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Abstract Maximum likelihood factor analysis (MLFA) is
applied to investigate the variables of monthly Tropical
Pacific sea surface temperatures (SST) from Niño 1+2,
Niño 3, Niño 3.4, and Niño 4 and precipitation over New
South Wales and Queensland of eastern Australia, Kali-
mantan Island of Indonesia, and California and Oregon of
the west coast of the United States. The monthly data used
were from 1950 to 1999. The November-February SST
with time leads of 0, 1, 2, and 3 months to precipitation are
considered for both El Niño warm phases and non El Niño
seasons. Interpretations of the factor loadings are made to
diagnose relationships between the SST and precipitation
variables. For El Niño signals, the rotated FA loadings can
efficiently group the SST and precipitation variables with
interpretable physical meanings. When the time lag is 0 or
1 month, the November–February El Niño SST explains
much of the drought signals over eastern Australia and
Kalimantan. However, when the time lag is 2 or 3 months,
the same SST cannot adequately explain the precipitation
during January–May over the two regions. Communality
results of five factors for precipitation indicate nearly 100%
explanation of variances for Queensland and California, but
the percentages are reduced to only about 30% for Oregon
and Kalimantan. Factor scores clearly identify the strongest

El Niño relevant to precipitation variations. Principal
component factor analysis (PCFA) is also investigated,
and its results are compared with MLFA. The comparison
indicates that MLFA can better group SST data relevant to
precipitation. The residuals of MLFA are always smaller
than the PCFA. Thus, MLFA may become a useful tool for
improving potential predictability of precipitation from SST
predictors.

1 Introduction

Factor analysis (FA) is a multivariate statistical analysis
method that decomposes a covariance or correlation matrix
and reduces the dimension of data (Gorsuch 1983). It has
often been used in social sciences, marketing, and oper-
ations research. However, its use in climate research is still
rare, although some successful applications have effectively
demonstrated its value. Examples include identification of
dynamical modes (Walters 1999) and correlation patterns
(Bartzokas and Metaxas 1995; Dinpashoh et al. 2004).

The commonly used FA decomposition methods are the
empirical orthogonal function (EOF) approach and the
maximum likelihood (ML) approach (Johnson and Wichern
1992; Bartzokas and Metaxas 1995; Wilks 2006). The
purpose of this paper is to explore the advantages of using
ML factor analysis (MLFA) in climate data analysis. In the
process, we further introduce the fundamentals of the
method to climate research. As a computational example,
MLFA is used to investigate the relationships between the
Tropical Pacific sea surface temperature (SST) in Niño 1+2,
Niño 3, Niño 3.4, and Niño 4 and precipitation data of five
5°×5° land grid boxes over Kalimantan of Indonesia, New
South Wales and Queensland of Australia, and California
and Oregon of the United States.
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The EOF analysis, also known as principal component
(PC) analysis, has been extensively used in climate data
analysis for various purposes: explaining dynamical modes,
exploring teleconnections of climate parameters, reducing
data dimension, and identifying footprints of forced climate
changes (North et al. 1982, 1995). The loadings of the PC
factor analysis (PCFA) are the EOFs multiplied by their
corresponding variances (i.e., eigenvalues), and thus the
PCFA approach maximizes the variance of the climate
component projected onto the EOF direction, and the PCFA
computation is a well-defined eigenvalue problem. The ML
approach, by name, maximizes the normally distributed
multivariate likelihood function. The computational algo-
rithm for ML factor analysis (MLFA) is not a simple
eigenvalue approach like that of PCFA; instead, it is an
iterative approach and the procedures are quite complicated.
Fortunately there is standard statistical software such as
SAS, to conduct MLFA analysis. The main advantage of
MLFA is that it usually leads to smaller residuals compared
to the PCFA. Thus, MLFA can identify patterns or modes
that can better represent the covariance or correlation
matrix, in particular, the off-diagonal elements. Such
elements are also more closely associated with climate
dynamics and atmospheric circulations. Thus, the loyalty
implies more meaningful interpretation of the factor
loadings. This is important for statistical prediction of
monthly or seasonal climate since the skills of linear
prediction such as canonical correlation analysis (CCA)
method or direct multivariate regression method, come
from the correlation between the predictor and predictand
(Barnett and Preisendorfer 1987; Barnston and Smith 1996;
Shen et al. 2001; Lau et al. 2002).

