£) is 3J. Along a longitude circle, since
the integration method is Gaussian, so IV points can render exact integration for
2N —1 order polynomial. Here we have 3J order polynomial, so we (3J +1)/2
points can exactly integraté the waves on a longitude circle. This is M value.
The weights on a latitude circle are uniform and the points are also uniformly
distributed. Thus we need 3J + 1 points to numerically integrate a 3.J order
polynomial. This is IV value.

We depict the correspondence between the spectral space and the grids (also
called the physical space) as follows:

TJ (spectra) « (3J+1)x(3J+1)/2 (grids). (3.6.11)

But one does not have to satisfy this no-aliasing condition. As a matter of
fact, it has been pointed out that this condition of no-aliasing is not optimal
(Chen, 1993). The spectra of the TJ truncation can be described by J(J + 1)
real numbers. The corresponding number of the grid points is (3J 4 1)%/2.
When J is large, the ratio of (3J + 1)2/2 and J(J + 1) is 4.5, Namely to
catch the same amount of information, in the grid point space one needs to
use 4.5 times data compared with the spectral space if one chooses to use the
transforms given by (3.6.5) and (3.6.6) if one requires (3.6.7) to hold.

The total number of grid points is: Npet = M x N. The covariance matnx
on the grid points and that in the spectral space are respectively

My,

G5

(3.6.12)

T a=1

‘ ‘Jr."v P
I :
L f)y"7 s ;

i
i
I
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and

Z Zim()Zp (). (3.6.13)

yr a=1

[élml'm’ =

The covariance matrix [Cy;] is a real symmetric Npot X Nypo matrix. The
covariance matrix in the spectral space [élml’m’] is a Hermitian matrix of order
Nt = (J + 1)(J + 2)/2, in which there are J(J + 1)/2 complex entries and
J + 1 real entries. As mentioned before, Np¢; is 4.5 times Np;.
The eigenvalue problems in the physical space and the spectral space are
defined respectively by

;,2
n
3

Cs(Bs)i = /\k(E Yk (3.6.14)

.
1
-

and
J v

Z Z 'c-’lml’m’(E—,[’m’)k = Me(Bim k- (3.6.15)

V=0 m!/=-1{

The transforms between the eigenvectors in the physical space and the spec-
tral space are:

(Bi)e = Z(Ezm)kyzm(fli), (3.6.16)
Im .
and .
- Nm.ei
(Brm)e = Y wi(B;)eYimi(B;). (3.6.17)
i=1

The differences between the quantities computed in the spectral space and
the physical space are denoted by

Zi(a) = Ziga) + z;(a), (3.6.18)
(Elm)k = (Elm)k + Eim, | (36.19)
(B = (Bo)e + (e (3.6.20)

Then one can derive the difference between the eigenvalues computed from
the spectral space and those from the physical space:

Nnet

A== A Z(ei)k(Ei)k
l\;'r:]; - Mur
+ Z Z 2(e) Zi(e)(B:)w(B; )

MV" nel

+Z M Z Z zi(0)(Bi)kTim(@)éim.  (3.6.21)

YT a=1 i=1

i
:
5
'
i
'
i
i
i
i
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If z;, e; and &, are of order ¢ (a small positive number). Then the third
part of the above formula is of order € and can be ignored compared with

" e. Hence Ax — Ax = O(¢). This is a theorem in computational mathematics.

It says that when using Rayleigh-Ritz method to estimate the eigenvalues in
an eigen-system, the resulted error is of the same order as that of the guessed-
pattern.

3.7 EOFs for nonhomogeneous field

The key step that leads to the results in the subsection 3.4.2 is the addition
theorem (which is equivalent to cos(a — b) = cosacos b+ sinasinb used in the
unit circle case). For a nonhomogeneous field, this addition theorem cannot be
applied.

Although for a nonhomogeneous fleld, the EOF's are not the spherical har-
monics, they can still be expanded in terms of spherical harmonics.

":bn(n) Z Z 'wn lmlflm (371)

=0 m=~—1

The question of computing the EOFs becomes the problem of computing the
coefficients ¥n, 1m.

Recall that the covariance function is
K(a, &, [t —t|) = (0(a,t)0(d',1')). (3.7.2)
The expansion of the © field is N

oo l

O@,t) =Y > Oum(t)Yim(d). (3.7.3)

1=0 m=~I|

Then

K@, 8,12 = 3 3 (Oun 0 () Yim (8 i), (379

lLym Uym!

