Vol. 40 No. 16 CHINESE SCIENCE BULLETIN August 1995

Optimal weighting scheme for averaging regional temperature (I)

— Theoretical analysis

Shen, S.5.P.,

(Department of Mathematical Sciences, University of Alberta. Edmonton, Canada T6G 2G1)

WANG Xiaochun ( £B% ). LIANG Youlin ( #4)# )
and LI Rongfeng ( %R )
(Institute of Atmospheric Physics, Chinese Academy of Sciences. Beijing 100080, China)

Recerved February 25, 1995
Keywords: optimal weighting scheme, regional average temperature, arithmetic average.

Inadequacy of a spatial data sampling scheme often causes confusion when considering
global, hemispherical and regional temperature averages. Jones et al.!" ¥, Hansen er al.'”,
Vinnikov et al!¥ used different methods in their researches for the long-term trend of global
or hemispherical surface air temperatures. Optimal weighting scheme was used by Vinnikov
et al. The weight for each station at different latitude was obtained in the sense of mini-
mum mean square error of average temperature. The weights were then used to compute
the global or hemispherical average temperature. Recently, using empirical orthogonal
functions, Shen er al!¥ showed that the global average temperature can be computed with
quite satisfactory accuracy by using only above 60 stations distributed properly over the
globe. ;

Our research will investigate the influence of inadequate spatial sampling on the
computation of regional average temperature. The optimal weighting scheme is given in
sec. 2. Some special cases of the scheme are analyzed in sec. 3: secs. 4 and 5 show
some results of test computations and summarize our conclusions. More comprehensive
computational results about the comparison between the optimal weighting scheme and
the ordinary arithmetic average will be given in another article.

1 The theory of optimal weighting scheme

Let r be the position of point of question in region C, @(r, 1) be the temperature at r
and time t, @(r, t) be the r-length average of temperature centered at ¢ and at the location

r, le.

Ofr.1)= %J O 1)dr. ()
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where © can be one year, one month, and so on.
The real regional average of temperature averaged over t-length time in region C is
|
)= ¥J dQe (r, 1), (2)
A c

where 4 is the area of region C, df2 is the integration element. And it should be noted
that the above regional average is relevant to 1.

The estimation of @(f) by using observation of n stations is

é(r)=£w,@,(r_rj. (3)
=1
or
o) = ]TJAdQW@((r,I). (4)
where n
W=A Z\\',J(r—rlj. (5)
=1

r. is the position of ith station, @(r, ) the r-length average of temperature for ith station
station centered at ¢, w, the weight for ith station, and Ar—r) the o function. The following
constraint should be imposed on 1w,

Z w=1. (6)

The mean square error of the estimator @(r) for O(1) is

£ ={(O(1) - ()", (7
where ¢ > is the ensemble average. Expansion of the above formula leads to
§= —14 Jid.()'J .dQ’p(r. r= % Z‘ \L"J Id.Qp(r. r) -I:Z! wav,p(r.r). (8)
where ( ( L |
pir. r)=<@[r. . )O(r, 1)) (9)

in which we tuke @ (r , 1) as stationary.

We try to find the weight for every station by minimizing & with (6) as a constraint.
The weight obtained by this procedure is called the optimal weight. The method of
Lagrange muitiplier is used with —2A as the multiplier for the convenience in the follow-
ing derivation. We denote

F=¢—2A (Z n;u]). (10)
(=1

Using the same method as that in Shen er «l.. Vinnikov er ul.. from

CF

N3
L ) and
aw, c

=0. (1h

the optimal weights are the solution of the following lincar equations

»
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Lowpln, ) =A =p(r) i=1-n,

(12)

w=1,

=1

where

)= J dop(r. r). (13)
C

If we denote the inverse of the matrix {p,=p(r..r)) as (b). then the solution for (12) can
be expressed as

w=3 b, (/\ +p(r)).
=1

|
A= T
L 2 &,

=1 =1

If the temperature data are standardized before the computation, p(r, r) is the
correlation coefficient of stations i and j. So the quantity p (r) basically measures the
importance of station i when its observation is used to compute the regional average.
Considering what we try to compute is the optimal average temperature over region C, and
formula for p(r) Is also a regional integration, we may conclude that the original problem
is changed into a new one in the same form.

2 Some special cases of the optimal weighting scheme

The above theoretical consideration has shown a method to get regional average
temperature by the optimal weighting scheme. But if p(r) cannot be computed accurately,
then the satisfactory regional average cannot be obtained. The following special cases of
optimal weighting scheme will show the relationship of the optimal weighting scheme to the
computation method of p(r).