To demonstrate the advantages of MLFA, we chose to
analyze sea surface temperatures (SST) and its relation-
ship to the precipitation, because SST data are often used
as predictors for monthly and seasonal temperature and
precipitation predictions. We explore the El Niño MLFA
loadings and specific variances imbedded in the SST
data over the tropical Pacific (Niño 1+2, Niño 3, Niño
3.4, and Niño 4) and precipitation data of five 5°×5°
land grid boxes over Kalimantan of Indonesia, New
South Wales and Queensland of Australia, and California
and Oregon of the United States. The monthly data used
were from 1950 to 1999. The SST leads of 0, 1, 2, and
3 months to precipitation are considered for both El Niño
warm phases and non El Niño seasons. We have found
that, compared with PCFA, the MLFA loadings in the
calculated factors can more effectively group the SST
and precipitation variables with interpretable physical
meanings. When the time lag is 0 or 1 month, the
November-February El Niño explains much of the precip-
itation signals over eastern Australia and Kalimantan, but
when the time lag is 2 or 3 months the same SST cannot

adequately explain the precipitation during January-May
over the two regions.

The rest of the paper is arranged as follows: section
Method and data describes the data and analysis methods,
Results are included in the third section, and Conclusions
and discussion are presented in the fourth section.

2 Method and data

The FA’s mathematical expression is that an N-dimensional
covariance or correlation matrix is decomposed into M
common factors of N-dimension and a diagonal matrix
consisting of specific variances, i.e.,

X
ij
¼ XiXj

� � ¼ XM
m¼1

limljm þ y idij þ Rij; i; j ¼ 1; 2; . . . ;N

ð1Þ
where ∑ij is the covariance matrix for climate anomaly data,
�h i stands for the ensemble mean operation, lim is the ith
variable Xi’s loading of mth factor, ψi is the specific
variance for Xi, δij is the Kronecker delta, and Rij is the
decomposition residual—see chapter 9 of Johnson and
Wichern (1992). For many covariance matrices, there exists
a sufficiently large Mo, but still less or equal to N, such that
Rij=0, when M = Mo However, the practically useful FA
retains only a few factors, i.e., M is small compared to the
number of variables N, and it is expected that these few
factors and the specific variances can accurately approxi-
mate the covariance matrix ∑ij with a very small residual
Rij. Then, the orthogonal factor model can allow the
variable decomposition into common factors in the follow-
ing way

Xi ¼
XMo

m¼1

Fmlim þ "i; i ¼ 1; 2; . . . ;N ; ð2Þ

where Fm is the mth common factor with the following
orthonormal properties,

FmFnh i ¼ dmn; "i"ih i ¼ "2
i

D E
dij; Fm"ih i ¼ 0: ð3Þ

Again, the practically useful FA requires a small number
of factors M. Thus, the decomposition Eq. (2) becomes

Xi ¼
XM
m¼1

Fmlimþ
XMo

m¼Mþ1

Fmlim þ "i; i ¼ 1; 2; . . . ;N : ð4Þ

The diagonal elements of the decomposition residual are
forced to be zero. Hence,

Rij ¼
XMo

m¼Mþ1

limljm�
XMo

m¼Mþ1

l2im ð5Þ
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y i ¼ "2i
� �þ XMo

m¼Mþ1

l2im ð6Þ

The sum of the factor loadings across the ith variable is
called the communality

h2i ¼
XM
m¼1

l2im; ð7Þ

which represents the proportion of the total variance that
the M retained factors can explain. The specific variances
ψi represent the proportion of the total variance for which
the M retained factors cannot explain. Thus, the relationship
between the specific variances ψi and communalities h2i ¼PM
m¼1

l2im is

X
ii
¼ h2i þ y i: ð8Þ

In cases where the correlation matrix is used, Eq. (7)
reduces to h2i þ y i ¼ 1, a property important for iterative
methods of FA.