The Fourier transform of @ (t) is denoted by O1m(f). Since we assume
that the time series is stationary, we have

(Otm ()8t (1)) = Bimirme (1)8(F = ). (3.75)

Consider the integral of the frequency dependent covariance function over
the frequency window [fy, fal:

Kam)=3 %

Lym U ym!

df (Ot (F)Orm (' )>Yzm(n)3’z'mr(n)

(3.7.6)

fa— fl
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Then the eigenvalue problem for the covariance function

/ dQ K(8,8)¢n(d) = An ¥n(B), (n=1,2,3,-+") (3.7.7)
4

can be projected to the basis functions of spherical harmonics Y;,(f1). Then ‘

we have a matrix eigenvalue problem

oo v

Z Z <élmél’m’>¢n,l’m’ = An"/’n,lm, ('n, = ]_,2’ 3’ . ) (3.78)

U=1m'=-1

In this case, the eigenvalues are the variances of the modes over a frequency
range (f1, fa]. If one considers only one-year cycle, then he needs to set f (with
a proper unit) so that it corresponds to one-year cycle. No integrations are
needed in this case.
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Chapter 4

Minimal MSE
Optimization

In the last three chapters we learned that due to the spatial and/or temporal
gaps in a sampling process there exists an error when one derives an average
of a climate quantity from observational data. For example, there are errors in
deriving the averaged hourly rainfall from 830 rain gauges deployed by Tokyo
Metropolitan government, the monthly rainfall from the TRMM satellite, and
~ global average annual mean surface air temperature from historical stations,
etc. These errors can be assessed by the mean square errors (MSE).

The ideal situation is that the MSE is zero. Of course, in practice no
sampling process can yield zero error. Hence our goal is to minimize the MSE.
Thus we have two missions here. One is to do data analysis for already collected
data. For this data analysis problem, the best we can do is to weight each data
entry differently so that the MSE become minimal. The other mission is to
design a future sampling process and perform analysis for simulations. For
this sampling design problem, we have more freedoms. We can not only choose
different positions for surface stations and flight orbits for air-borne (or satellite-
borne) instruments, but also assign a different weight for each data entry to
minimize the MSE. In this chapter we will use a few concrete examples to show
how to obtain the aforementioned minimization.

4.1 Numerical integration

As we understand that the average value of a function over an interval or
a region is the definite integral of the function divided by the length of the
interval or the size of the region, and the numerical integration is to use the
data at discrete points to approximate the definite integral. Thus an average
value of a climate quantity derived from discrete samplings is similar to the
definite integral derived from numerical integration. The difference is mainly
in that a climate quantity has stochastic fluctuations and the function of being

51
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numerically integrated is a deterministic subject. Since most of the nurnerical
integration techniques are linear operations, the order of the ensemble average
operation can often be exchanged with the numerical integration. Thus, the
ideas we discuss here on numerical integration (or called quadrature) are useful
for us to derive optimal averaging method for climate quantities presented later.’

4.1.1 Optimal weights only

We consider the following definite integral:

I= /_ 11 fle)da. (4.1.1)

The known data are:

{xj7fj=f(mj)}7 j:1127"',N1
with

1<z <y < - <zy_3<zy<l.
See Fig. 4.1.

-f(xa; )

! + + . + frdd >
‘flj i Xz *3 0 XJ- Ky Xy 1 » x

Figure 4.1: Grid points for a numerical integration on [~1,1].

The numerical integration is given by : . L

N .
F=3>"wf;. (4.1.2)

j=1 ,

The weights w; satisfy

Py _
> wy=2 -, * (4.1.3)
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and can be optimized such that [ is closest to I. So we minimize

¢ = (I -7 (4.1.4)
According to the standard technique we learned in calculus to find extreme
values subject to constraints, we construct a Lagrangian:

' N
Jwy, -+, wy] = (wy, -+, wy) = 280> w; — 2), (4.1.5)

where —2A is the Lagrange multiplier. The conditions

aJ 8J
Juw; = 0 and T en 0
yield
(I-Dfi=4, i=1,2,---,N, (4.1.6)
v

> wy=2. (4.1.7)

Now we see that the only possible solutions are: either f; = constant or [ = I.
When f; = constant, we have I =TI anyway. Therefore, our optimization pro-
cedure can only work for the zero-error-quadrature. This zero-error-quadrature
has a unique solutlon and can be derived easﬂy from Lagrange interpolation
formula.

‘When we have data
{:Uj,‘fj=f(xj)}v, j=12,---,N,

the Lagrange interpolation formula for f(z) is

L(z) = z H — - fi (4.1.8)

i=l g—l,]-‘z

This is a polynomial of order N — 1. At the data points, the approximate

function L(z) and the original function have the same value: L(z;) = f;, j =

1,2,--+,N. If f(z) has N-th derivative, then the difference between f(z) and
(m) can be expressed in a nice form:

Mgy N |
#@) - oe) = T (o - =) (4.1.9)

i=1

where £ is a function of x and ¢ € [-1,1]. :
If f(z) is a polynomial of order N — 1, then f(z) = L(z) since f(M)(z) = 0.
The integration of L(z) is ~

1 .
/ L(z) dz = / dz - :z:_,,. i (4.1.10)
-1

-
j= 1:#1 J
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Hence if we choose

1 N .
wi=/ i@ J] Z=%, (4.1.11)
-1 . s, Lq — g
J=1,571

we have
I=r1 o (4112)

as long as f(z) is a polynomial of order not higher than N — 1. '

This claim itself is more or less trivial since a polynomial of order NV —1 has
N coefficients. When one has function values at IV distinguished points, the
polynomial function is uniquely determined and hence its numerical integration
based upon these known data at the N distinguished points should be exact.