2.1 Using real correlation coefficient to compute p(r)

If the correlation coefficients among n stations are used to directly compute FIGH
then from the discrete form of (13), we get

plr)= —j"j dQp(r, r) =i L‘%‘Hﬂ(r,, r), (15)
(o =1

where A4, is the area of the subregion that can be represented by observation from jth sta-
tion. From (12), the solution for optimal weights is
A4,
W= —
[T (16)
L A=o0.
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This means that the weight for each station equals the ratio of the area represented by the
station to the total area of the region. Specifically, if the area represented by each station
is equal to each other, then the solution is

{ n (7
A =0.
This means the optimal weighting scheme is debased to the ordinary arithmetic average.

2.2 Using the presumed correlation coefficient field to compute p(r)

If" a theoretical distribution of correlation coefficient field is presumed, the result of
p(r) may be better. Vinnikov et al. presumed an empirical correlation coefficient formula
for every latitude band of 30 degrees. For 30°—60° N, the presumed formula is

pls) =exp(—0.215")J(0.852s), (18)

where p is the correlation coefficient, s is the distance between stations with 10° km as the
unit, and J, is the Bessel function. Their method renders satisfactory result for computing glo-
bal average temperature. Since the correlation coefficient of temperature varies with respect
to geographic position and time scale. their method is clearly not universally applicable.

Our results show. in the case of the computation of regional average. that the rela-
tionship of correlation coefficient with distance can be more accurate if expressed by an
exponential decrease with respect to the distance square. In this research. the following for-
muls 15 presumed for the correlation coefficient with ith station as the base point

pr.r) =u exp (— h‘[—frI) (19)

where ¢, and d are the coefficients relevant to station i and time scale t.

According to the above assumption. the coefficients a and d> are computed using the
real correlation coefficient field. Then p(r) is computed in the designated region. Hence the
oplimul weight can be obtained by formula (14) and at last the optimal regional average
temperature can be computed.

Compared with the ordinary arithmetic average. the optimal average scheme is more com-
plicated. But if we have considered that the coefficients «, and d’ can be computed quite
accurately with sufficient latest observation data. and if the coefficients can be used to
compute the regional average when the observation is very sparse and rare, we may con-
clude that it deserves to compute the optimal weight this way. And it should also be noted
that the coetficients are relevant to time scale .

3 Computation results

The observation of 23 stations located in the Northeast China for the period of
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1961 — 1990 are used in our test computation. First, the seasonal change is removed by
using the original temperature data to subtract the monthly mean over a long term. Then
the anomalies are standardized, and correlation coefficient matrix is computed. The least-
square-fit method is used to get coefficients a, and 4 for each station. .nd then the
weight for each station is computed. The optimal regional average temp.i.i'ii.e anomaly
(OTM) is compared with the arithmetic regional average temperature anomaly (TM), where
the anomaly means the standardized anomaly.
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Fig. 1. The relationship of correlation coefficients to distance. —a— Aexp(* rF)(A= %Zgu,. D= LZd;
)= =l

ris the distance between slalions), —se— exp(—0.215"™J(0.852s) (v is the distance between stations, Jy is
the Bessel function).
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Fig. 2. The annual change of the optimal regional average temperature anomuly (dashed line in lower
part) and arithmetic regional average temperature anomaly (solid line in lower part). and the monthly
change of their differences (upper part).
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The relationship between correlation coefficient and distance is shown in fig. 1. It is
clear that, for regional temperature field, our expression of the correlation coefficient is
closer to reality than the formula designated by Vinnikov et al.

For better expression of the figure, annual changes of the OTM and TM are shown in
the lower part of fig. 2. The monthly changes of their differences are shown in the upper
part of fig. 2. It can be noted from fig. 2 that their difference is rather small. In fact. their
root mean square difference

f 12
RMSD = ( L vomm —TM,)l) (20)
m .=\
is 9.0 percent of the standard deviation of TM. In the above formula. m is the total num-
ber of months, OTM, and TM, are the OTM and TM for i month. From comparison,

we can conclude that the method in our research can get a reasonable regional average.

4 Conclusions

The optimal weighting scheme for the computation of the regional average temperature
is derived. The analyses of some special cases of the optimal weighting scheme show that
the computation method of p(r) is the crucial part of the scheme.

The test computation, using the observation of 23 stations from Northeast China,
shows that the optimal weighting scheme can get a reasonable regional average. The full
comparison of the optimal weighting scheme and the arithmetic regional average will be

given in another report
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