Using FA to explore the El Niño signals and relationship
imbedded in SST and precipitation data requires data from
locations with strong El Niño signatures: SSTs from
tropical Pacific regions Niño 1+2, Niño 3, Niño 3.4, and
Niño 4, and precipitation from Kalimantan of Indonesia,
New South Wales and Queensland of Australia, and
California and Oregon of the United States. The SST data
are from the US Climate Prediction Center’s (CPC)
Monthly Atmospheric and SST Indices. The CPC monthly
SST anomaly data over Niño 1+2 (0–10°S, 90–80°W),
Niño 3 (5–5°S, 150–90°W), Niño 4 (5–5°S, 160–150°W),
and Niño 3.4 (5–5°S, 170–120°W) are from January 1950
to current (see Fig. 1 for the locations of the Niño regions).
Although the anomalies are based on the 1961–1990
climatology base period, the sum from 1961 to 1990 for
each month over Niño regions is not exactly zero, because
this dataset is the reconstructed SST (Climate Prediction
Center 2007).

We chose to use 50 years of data for our analysis from
January 1950 to December 1999, which corresponds to the
period of good precipitation data with missing data of only
5 months over Kalimantan. The five missing months were
August 1991, April 1992, May 1994, February 1995, and
August 1995, and the missing data are filled by the data
from the nearest grid box (5–10°S, 105–110°E) of Jakarta,
Indonesia for the corresponding months.

Monthly precipitation data are from the US National
Climatic Data Center’s Global Historical Climatology
Network (GHCN) 5°×5° gridded dataset. Again, the
anomaly data were used and the climatology period is
1961–1990. Although the GHCN gridded data spans from

1900 to current, we choose to use the high quality data of
few missing values over the five selected locations in the
period between 1950 and 1999. Precipitation data are
chosen from Indonesia, Australia, and the west coast of
the United States because these areas are known to exhibit
weather conditions related to El Niño that signifies tropical
Pacific SST fluctuations. For Indonesia, the Kalimantan
grid box (5°N–0, 110–115°E) of the island of Borneo is
chosen because this area is known for drought, late rain
months, and exacerbated bush and forest fires during an El
Niño event (National Drought Mitigation Center 1997). For
Australia, grid boxes in the southeastern state of New South
Wales (35–40°S, 145–150°E) and the northeastern state of
Queensland (20–25°S, 140–145°E) are selected. Both states
are affected by El Niño-induced late autumn rainy seasons.
The late rains exacerbate brush fires in New South Wales
and fires from Southeast Asia blanket Queensland with
smoky air. For the west coast of the United States, grid
boxes over California (40–35°N, 125–120°W) and Oregon
(45–40°N, 125–120°W) were chosen. Typical El Niño
effects for these areas include earlier, heavier rainy seasons
(in the winter months) for California. However, Oregon
responds in an uncertain way to the El Niño variations of
SST: often dry winters, but occasionally wet winters as
well. Figure 1 shows a global picture of the locations of the
chosen 5°×5° grid boxes and Niño regions. All together,
nine variables (four SST variables and five precipitation
variables) are chosen. On average, each El Niño episode
has 4 months showing strong SST signals (National
Weather Service Forecast Office 2004). Thus, the 10
episodes of El Niño during the 1950–1999 period have
40 months of data (Null 2004). Thus the data matrix for the
FA analysis has 9 columns representing the 9 random
variables and 40 rows representing 40 months of data. The
covariance matrix is of order 9×9, i.e., N=9 in eq. (1).

Both SST and precipitation data require pre-processing
before being used for FA. Data preprocessing include three
steps: filling in missing values, standardizing anomalies and
selecting years of strong El Niño effects, known as warm
episodes. All data preprocessing and subsequent analysis
are performed using SAS. Due to scale inhomogeneity in
different months, SST and precipitation anomaly data are
standardized before being used for FA. Since the SST data
are already anomalies, we only need to standardize the data
by dividing the anomalies standard derivation computed for
the period of 1961–1990. In order to calculate the
standardized precipitation anomalies, the precipitation data
need to subtract 1961–1990 climatology before being
divided by the 1961–1990 anomalies’ standard deviation.
The standardized data are closer to being stationary so that
the temporal mean calculation of the covariance matrix
makes sense approximately. The standard deviations for the
SST over the four Niño zones range from 0.48°C (Niño 4,
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April) to 1.36°C (Niño 1+2, June). The standard deviations
for the precipitations over the five grid boxes range from
12.6 mm (California, July) to 183.4 mm (Kalimantan,
January).