Now the question is: can we optimize both the weights and the positions of
the points so that we can use data at IV points to get zero error quadrature for
higher order polynomials? The answer is yes. Using Legendre polynomials, one
can get zero error quadrature for polynomials of order up to 2IV — 1. This is
the Gaussian quadrature method and will be discussed in the next subsection.

4.1.2 Optimize both weights and positions

Again we approﬁmate ‘
1
I= / f(2) dz (4.1.13)
-1
by

. N
=" w;f(z;). (4.1.14)
=1

What was done in the last section has an apparent shortcoming since it does
not prevent the points being cluttered together and leaving a large interval
with no sampling points. This is obviously a bad sampling design. To improve
it, unlike the last section where only the weights w; are optimized, we here
optimize both the weights w; and the position ;. Because of large number of
freedoms, there can be many optimization schemes that optimize both w; and
z;. The Gaussian quadrature method is an optimal scheme that can integrate
exactly any polynomials of order 2IV — 1 with N data points given. We may -
state this conclusion as a theorem.

Theorem 4.1 If f(z) is a polynomial of order 2N—1, andz; (j =1,2,---,N)
are the zeros of the Legendre polynomial Py(z) of order N, then - :

1 N
/_1 f(z) daz = ijf(mj) : (4.1.15)

) i=1
with weights
! J T—-z;
wi= | do ] —>, j=12-,N. (4.1.16)
T =g
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Example:  Let us consider 5 points integration over [~1,1]. The five zeros
of Ps(z) are

z: 0, +0.538469, =+£0.90618.
The weights are:

w : 0.566889, 0.47863, 0.23693.

One can either find the above data from a mathematics handbook or by using

Mathematica.
L
I= / 28 dz,
0

For
the exact value is 1/9 = 0.11111. The Gaussian integration value by using 3
points (only half of the interval [—1.1]) is:

I ~05x%x08x 0.566889—}--{-0.5384698 % 0.478634-0.90618% x 0.23693 = 0.111113.

This, as we know, should be exactly equal to I by the claim of the theorem
since 2x5—~1=9> 8.

We also see that even in the situation that it does not render exact value,
the Gaussian integration still yields rather accurate approximation with only
few integration points. Look at '

1,
I:/ e™ " dz.
: 0

The “true” value is 0.746824 (obtained by many points numerical integration).
If we use the 3 points Gaussian integration, we have:

Im 05 xe™ x0.566889 + e~0-538469% o g 47363
+e7099618% 093693 = 0.745834.

This is a very impressive accuracy: with only three points our error is as small
as 0.13%! o

The weights and points defined above are called the Gaussian weights and
Gaussian points respectively. The formula (4.1.15) is called the Gaussian
quadrature formula. The derivation of the Gaussian quadrature formula is
quite easy with the preparation we have had and it is shown below.

Since f(z) is a polynomial of order 2N — 1, we can write it in the form

f(z) = Q(z)Py(z) + R(z), ' (4.1.17)

where both Q(z) @nd R(z) are polynomials of order less or equal to N — 1.
Hence, they are orthogonal to Py(z), i.e.,

/_ 11 Q(2)Py(2) dz = 0. (4.1.18)

|
|
|
|
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Thus, ) .
I= /_ ROLE /_ R(s) = (4119

This last integral can have an exact numerical integration when choosing the
optimal weights, for R(z) is a polynomial of order not larger than N — 1. So

N
I = Z'ij(xj)
v
= ij [Q(z;)Pn(z;) + R(z;)]

J;l
= ijf(mj). , ~ (4.1.20)

If the integrand is not a polynomial, the Gaussian method can still be
used to compute an approximate value of I, but certainly it is not the exact
value of I. In this method, we have further dissatisfaction: the weights and
the points, although optimal in the sense that it can integrate 2N — 1 order
polynomials exactly, are determined a prioriand are irrelevant to the structure
of the function. One method that improves this shortcoming is the numerical

. integration based on the spline interpolation formulas. The theory of spline

interpolation leads to a method whose weights are dependent on the structure
of the function. We are not in the position to study the detailed theory of spline
interpolation, but this idea of weights depending on the integrand function is
very useful and will be described in next section for finding the global average
temperature. : :

4.1.3 Monte Carlo method

The theory in the above subsection is interesting and useful (particularly in
spectral GCM models), but it may not be very convenient, for one has to
find the zeros of a Legendre polynomial and the weights (although they are
available in mathematical handbooks). A lazy-boy may prefer another method
which is to gamble: sample lots of points and add them together. You do not
care optimization, you do not care the function structure, and you care nothing.
Only thing you do is to sample MANY MANY points. This method is obviously
useless without modern computers. Biwith the high speed computers as we
have now, it is a very handy tool. Its procedure is as below.

