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ABSTRACT

An optimal estimation technique is presented to estimate spherical harmonic coefficients. This technique is
based on the minimization of the mean square error. This optimal estimation technique consists of computing
optimal weights for a given network of sampling points. Empirical orthogonal functions (EOFs) are an essential
ingredient in formulating the estimation technique of the field of which the second-moment statistics are non-
uniform over the sphere. The EOFs are computed using the United Kingdom dataset of global gridded temper-
atures based on station data. The utility of the technique is further demonstrated by computing a set of spherical
harmonic coefficients from the 100-yr long surface temperature fluctuations of the United Kingdom dataset.
Next, the validity of the mean-square error formulas is tested by actually calculating an ensemble average of
mean-square estimation error. Finally, the technique is extended to estimate the amplitudes of the EOFs.

1. Introduction

The spherical harmonic functions are a natural basis
for a global field variable on the surface of the earth.
This basis set and its applications to general circulation
models are very common (for example, Eliasen et al.
1970; Bourke 1974; Bourke et al. 1977; McAvaney et
al. 1978; Pitcher et al. 1983; Ramanathan et al. 1983;
Williamson and Swarztrauber 1984). As its use is be-
coming more commonplace, much theoretical work has
been conducted on the sampling bias and on efficient
algorithms for computing the spherical harmonic func-
tions and expansion coefficients (Ellsaesser 1966;
Orszag 1970; Bourke 1974; McAvaney et al. 1978).
These studies mainly deal with identifying a suitable
quadrature method and the associated quadrature points
and weights.

For historical reasons, however, we do not have the
freedom of choosing quadrature points. Instead, we
have to rely on whatever data are available on a very
sparse, irregular network of sampling points. This in-
troduces potentially significant sampling error in com-
puting the spherical harmonic components, the global
average being one component, of a global field and has
been a concern for a long time. This also raises a ques-

Corresponding author address: Dr. Kwang-Yul Kim, Climate Sys-
tem Research Program, College of Geosciences and Maritime Stud-
ies, Texas A&M University, College Station, TX 77843-3150.

© 1996 American Meteorological Society

tion as to the efficiency of an estimator. Recent studies
on estimating the global average temperature include
Vinnikov et al. (1990), Trenberth and Olson (1992),
North et al. (1992), Hardin and Upson (1993), Mad-
den et al. (1993), and Shen et al. (1994). In this paper,
we examine two questions. 1) How large is the sam-
pling error due to an imperfect sampling network in
estimating the spherical harmonic coefficients? 2) How
do we formulate an estimation technique that mini-
mizes the sampling error?

To minimize the estimation error for a given number
of gauges, we can proceed in two distinct directions:
1) We find the best gauge locations or 2) we find the
best averaging scheme for fixed gauge locations. The
former approach for estimating the global average tem-
perature includes studies by North et al. (1992) and
Hardin et al. (1992). In this study, we take the latter
approach.

Two key concepts of the linear estimation—sampling
theory to be developed here are the optimal weighting
and the minimum mean-square error. For a given net-
work, we will formulate a weighted estimator for a
spherical harmonic component, which minimizes the
error squared in an ensemble sense. The idea of optimal
weighting was introduced earlier by Kagan (1979) and
Bell (1982, 1986) and was employed recently by Vin-
nikov et al. (1990), North et al. (1992), Hardin and
Upson (1993), and Shen et al. (1994, 1996) among
others. The optimal weights are determined such that
the error functional is minimized.
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This estimation—sampling problem depends cru-
cially upon the covariance structure of the underlying
fluctuations of the field variable to be estimated. The
magnitude and the length scale of the covariance func-
tion should properly be integrated into formulating a
set of optimal weights for a network of sampling sta-
tions. An essential ingredient in the present study is the
spectral representation of the covariance field (Kim and
North 1991, 1992, 1993). In this spectral approach, the
covariance structure is represented in terms of empiri-
cal orthogonal functions (EOFs). These EOFs, by def-
inition, take into account the second-moment statistics
(variance and covariance) of any nonhomogenous
field. This approach enables us to remove simplifying
assumptions such as the homogeneity and isotropy of
the covariance field (Vinnikov et al. 1990; Shen et al.
1996). The EOFs used in this study are computed
based on the 100-yr (1890-1990) United Kingdom
dataset (Jones et al. 1986a,b; Woodruff et al. 1987).
Details on these EOFs are found in Kim and North
(1993) and will not be repeated here.
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FIG. 1. Percent sampling error squared for four regular networks
(20 X 10, 10 X 6, 6 X 4, 4 X 4) and for the Angell-Korshover
network: (a) optimal weighting scheme, (b) uniform weighting
scheme. The curve for the 20 X 10 case in (a) is right on the abscissa.
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FIG. 2. Percent sampling error squared for four irregular networks
(200, 63, 24, 16 points) and for the Angell-Korshover network: (a)
optimal weighting scheme, (b) uniform weighting scheme. An irreg-
ular network is generated by randomly selecting sampling points with
a minimum distance constraint of about 7°.

Finally, the spectral representation of the EOFs al-
lows us to apply the present formulation to the esti-
mation of the EOF amplitude. We will present the for-
mulas for the optimal weights and the ensemble aver-
age of error squared for the amplitude of EOFs.