Our FA’s focus is to explore El Niño effects on land
precipitation in a few selected areas of strong El Niño
signals. Thus, between 1950 and 1999, only 19 years (10 El
Niño events) classified as Tropical Pacific warm phases are
included in the analysis, which are 1957–58, 1965–66,
1972–73 (strong El Niño), 1977–1978, 1982–1983 (strong
El Niño), 1987–1988, 1991–1992 (strong El Niño), 1992–
1993, 1994–1995, and 1997-1998 (strong El Niño). For
each event, the SST data from warm months are pooled for
analysis: November, December, January, and February. The
corresponding 4-month precipitation data for each event are
pooled according to 0, 1, 2, and 3-month lags.

The FACTOR procedure in SAS is used for both MLFA
and PCFA. Our FA’s goal is to reduce the SST and
precipitation variables over the spatial regions into a few
FA factors, which may be physically interpretable. It is
often that these factors tend to have one-sign loadings or
even close-to-uniform loading for the first factors, which
may be interpreted as the weighted spatial average that
explains the most variance. However, physical interpreta-
tions often require interpretable observations of variables.
Thus, a rigid rotation of the factors often needs to be done
to make the factors readily interpretable. Our rotation is
done by the varimax method, which rigidly rotates the M
factors to maximize the variances of the square of the ratio

between the factor loadings and the square root of the
corresponding communalities (Johnson and Wichern 1992).
After the rotation, the first factor does not usually
correspond to the largest variance. Instead, rotated factors
tend to group a few related factor loadings into each factor.
The grouping shows large loadings for one or several
variables and very small loadings of other variables.
Therefore, the rotated factors become more readily inter-
pretable physically. The varimax rotation method has been
commonly used in climate research (Smith et al. 1998).

The SAS FACTOR procedures for MLFA and PCFA
both yield ordered eigenvalues l1 � l2 � . . . � lN � 0
and corresponding factors. The eigenvalues for the corre-
lation matrix are the same for both methods, but factors are
different. Usually MLFA factors lead to smaller elements in
the residual matrix and are more accurate representations of
off-diagonal elements of a correlation matrix. Thus, MLFA
may yield improved potential predictability in a linear
statistical climate forecasting that is based on a regres-
sion analysis and correlations between predictors and
predictands.

Several criteria exist for selecting a sufficient number of
eigenvalues for both MLFA and PCFA. For PCFA, the SAS
default MINEIGEN=1 is used. This is also known as the
Kaiser criterion. An eigenvalue and its corresponding factor
are retained if the corresponding eigenvalue is larger than
or equal to 1. The reasoning is that an eigenvalue should be
able to extract at least as much variability as one of the
original variables. For MLFA, the SAS default PROPOR-

Fig. 1 Location of the five 5° × 5° grid boxes for precipitation data and the four Niño regions for SST data
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TION=1 is used. Eigenvalues are retained until their
cumulative percentage of variance explanation exceeds
100%. Due to its maximization of the likelihood function,
sometimes negative values for the diagonal entries of ψ are
obtained. These values are unacceptable for the ML
iterations and are known as Heywood cases. When this
occurs, the SAS HEYWOOD option is employed to reset
out of bounds communalities to 1. Both MLFA and PCFA
are conducted to see whether the factor loadings would
reveal any underlying climate patterns.

For the PCFA, the explicit relationship between EOFs
and factor loadings is as follows:

lim ¼
ffiffiffiffiffiffi
lm

p
eim; ð9Þ

where eim is the ith component (i.e., location i) of the mth

normalized EOF (i.e., mode m) with
PN
i¼1

e2im ¼ 1. Because

the MLFA may yield different factors from the PCFA, the
MLFA factor loadings usually do not have the same
relationship with EOFs shown in eq. (9). The differences
between the MLFA and PCFA factors will be numerically
demonstrated in the next section.

3 Results

In this section, we present and interpret the results of factor
loadings for the SST over the four Niño regions and the
precipitation over five land areas: eastern Australia,
Kalimantan of Indonesia, and the western United States. It
is generally regarded that the above SST and precipitation
are strongly correlated with precipitation lagged behind the
SST signals. Four time lags are considered here: 0, 1, 2, and
3 months. Our analysis shows that the factor loadings of
our analysis for the El Niño warm phases clearly group the
SST and precipitation parameters. This information can be
useful for climate predictions.