1. Generate N (a very large number, say, more than 1000) independent
uniformly distributed random points in {—1,1].

2. Compute

. 2 &
=z ; Flz5). (4.1.21)
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This [ may be considered as an approximation of I. Here we have assumed
that the function f(z) is known (which may be very complicated), otherwise
we cannot compute f(z;). From above formula we see that the weights are
uniform: w; = 2/N. So Monte Carlo method may be regarded as a uniformly
positioned (in probability sense) and uniformly weighted numerical integration -
scheme. The power of this scheme is not very obvious in computing the sim-
ple integral in [—1,1], and it can be surprisingly powerful in estimate high
dimensional inultiple integrals:

_ . N '
/.../f(m) 0 ~ V]l\gm 3 f(z5), (4.1.22) |

j=1

where Vol(Q2) is the volume of the integration domain. o
The error resulted from the Monte Carlo integration is random since the
positions are random. Its expectation value satisfies

1

¢ = (-1 =15,

(4.1.23)

for a constant 7.
Let us look an example of Monte Carlo integration by Mathematica. Con-

sider
) .
I=/ z? dz. , (4.1.24)
-] .
Its exact value is 2/3 = 0.666667. Using Monte Carlo method, one does the
following: : : .
1. Generate random N = 1000 points: Z

t = Table[Random[Real, {~1,1}], {1000}]
. 2. Compute:

(2/1000) Sum[(t[[i11)"2, {i,1000}].

It gives result : 0.64919. » ' foveo {ooo [o0sp o/

If one choose N = 10000, the result is more accurate. One of our tests
shows the result: 0.667956.

Please notice that the positions are random. Hence, even using the same
number of points, the results can be different for different experiments.

The use of Monte Carlo method is now so popular that it reaches almost
every branch of science since it is really a lazy-boy tool and it is very effective.
So as long as one can convert the problem into an averaging problem, Monte
Carlo method can help you.
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4.2 Global- warming

In this section we mainly discuss the optimal weighting method introduced by
Shen et al. (1994) to the detection of climate change. The weights here depend
on the inhomogeneous structure of the climate fleld (to be exact, the surface
air temperature field).

We use T'(£,t) to denote the annual mean temperature anomaly. Here the
unit for ¢ is [year]. The station data T'(£;,t) (j =1,2, -, Nnet) is prepared
according to the method described in Section 3.1. Our goal is to compute the
global average of T(£,t) by using the data T'(£;,t) ( =1,2,--+,Npe) for a
quite small N,.:, say, less than 100. It is well known that there are several
schools which computed the global average annual mean temperature for the
last 130 years or so. The typical ones are those of Jones et al. (1986) (using
1873 stations), Hansen and Lebedeff (1987) (using 2685 stations) and Vinnikov
et al. (1990) (using 566 statioms). We took a subset of of Jones data and
consider only the period 1891-1990.

We will make use of the EOFs. The covariance function (or called auto-
covariance function) of the T'(£,1) fleld is

pl(2,5) = (T(E, )T, 1)) - (4.2.1)

We adopt the assumption that the temperature time series is stationary. This
assumption may be justified in the sense that the changes of the temperature
anomaly (both mean and variance) are not large compared with the standard
deviation of the anomaly. Of course, strictly speaking the temperature time
series is not stationary (particularly due to the reason that there is supposedly
a trend caused by anthropological forcing we desire to detect).

The EOFs 1, () are defined by

/ aQ p(f’f,)¢n(f,) = An¢n(f)7 n=12--. (4.2.2)
47

EOFs have the following properties:

(,#) }: Anthn(B)¥n(2'), (4.2.3)
‘/; dQ "pm(f)wn(f) = 6pmn ’ (424)
i Pn(B)Pn(¥') = 6(% — ). . (42.5)

The last formula is a spectral expression of the spatial white noise.
Now let us look at the global average of T'(%,t) given by
o1
B(t) = — / i T(1). (4.2.6)
4

4
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This integral is estimated by

 Naet
T(ty= S wiT(E;,t), (4.2.7)
j=1

where the weights satisfy a normalization condition:

> wi=1. (4.2.8)

The mean square error (MSE) is

& = (T —T)?). (4.2.9)
The expansion of the above becomes
N-n.et N-net
& = ((T)?) -2 wilTT(E;,t) + y, waw(T(8:,0)T(5,1)).  (4.2.10)
=1 1,7=1"

Again due to the assumption that the temperature time series is stationary,
the above ensemble average is independent of time. We will minimize this MSE
under the constraint (4.2.8). The Lagrange multiplier method is used. Define
a function: '

: Nnei )
Twy, -y wy,..] = € (wy,wn,, ) F2A | D w; -1 (4.2.11)
. . g=1
The extreme value conditions
87 _,

s i:]-,z)"'anety

J

the MSE expression (4.2.10) and the constraint (4.2.8) lead to Nye: + 1 linear

algebraic equations for the weights wy,«-+,wy,,, and the Lagrange multiplier

A

Nﬂ.gi
ST wip(En ) +A=pE), i=12 0 Noe,  (42.12)
i=1

Nne{

> wi=1. ' - (4.2.13)
j=1 »

Here
p(fi,15) = (T(E, T (E51) (4.2.14)
is the auto-covariance matrix (or simply called covariance matrix) and

ey L L .
p(E:) = y Mdﬂ p(E,%;) _ (4.2.15)

i
|
3
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is the global average of the covariance function around the pomt £;. From the
EOF expression of p we have

p(E:) =D Antn(F:)n, (4.2.16)
n=l
where 1
Py = ype /4 i dQ Pn(E) (4.2.17)

is the global average of the EOF #,(f). This EOF ¢,(£) has a spherical
harmonic expansion

Ya(E) = Z Z P tm Vim (£ | (4.2.18)
=0 m=~1 .

