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As anyone who has ever had any exposure to complex variables is aware, the subject
is full of surprises. From applications in fluid dynamics to the closed-form summation
of infinite series, complex analysis has applications that would seem to have no
relation to a theory concerned with the “imaginary” number v — 1. This paper
presents an intriguing result in geometry that can be derived by setting the problem
in the complex plane and applying the theory of residues (see also [2], p. 69, problem
44).

Suppose we have a circle of unit radius, whose circumference is divided into 8
equal arcs by 8 points. Suppose also that we draw lines from one of the points to each
of the other seven points as shown in Ficure 1. Consider then the problem of
determining the product of the 7 chord lengths. It turns out that this product is equal
to the number of points we started with, namely 8. In fact, as we shall show below, if
we start with n points, the product of the n — 1 chord lengths we construct will
always be equal to n. One can easily check this result for the cases n =2, 3, and 4.

For the general result, suppose we have a circle of unit radius and n points that
divide the circumference into n equal arcs. Let ¢, ¢y, ..., c,_; denote chords drawn
from one of the points to each of the remaining n — 1 points (see Ficure 1). The
product of the n — 1 chord lengths is just n, i.e.
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FIGURE 1
Example: n = 8.
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where |c;| denotes the length of the chord ¢;,k=1,...,n—1 (see also [3], p. 32,
problem 160 and [1], pp. 33—34, problems 4.19, 4.20 for related results).

Proof. Without loss of generality, let the originating point be the point (1,0) in the
complex plane. Then the n points can be represented in the complex plane by

2m(k—1)
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Since chord ¢ is the line from p, to p;,,, we have

n—1 n—1 omk
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Consider the function
1 1
f(Z) = z'ﬂ — l = ok

k1=11 (z — ei‘n_)

The calculation of the residue of f at z =1 can be done by using the formula

Res(f,1) = lim (z — 1) f(3) = —= L . (3)
=l I (l —e"¥)
k=1
Since f has a simple pole at z = 1, Res(f,1) can also be calculated by
1 1
Res(f,1) = P = (4)
E(zn_ l) z=1

Hence I} ilcil=n.
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