For the zero time lag, the correlation matrix is shown in
Table 1. The MLFA for the correlation matrix retains five
factors and the loadings of the first four rotated factors are
in Table 2. The loadings of factor 5 are all very small and
have no apparent physical meaning.

Table 2 clearly indicates that the SSTs of the eastern
tropical Pacific are grouped together to reflect the strong El
Niño signal (see factor 1), while the Niño 4’s SST is
influenced by the relatively stable western Pacific warm
pool (WPWP) and has shown little El Niño signal, which is
depicted in factor 4. Eastern Australia’s drought signal in an
El Niño warm phase is clear and is well reflected in factor
2’s loadings of 0.71 for the New South Wales grid box and
0.95 for the Queensland grid box, respectively. However,
the El Niño drought signal over the Kalimantan grid box is
not as strong (factor loading 0.44) because the precipitation

over this region is more influenced by monsoon signals,
which in turn is predominantly influenced by WPWP. The
opposite signs of SST loadings with precipitation loadings
in factor 2 reflect the drought occurrence of eastern
Australia and eastern Indonesia. The same sign of SST
loadings with the precipitation loadings reflect the United
States west coast’s wet phase locking with the eastern
tropical Pacific’s warming phase. The zero loading of Niño
4’s SST in factor 3 implies that Niño 4’s warm phase has
little to do with the wet anomalies of the west coast of the
United States. The large loading of Niño 4’s SST in factor 4
indicates that in the El Niño and precipitation analysis,
Niño 4 stands out as an independent predictor. The above
analyses imply that the SST signal of the eastern tropical
Pacific has precipitation teleconnections to the north
reaching the west coast of the United States and to the
southwest reaching Australia. However, the western tropi-
cal Pacific SST signal during the El Niño warm phase has
little or no connection to the precipitation over the west
coast of North America. The main reason is likely that the
strength of the El Niño signal is in the eastern tropical
Pacific, which is associated with a slightly inclined east-
west oscillation of atmospheric pressure over the southern
tropical Pacific.

Communalities shown in Table 2 are based on five
factors and are invariant under the varimax rotation. The
communalities indicate that the variances of the SSTs of
Niño 1+2, Niño 3, and Niño 3.4, and the variances of
Queensland and California precipitations are 100%
explained by the five factors, while the variance of
Oregon’s precipitation is only explained to 28%. This
corresponds to 33% explanation for Kalimantan and 65%
for New South Wales. It is surprising that the variance of
Niño 4 is only explained to 60%. These results provide very
important information for monthly precipitation predictions
by a statistical method: the necessity of using multiple
predictors for a statistical prediction method (Shen et al.
2001; Lau et al. 2002). The current MLFA results strongly
indicate that the forecasting of Oregon’s monthly precipi-
tation should also consider other predictors besides SST,
and that Kalimantan’s precipitation is not only influenced
by the SSTs of the Niño regions, but also by the monsoon
dynamics powered by the SSTs of the Indian Ocean and
WPWP.

The MLFA’s residuals are almost zero except for
Oregon’s precipitation which has non-zero residuals
corresponding to Niño 4’s SST, New South Wales’
precipitation, and Kalimantan’s precipitation. The possible
reason is that Oregon’s precipitation is heavily influenced
by local microclimate and is sometimes de-phased from El
Niño signals. In particular, Oregon’s rugged and diverse
terrain yields large differences in temperature (from –48°C
to +48°C) and precipitation (average annual rainfall
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between 203 mm and 5,080 mm; National Oceanic and
Atmospheric Administration 1986).

The PCFA retains only three factors according to the
Kaiser criterion and it groups Niño 4’s SST together with
the SST signals of the other three eastern tropical Pacific
regions in factor 1, which is different from the MLFA result
that makes Niño 4’s SST factor loading stand alone in
factor 4. The groupings for precipitation are the same as
MLFA. The residuals of PCFA are clearly larger than that
those of MLFA even if five factors are retained. Thus, if
one uses FA for climate predictions, it is likely that MLFA
will render higher potential predictability.