Then
= 4/ 47‘(‘ n,00+ (4219)
Therefore, as long as we have EOF's expressed in terms of spherical harmonics
(regarded as a data bank like the data set of Jone et al), we can solve the Ny +1

equations (4.2.12) and (4.2.13) to find the optimal weights w1, -+, wy,,,. The
minimal MSE can be written in a nice form

o
2 -
€opt = E Ap |9

n=1

Nnei

Z Wity (rz

This formula implies that the sampling errors for the global average tempera-

(4.2.20)

ture is the sum of the sampling errors of the EOFs weighted by the variance

(An) of each EOF component. For relatively dense networks (say, more than
50 well distributed stations), the convergence of the above series is very fast.
The first five modes would be enough to give satisfactory results (See Fig. 4.2).
This fast convergence is partly due to the decrease of A, and partly due to the
accurate sampling of the the lower order EOFs.

After obtaining the optimal weights, we can compute the (estimated) global
average T(t) for each year. T'wo examples are presented here. One is a network

of 4 x 4 uniformly distributed stations and the other is the Angell-Koshover
(A-K) network of 63 stations. The 4 x4 network stations are on the node points

. of 67.55,22.55,22.5N,67.5IV latitude circles and 45F,135E,45W, 135W longi-

tude circles. The A-K network was designated in 1358 by WMO to measure
the temperature in stratosphere by radiosonde (see Fig. 4.3 for the positions
of the stations).

The global average temperature averaged by uniform weights

) 47r Nnc‘t
Tu= 5 > T(E5t) (4.2.21)

i=1
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CUMULATIVE ERR? VS, MODE NUMBER
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Figure 4.2: MSE and its convergence according to the number of EOF modes. 4

Nﬂ.e!
To= Y wiT(#;,1) (4.2.22)
i=1

and optimal weights

are shown in Fig. 4.4 for the networks of 16 stations and 63 stations. The
minimal sampling errors (the square root of the MSE) for the two networks are

€sxs = 0.014°C  and €4z = 0.010°C. (4.2.23)

The above results show that using about 60 well distributed stations, one
can obtain a very accurate global average temperature. This claim, although -
remarkably important and interesting, is based upon that the known EOFs are
correct. So there is a problem here. If one does not have the computed EOFs
in data bank but just the data from 60 stations, can one construct EOFs with
reasonable accuracy and also get the satisfactory global average? This problem
is still open.

4.3 Spherical harmonicéomponents

In the above section, we discussed how to estimate the global average. As we
know that the change of the global temperature and its impact is not uniform,
there is a rather uneven pattern of the global change. This requires one to
consider the evolution of the pattern. As we have done before, it is better
to decompose the pattern in term of known sub-patterns: spheric harmonics
or EOFs. The component of the lowerest order spheric harmonic function is
actually equal ot the global average times Vir.
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Let me describe the mathematics of the problem now. Again use T'(f,1)
denote the annual mean temperature anomaly field. The spheric harmonic
expansion of it is

oo 14
TED =Y > Tim(t)Vim(?), (4.3.1)

=0 m=-1

where T}, are called the spherical harmonic components defined by
Tin(t) = [ 0 T(2,1)7;,(0). (43.2)
47

Our problem is to use the data: T'(§;,1) (j=1,2, - y Noet) to estimate the
T’lm(t):
Nret
Tim(t) = 3 wi™T(85,8)Yim(E;)- (4.3.3)
j=1 .
Here we regard the weights independent of time and applicable all the time.
The constraint put on the weights is

Nﬂet
S wl™ = 4n, (4.3.4)
i=1

Following the same procedure in the above section, consider the MSE:
e%lm) = <ITIl'm. - ﬂmlz> (435)

Due to the assumption that the temperature time series is stationary, the above
MSE is time independent. We minimize the MSE under the constraint condi-
tion (4.3.4) by the method of Laranger multiplier. The extreme value condi-
tions lead to the Np.: 4+ 1 linear equations for the weights and the Lagrange
multiplier. With the weights, we can of course compute the estimate of Tim(2).

The minimal MSE in this analysis can finally be expressed in terms of a
nice form:

: oo Nnet 2 )
(I ope = D02 98 = > 0l ™)V )| . (43.8)
n=1 =1

Here, 9,(f) are EOFs and ), are the corresponding eigenvalues of the covari-
ance function.
The above is only a sketch of the idea and the computation procedures.

The actual computations are quite tedious. For details, please read Kim et al.
(1995).

4.4 Homogeneous reduction

If the climate field is homogeneous, then the EOFs on a sphere are the spherical
harmonic functions as we pointed out in Sub-section 3.5.3. Then the computa-
tion procedures are simpler than those presented in the last two sections. The
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obtained results sometimes have their significance in climatology. But of course
one gets to be careful not over interpreting the results since the real climate
field is often far away from being homogeneous.

4.4.1 The covariance function kernel

The nature of mean square error implies that only the first two moments of
the measured field are relevant to the MSE. The temperature field under our
consideration is its spatial anomaly. Hence, its first moment vanishes, i.e.

(T(a)) =0

where (-) denotes the ensemble average. The second moment is described by its
covariance function, which can be regarded as a symmetric kernel of an integral

operator:
K(#,2") = (T(2)T(8")). (44.1)
By definition, when we say that a field is homogeneous, we mean that
K(h,8') = K(|a - &),
or : A
(T@R)T@R)) = o® p(h-2') =o?p(z) - (4.4.2)
where o = (T%(11)) is the low frequency point-variance of the temperature field
at point fi. Note the z = (fi-1t') is the cosine of the opening angle between the
directions (stations) & and &’. The correlation function p(x) is dimensionless
and normalized by p(z = 1) = 1.
An important consequence of the homogeneity assumption is that the spec-

tra of the covariance field consist only of the coefficients of the Fourier-Legendre
series of the function p(z):

’ 1
Pn = %/ dz p(z)Pa(z), (n=0,1,2,3,---). (4.4.3)
-1

Correspondingly, the correlation function p(z) is expressed in a series sum of
Legendre polynomials:

o0

p(z) =Y (2n+1)pn Pulz). ' (4.4.4)

n=0

Now we apply the addition theorem for Legendre polynomials:

P-4 2n + - Z Yoe(R)Y ') (Addition theorem).  (4.4.5)
The covariance function of a homogeneous field can now be written as

(T(R)T(2)) ='Z Z 4T 0? pr, Yok (B) Y3 (R). (4.4.6)

n=0 k=—n
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Hence, the spherical harmonics Y54 (i) are now the eigenfunctions (EOFs), and
one elgenvalue 4mo?p,, corresponds to 2n + 1 different eigenfunctions Yar(1),
(k = —n,- -1,m).

4.4.2 The MSE formula

We use the data from N stations at points iy, fiy, -++, iy to estimate the

spherical harmonic components Ti,,. The linear estimator is

N
=5 W™ T(8,)7 (85). (4.4.7)
i=1 .

This is the Riemann sum of the integral (2). The surface of the unit sphere
is partitioned into N sub-regmns and the weight 'w( ™) is the area of the jth

sub-region (j = 1,2,-.-,N). Hence the weights w(lm) (j =1,2,---,N) are
real-valued and sa,tlsfy the normalization condition

N
Z 'wym) = 4. (4.4.8)
= -

The MSE for estimating T}, is defined as

E%lm) = (]Tl‘rn - 'Tlml2>- (4.49)

This can be re-written into:
Hmy = <[ | a0 7(a) [l——w<’m)(ﬁ)] Y*(ﬁ)|2>
- / a0 [ 40 (T@TE) 1~ wi(a)
47 4 .

x [1 - wl™ (8] ¥, () ¥im(8)

= Z ’\nl";bn,lm - 'ﬁn,lmlz (4410)
n=1
where
wl™ (4 Z w{™s(a - 5;), (4.4.11)
j=1 .

Bt = /4 a0 Pa(R)Y7 (), (4.419)

"~ ' N ‘
Prim = > SV (85770 (R), (4.4.13)

i=1

and 7, are the EQFs.

§
i
{
H
i
H
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If the field is homogeneous, then the spherical harmonics are the EOFs as
pointed in the above sub-section

Ap 470 pp, Po(d) & Yor(h), k=-n,---,n—1,n.
Then the MSE formula (4.4.10) becomes
iy = Z Z 4702 pr|6pi6im — Z w(lm)V 1;)Y,5 (2;)]% (4.4.14)
n=0 k=n

Using the addition theorem again, one can reduce the MSE formula (4.4.14) to
an easy-to-compute form:

E" w
_Qm) (Im) (lm)
dmat -;@n“)p" z;“’ Po(fis - 85) Y7 () Yiom (37)
al I
o | 1=2 3wl Vi@ |- (4.4.15)
j=1 .

Thus, the sampling error is explicitly expressed in terms of a series sum of spec-
tral components whose coefficients are functions of the positions and weights
of the stations. And the spectra p, (n =0,1,2,:+) can be obtained from a
homogeneous climate model.

4.5 Spectra derived from noise forced EBM

Here we consider the case of a simple climate model which is a white noise
forced linear energy balance model (EBM) given by

q—o-:—tT(ﬁ, £) — NVAT(4, 1) + T(8,¢) = F (&, £) (4.5.1)

where T'(f,1) is the local departure of the temperature from its climatology; 7o
is an inherent time scale and A¢ is an inherent length scale. We are interested
only in the low frequency limit (annual average or two-year average) of the
climate process. With this limit the time dependent term in the above model
drops out. Hence we simply consider the time independent model. The unit of
the length scale )¢ is the Earth radius. The forcing function is a spatial white
noise, i.e.,

(P@)P@)) = cho(a - ), (45.2)

where § is the Dirac delta function. The time independent noise forced EBM
is
- NVAT(R) + T(i) = F(f). (4.5.3)
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The spherical harmonic expansions for T(A) and F(#) are

o 14
D=3 TnYim@), (459

1=0 m=—1

F(d) =f: > FimYim(f). : (4.5.5)