With a 1-month time lag, the MLFA results are similar to
those of the 0-month time lag, and physical implications are
the same as those concluded for the 0-month time lag
analysis. Niño 4’s SST loading again stands out alone in
factor 4. The 1-month lag results have practical values in
statistical prediction of precipitation from SST by using
various kinds of methods. In particular, the MLFA results
may be used for the recently developed CEC (canonical
ensemble correlation) method for monthly and seasonal

predictions, since the CEC method can divide the predictor
into several critical sub-regions and thus multiple predictors
are possible (Shen et al. 2001; Lau et al. 2002). Conse-
quently, due to the consideration of atmospheric circulation
and climate dynamics, the CEC prediction is not a linear
method, rather it is a quasi-linear method, i.e., linear only
for an ensemble member.

The 2-month lag results have minor differences from
those of 0-month and 1-month lags. The MLFA retains five
factors and their loadings are shown in Table 3.

Table 3 indicates that the SST and precipitation factor
groupings are more obvious than those shown in Table 2.
The Niño 1+2, Niño 3 and Niño 3.4 SST loadings are very
big in factor 1 (over .92), and the Niño 4’s SST loading is
also big (.96) in factor 4. The precipitation loadings are also
large for Queensland (.98) in factor 2 and California (.95) in
factor 3. These results indicate high potential predictability
of precipitation of the two regions when using SST as a
predictor. Kalimantan’s precipitation loading is now in
factor 3, rather than factor 2 as in the 0- and 1-month time
lags. This seemingly surprising result from the point of

Table 2 MLFA rotated factor loadings and communality for 0-month time lag

Factor 1 Factor 2 Factor 3 Factor 4 Communality

Niño 1+2 .92a –.21 .20 .07 1.00b

Niño3 .95a –.21 .15 .15 1.00b

Niño 3.4 .87a –.21 .12 .37 1.00b

Niño 4 .22 –.12 .00 .74 .61b

New S. Wales –.26.27 .71a .26 .00 .65b

Queensland .09 .95a .10 –.26 1.00b

Kalimantan –.20 .44a –.29 .01 .33
California .14 .12 .97a .10 1.00b

Oregon .09 .02 .51a –.04 .28

a Numbers in the same column of factors are classified as a group according to relative importance of the factor loadings
b Indicates a significant explanation of variances by the factors

Table 1 Correlation matrix of zero lag SST and precipitation during the El Niño warm phases

Correlation matrix SST SST SST SST PCPN PCPN PCPN PCPN PCPN
Niño 1+2 Niño 3 Niño 3.4 Niño 4 N S Wales Queensland Kalimantan California Oregon

Niño 1+2 1 .94 .84 .28 –.35 –.26 –.35 .33 .16
Niño 3 .94 1 .96 .35 –.37 –.32 –.33 .27 .16
Niño 3.4 .84 .96 1 .49 –.35 –.38 –.29 .22 .14
Niño 4 .28 .35 .49 1 –.17 –.32 –.01 .09 .06
N S Wales –.35 –.37 –.35 –.17 1 .73 .27 .30 –.06
Queensland –.26 –.32 –.38 –.32 .73 1 .41 .18 .07
Kalimantan –.35 –.33 –.29 –.01 .27 .41 1 –.26 .04
California .33 .27 .22 .09 .30 .18 –.26 1 .51
Oregon .16 .16 .14 .06 –.06 .07 .04 .51 1

Status of El Niño year was based on consensus of four different climate centers: WRCC, CDC, CPC, and MEI
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view of El Niño dynamics can be explained by WPWP and
Australian-Indian monsoon dynamics. The ENSO signal
shows clearly in the Indonesia’s precipitation in October
and November, but diminishes from December to February
(Giannini et al. 2007). The January–April precipitation over
Indonesia is predominantly controlled by the Australian-
Indian monsoon (Haylock and McBride 2001; Aldrian et al.
2003). The 2-month lags include precipitation in the
months of March and April. The negative sign of
Kalimantan’s loading in factor 3 is the reflection of the
out-phase locking between ENSO and Australian-Indian
monsoon signals.