=0 m=~1

Substituting these two expressions into the model equation (4.5.3), we can

obtain
Flm

' 1+ A0 +1)
Substituting (4.5.4) into the left hand of (4.4.2) and using the Fourier-

Legendre expansion (4.4.4) and the addition theorem for the spherical harmonic
functions (4.4.5), we have

Ty = (4.5.6)

Nk

l co
Z Z Z Tlm’r’l’m’ Em(n)Yum,(n’)

=0 —-lU=0m/==U

= o? ipnfi'rr > Yar(B)Y7 (). (4.5.7)

k=—n

This equality and equation (4.5.6) imply that

([ Frm|?)/ (40°)
{1+ A3n(n+ 1))’

pr = n=0,1,2,-. (4.5.8)

Here (|Fum|®) can be found from the white noise assumption (4.5.2) and the
expansion (4.5.5):

=0 m=—{U!=0m'=-]
oo n
= ob > > Va(a)Yy (). . (4.5.10)
n=0 k=—n
This implies that : .
(FrmFpims) = 0561 S - E (4.5.11)
When n = 0 in (4.5.8), we have ' :
’ 2
_ 9%
po = (4.5.12)

This pg can be determined by the normalization condition plz=1)=1,1ie,

1;(271-“)[1 +/.\§7:€n+ 1)‘]2Pn(1) =1 (4.5.13)

(=) ! oo { A
200 D0 2 (FmFl ) Yim ()Y (2) (4.5.9)

!
1
|
[
i
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Noting that P,(1) =1 (n=0,1,2,:-+), we have

1
o= T en+ D/ + Nn(n+ DP

n=0

(4.5.14)

Hence pg is only a function of the length scale Xo. The larger the Aq is, the
more variance_is explained by the spectral component pg. Fig. 4.5 shows the
relationship between pg and Mg, which, of course, is a monotonically increasing
function. The value of )\ is determined by the length scale of the anomaly field.
For the annual mean field, EBM length scale is about 2000 km. If we take the
radius of the earth to be 6367 km, Ao takes the value: 2000/6367 = 0.3141.
The corresponding po is 0.0954. Thus, the zeroth order spectral component
po explains about 10% of the low frequency point variance of the surface air
temperature. :

With the above preparation, one can compute the weights and MSEs. The
details are described in Shen et al. (1995).

0.3 T T 7 T

o
[av)
T

NORM FACTOR p,
Q

0.0 - : :
0.0 0.1 0.2 0.3 0.4 0.5 -
LENGTH SCALE 2y

Figure 4.5: The length scale of a noise driven linear EBM.

4.6 Network design on unit‘sphere

~ For the future network design, there can be many methods and criteria. Here
we present one which is of more interest in mathematics and grid design for
global climate models rather than in climate data analysis. However, the idea
used here might have some interesting implications for the future methods on
climate data analysis.
The question is where to put » points on a unit sphere in three dimensional
space so that the sum of their mutual distances takes the maximal value? This

1
i
i
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is a very old and yet still difficult mathematical problem (in the sense of rigorous
mathematics). We are going to solve this problem by sequential procedures.
Let p1,p2, -, Pn-1 be n — 1 points fixed on the unit sphere. We ask the

question: where do we put the nth point so that the sum of their mutual
distances becomes maximum? Let x be a point which can be moved on the

sphere. Then, the sum of the mutual distances among the point x and the first
(n — 1) points is a function of x:

n—1 .
= Z Ix — pil. (4.6.1)

=]
This function reaches its maximum at p, which must be a critical point of
the function S(x). Hence the directional derivative of S(x) in any tagential
direction of the sphere at p, is equal to zero. Equivalently, the gradient of S(x)
must be normal to the tangential plane and hence is in the radial direction.
Therefore, there is a scalar & such that

VS(pn) = @ pn. ' (4.6.2)
Since (x —p;) x>0 (i=1,2,---,n = 1), we have

VS(A) x = (Z Iz - ﬁj[) x> 0. (4.6.3)

=1

Consequently, the scalar « in equation (4.6.2) is equal to

a=|VS(pn)l- (4.6.4)
From equation (4.6.2) the nth point p, is the solution of the following equation:

(?:?! p >/ > ov e | (46:5)
We solve this nonlinear equation for p, by iteration procedure
n—1 _(k—1) __ n—1 (k—l) _
() =( e PZ) / Z————-k il (4.6.6)
i=1 [pﬂ "'Pil i=1 |P le

The initial configuration of the n points are put onto the sphere according to
random and uniform distribution. The method is to generate random uniform
distribution of point on an interval [~1,1] and then on a square [—1,1] x [~1, 1].
These points are finally projected to the unit sphere according to the umform
random distribution criterion.

We perform the first iteration for every point before we proceed to the
second iteration, then the second iteration for every point before the third iter-
ation, and similarly the third, fourth and kth iteration until the monotonically
increasing sequence :

D®(n) = (1/2) Z p{*) — pl] (4.6.7)

i,j=1

i
i
i
|
i
i
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converges, i.e.
Jim D) (n) = D(n). " (4.6.8)

At the same time, the position sequences pg-k) (=1,2,--+,n) converge to the
equilibrium positions: '
(k) —

lim p

Jim rj, §=1,2,--+,m. (4.6.9)

I developed a numerical software package to carry out the above iterations
and plottings. In our numerical package, without loss of generality, we set the
first point on the north pole, i.e.