Oregon’s precipitation loading is distributed between
factors 3 and 5. This means that the precipitation is not
strongly locked with El Niño signal at a 2-month lag. As a
matter of fact, with the 2-month time lag the Oregon’s
precipitation has a negative correlation with Niño 4 SST
and has very weak correlations with Niño 3 and Niño 3.4’s
SSTs. However, it has a relatively strong correlation with
Niño 1+2’s SST. This may explain why Niño 1+2 and
Oregon’s loadings appear together in factor 5. Despite this
correlation, the tropical SST may not be a good predictor
for the Oregon precipitation during the El Niño warm
phases when the 2-month time lag is considered.

The communality in Table 3 indicate that the variances
of all the SSTs are completely explained by the five factors,
and the variances of Queensland and California precipita-
tions are also completely explained by the five factors.
However, the variance of Kalimantan’s precipitation is only
explained to 31%, which corresponds to 35% for Oregon
and 70% for New South Wales. These results indicate that
the forecasting of Kalimantan and Oregon’s monthly
precipitation should also consider other predictors besides
the SSTs of the Niño regions. Microclimate such as wind,
influences Oregon’s precipitation in a significant way.
Kalimantan’s precipitation in March and April is predom-
inantly influenced by Australian-Indian monsoons.

The PCFA this time does not tightly group Niño 4’s SST
together with other SSTs, compared to the cases of 0-month
and 1-month time lags; rather, it distributes Niño 4’s SST
loadings into two factors: factors 1 and 4. It groups the
Kalimantan and California precipitation more tightly than
the MLFA.

The 3-month time lag MLFA results are similar to those
of the 2-month time lag. The exceptions are that Niño 4’s
loading (0.96) is now more dominantly in factor 4,
California’s precipitation loading (0.97) dominates factor
3, and that Kalimantan’s precipitation loading is never
strong (–0.42) and only appears in factor 3. These results
further imply that the tropical Pacific SST is a good
predictor for California precipitation during the El Niño
warm phases, but that it is not a good predictor for
Kalimantan and Oregon precipitation when 2- or 3-month
time lags are considered, if MLFA factors are used.

The 3-month time lag PCFA, however, has given quite
different loadings for Kalimantan and Oregon precipita-
tions: Kalimantan’s loading is 0.97 in factor 4 and Oregon’s
loading is 0.91 in factor 3. Despite these large loadings, we
feel that there is no physical base to support the
predictability of the SST to precipitations over the two
regions with a 3-month time lag. We thus tend to conclude
that the large loadings are due to statistical artifacts rather
than physical reality. Our checking with the primitive
correlation matrix between the tropical Pacific SST anoma-
lies and the precipitation confirms weak correlation.
Therefore, the FA results need to be analyzed in conjunc-
tion with physical models and atmospheric circulation
patterns. Simple statistical analysis without considering
climate dynamics may be misleading.

We also conducted an FA for the non El Niño months:
June–September SST and July–October precipitation. The
SST and precipitation anomaly data of these 4 months from
1950 to 1999 are used. The SSTs of Niño 1+2 and Niño 3
have high correlations (0.85) because these two regions are

Table 3 MLFA rotated factor loadings and communality for 2-month time lag

Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Communality

Niño 1+2 .92a –.01 .13 .06 .38a 1.00b

Niño 3 .98a .02 .13 .10 .05 1.00b

Niño 3.4 .94a .00 .15 .25 –.15 .97b

Niño 4 .26 –.06 –.02 .96a –.06 1.00b

New S. Wales –.10 .82a .11 –.08 –.08 .70b

Queensland .12 .98a .00 .02 .01 .97b

Kalimantan –.07 –.03 –.54a .03 .03 .31
California .13 .13 .95a .10 .20 1.00b

Oregon .15 –.13 .39a –.13 .38a .35

a Numbers in the same column of factors are classified as a group according to relative importance of the factor loadings
b Indicates a significant explanation of variances by the factors

Theor Appl Climatol



next to each other. The other SST and precipitation
correlations are inconsistent and small. Despite these weak
correlations, the SSTs still have considerable potential
predictability for the precipitations over the investigated
regions, since June–September is after the spring-barrier
period of March–May. The rotated MLFA groups Niño 4
and Niño 3.4 in factor 1, Niño 1+2 and Niño 3 in factor 2,
New South Wales and Queensland in factor 3, and Oregon
and California in factor 4. Kalimantan’s precipitation is not
obviously grouped with any other variables, although it is
weakly associated with Niño 4 and Niño 3.4’s SST. These
imply that the SSTs of these tropical Pacific regions have
potential predictability for precipitations over the east coast of
Australia and the west coast of United States. Kalimantan’s
precipitation is not controlled by these SSTs. As a matter of
fact, it is predominantly controlled by the WPWP and the
Indian Ocean’s SST, i.e., the monsoon dynamics.