¥ =(0,0,1). . (4.6.10)

The numerical tests we carried out seem to suggest that for n > 4 there are
always a pair of antipodal points. The proof of this assumption is not yet
available. To prevent from the free spin of the sphere, we also set a point on
the Prime Meridian (i.e. zero longitude line). Our numerical tests also suggest
that the following iteration scheme

-1 _ (k=1
5 sz )_Pi

n—1 gc——l)_l__ ;
p” = (Z—PWB‘)/ 2

( (4.6.11)
i=1 |Pj - pif i=1 |pn

for j = 2,3,---,n — 1, which is the result of changing the sign on the right
hand side of (4.6.6), converges faster. When pg»k-l) is very close to its limit as

k is sufficiently large, pg.k) is almost equal to —pgk-l), a 180° rotation of p(.k_l)

around the axis connecting the north pole and the south pole. And the point
on the south pole is

Jlim pl¥) = (0,0,-1). (4.6.12)

The precision of the solution of eq. (4.6.5) and the cut-off number for
iterations depend on the what one needs and vary with respect to the total
number of points n. But we observed that in the first a few steps of iterations,
the convergence of D(*)(n) is very fast. The distance found after the first five
steps of iteration, i.e. D(®)(n), is usually less than 1% away from the accurate
solution D(n). But the positions of the points may be far away from the
equilibrium. In other words one may have to move the points for rather large
- distances in order to improve the sum of the mutual distances by merely 1%.

Interested readers may use anonymous ftp to get the package from

. cake.math.ualberta.ca
in the directory /pub/point, or write to me. Using the example of n = 8, one
can run the package spherept.m in the following way:

Inf1}:= n=6;
In[2]:= <<spherspt.m (load the package)
In(3]:= init (generate the initial configuration)

Initial dist=19,9696 (the result from the initial configuration)

C e ——— e maes

i
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In[4]:= iteral[5] (instruct the computer to do five iterations)
k=1, dist=20.18004099666794, n=6 '
k=2, dist=21,78175758641795, n=6

k=3, dist=22,42284677829108, n=6

k=4, dist=22.43318413850058, n=6

k=5, dist=22.75807186171074, n=6

# of points=6, dist=22,75807186171074

Total # of iterations=5

In[5]:= plt (plot the six points on the longitude-latitude grids)
Inl6]:= itera[100] (instruct the computer to do 100 more iteratioms)
In{7]:= plt (plot the new result)

Inf8]:= x (show the Cartesian coordinates of the points)

Out[8]= {{0., 0., 1.}, {0.999038, -0.0438603, -0.000109174},

> {0.0438301, 0.999038, 0.000107343},

> {~0.0438604, -0.999038, 0.000107395},
. -8 R

> {-0.999038, 0.0438603, ~0.000105564}, {-1.34913 10 , 3.95669 10 , -1.}}

Inf{9]:= tf (show the longitude-latitude of the points)

cut[9]= {{0., 90.},.{0., -0.00625524}, {90., 0.00615029}, {-90., 0.0061533},

> {-180., -0.00604836}, {0, ~89.9999}}

Table 1 shows the sum of the mutual distances among the n‘points. "The
formula n cot(w/2n) is the sum of the mutual distances of the vertices of the
regular n-gon inscribed in a unit circle in two dimensional space B2, The
formula 2n?/3 ~ 1/2 is an approximation of D(n). The second forﬁula is
rather accurate, particularly when n is large. Hence it can be regarded as an

asymptotic approximation of D(n) as n — co.

TABLE 1

n 11 12 13 14 15

Computer search 79.2746 94.5829 | 111.1704 | 129.1173 | 148.4005

n cot(n/2n) 76.5067 | ©91.1409 | 107.0646 | 124.2534 | 142.7155
2n2/3 — 1/2 80.1667 | 95.5000 | 112.1667 | 130.1667 | 149.5000
n 16 17 18 19 20

Computer search | 168.9781 | 190.9711 | 214.2610 | 238.8718 | 264.8362
ncot(w/2n) 162.4507 | 183.4592 | 205.7409 | 229.2959 | 254.1241
2n2/3 —1/2 170.1667 | 192.1667 | 215.5000 | 240.1667 | 266.1667

One may expect that for n = 4,6,8,12 and 20, the solutions should be
regular polyhedra. This is indeed true for n = 4,6,8 and 12. But, to our
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surprise, this is not true for n = 20. For a dodecahedron inscribed in a unit
sphere, the sﬁm of the mutual distances among the vertices is equal t0'264.72386,
which is smaller than D(20) = 264.8362. As remarked earlier and depicted by
Fig. 4.6, although this difference is small, the corresponding point positions
are very much diﬁ'erenti See Fig. 4.6 for the difference between the two sets of

points: the vertices of dodecahedron (Fig. 4.6a) and the points which have the

. maximal sum of the mutual distances (Fig. 4.6b).
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