The un-rotated MLFA groups the factor loadings in the
similar way, because the rotation transformation matrix is
approximately an identity matrix after a re-arrangement of
the column vectors. Namely, each column of the rotation
matrix has a dominant element close to 1, and the other
elements close to 0.

Both rotated and un-rotated PCFA loadings group all the
four SSTs together in factor 1, Australia’s east coast
precipitations in factor 2, and the United States’ west coast
precipitations in factor 3. Kalimantan’s precipitation does
not stand out. The rotation matrix is approximately an
identity matrix without rearrangement of columns. From a
prediction point of view, the MLFA provides improved
potential predictability since it distinguishes between SSTs
from the eastern tropical Pacific and the western tropical
Pacific.

We have also examined factor scores, which can be
obtained for each factor for each month in the data
matrix. Factor scores represent the relative importance of
the month with respect to their overall factor’s interpre-
tation. Larger positive scores indicate a strong corre-
spondence to the factor’s interpretation, while larger
negative scores indicate a weak correspondence. Our
factor scores for month t are calculated by using the
weighted least-square method, bft ¼ L0Ψ�1L

� ��1
L0Ψ�1Xt,

where L is the N×M factor loading matrix, Ψ is the N×N
diagonal specific variance matrix, Xt the N×1 anomaly
data vector for month t, and the superscript prime
indicates the matrix transpose operation.

As discussed earlier, factor 1 represents a strong El Niño
signal in the eastern tropical Pacific; the top three highest
scores for factor 1 of the zero-lag MLFA analysis are
December 1997, November 1997, and January 1998 (2.41,
2.20, and 1.97 respectively). These 3 months correspond to
the strong 1997–1998 El Niño event. The 1982–1983 El
Niño also corresponds to higher scores of factor 1.

4 Conclusions and discussion

Factor analysis is an effective statistical procedure that
provides a way to group variables into factors, and hence
can represent the many original variables with a few
factors. We have introduced the MLFA to analyze the El
Niño signals in precipitation. The El Niño signals are
signified by the SSTs in the four Niño regions over the
Tropical Pacific: Niño 1+2, Niño 3, Niño 3.4, and Niño
4. The precipitation data are analyzed for the east coast
of Australia, Kalimantan island of Indonesia, and the
west coast of the United States. Our MLFA and PCFA
are performed by SAS programs. We have shown that
FA is indeed an effective tool for climate data analysis,
in particular for the analysis of covariance or correlation
matrices. FA can subtly group meteorologically connected
variables together and help raise the potential predictability
of predictand variables. Our analysis of the SST and
precipitation data concludes the following: for El Niño
signals, the rotated MLFA factor loadings group the SST
and precipitation variables with interpretable physical
meanings. When the time lag is 0 or 1 month, the
November–February El Niño explains much of the precip-
itation signals over east Australia and Kalimantan, but
when the time lag is 2 or 3 months, the same SST cannot
adequately explain the precipitation over the two regions,
because Australia-Indian monsoon dynamics plays domi-
nant role for this season. The tropical Pacific’s SSTs always
have high potential predictability for the precipitation over
the west coast of the United States. PCFA is also
investigated, and its results are compared with MLFA.
The comparison indicates that MLFA can better group SST
predictors for precipitation forecasting. The residuals of
MLFA are always smaller than the PCFA. Thus, MLFA
may have the potential to become a useful tool for raising
the forecasting skill of precipitation from SST predictors.

MLFA has application limitations. One of them is that
the MLFA factors are not necessarily orthogonal. This gives
the MLFA flexibility and makes it very powerful in
diagnostic analysis, but also limits its applications when
orthogonality is needed for mathematics operations. Of
course, PCFA factors are always orthogonal as long as the
rotation is rigid, although an oblique rotation can also be
made for factors obtained by any FA calculation method
(Johnson and Wichern 1992). The factors shown in Tables 2
and 3 are not orthogonal.
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