2. Methods
a. Weighted estimator

Expansion coefficients of a global variable, say sur-
face temperature anomalies, in terms of the spherical
harmonic basis set are determined by

Tim(2) =f4 T(r, )Y, (r)dQ, (1)

where r is a radial unit vector scaled by the earth’s
radius representing a point on the sphere, dQ2 is the
surface area element, 47 is total solid angle, 7(r, t) is
a time-dependent field variable, 7),(t) is the time-
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F1G. 3. Percent sampling error squared for four Gaussian networks
(20 X 10, 10 X 6, 6 X 4,4 X 4). The Gaussian gauges are at Gaussian
points in the meridional direction and are uniform in the zonal direc-
tion. The weights are Gaussian weights scaled such that = w; = 4.
Optimal weighting on the Angell-Korshover network is plotted for
a comparison purpose.

dependent expansion coefficient, and Y, (r) is the
spherical harmonic function with order / and rank m.
See Arfken (1985) for details on the spherical har-
monic functions. Then the field variable is expressed
as

!

Z Tlm(t)Ylm(r)'

m=—1

T(r,t) =3, (2)
=0

In practice, the maximum order of expansion is set to

a finite value L.

Normally, (1) is evaluated using a Gaussian quad-
rature method (e.g., Ellsaesser 1966; Orszag 1970;
Bourke 1974; McAvaney et al. 1978). To use the
Gaussian quadrature method, however, we should first
interpolate the field data to the quadrature points. Look-
ing back on the history of sampling stations, most had
been purposely established in or near cities, agricultural
sites, and airports. Certainly, the station distribution is
not ideal for research purposes. The estimation of the
spherical harmonic coefficients is affected by the quad-
rature method used and, in particular, by interpolation
error. Here we explore a different approach based on
the minimization of the mean-square error of estima-
tion. Given sampling locations, this technique utilizes
the global covariance information to calculate an op-
timal set of weights for averaging given samples.

Let us consider an estimate, T}, in the form

Nnel
Tm(t) = X wT(x;, )Y F (1)), (3)
j=1
where
Nnel
w; = 4. 4)

1

“~.
1)
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Equation (3) is a quadrature form of (1) for given
quadrature points {r;| j = 1, - - -, Nae } . The quadrature
weights w; will be determined based on the minimiza-
tion of mean-square error. Equation (3) is recast as

Tlm(t) = L Wnel(r)T(rv t)Y;fn(r)d(L (5)

where

Nnet

wnet(r) = 2 Wjé(r - r_;)'

j=1

(6)

From (2) and (5), we can derive an expression for
the aliasing of a spectral component. Namely,

Tim()

I

f Waed (DY 1(F) X Ty (8)Y e d
4 ,

U',m
Nnel

2 [ 2 WY (0 Yem (X1 T (1)

I'.m

Jj=1

Z Alm;l’m'Tl’m' ( t) .

'
'm

I

(7)

The matrix A is called the aliasing matrix and its
structure shows how different spectral components
contribute to the aliasing of the estimate 7),,. For the
anomaly fields, however, (T},) = 0 and hence (T},,)
= 0, where ( ) represents an ensemble average.
The anomaly is with respect to the ensemble average
and an ensemble average may be taken as an average
over a long time interval for practical reasons.
Aliasing and bias, therefore, is not an issue for the
anomaly fields. For (T},,) # 0, as in the case of the
observed surface temperature field with a linear
trend, an optimal estimator is in general aliased and
biased unless

Nnet

Z WjY;fn(rj)Yt'm'(rj) = bubpm - (8)
j=1
This constraint is a quadrature representation of
f Y i (0) Y ()AL = 8y s (9)
47

where each weight is the areal element associa-
ted with a quadrature point. Although (4) does
not guarantee (8) to hold, it is introduced to
properly constrain this integration. Of course,
the mean-square error would be smaller at the
risk of unconstrained alias if this condition is re-
moved.

b. Minimum mean-square error

The mean-squared error of the estimator T),,(¢) is
defined as
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F1G. 4. The 100-yr time series of Ty, component from the United
Kingdom dataset (Jones et al. 1986a,b). The estimation technique is
based on a 6 X 4 regular network. Employed weighting schemes are
(a) optimal, (b) uniform, and (c) Gaussian. The respective percent
sampling errors squared are 5%, 18%, and 5%.

c. Optimal estimate for EOF amplitude

The formulation derived above is easily modified for
the estimation of the EOF amplitude. We define the
amplitude of EOF, ¢,(r), as

JOURNAL OF CLIMATE
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A(1) =f T(r,1)¢¥(r)dQ, (18)
an
where, as in Kim and North (1993),
(19)

¢n(r) = Z ¢§:¢)Y1m(r)

The { ¢,(r)} of which the amplitude is to be estimated
is not necessarily the same set of EOFs as in the for-
mulation of the optimal estimator. As before, we define
a weighted estimate of A, () as

Nnet

A1) = X wT(r;, )a(xy).

Jj=1

(20)

After similar algebraic manipulations as above, we
obtain

2 N (x;) b, () 2 widb (1) @, (r) — A
] k
= Z )\llllr(ll)!/ll(rj)d)n(rj) fOf j = 1’ Ty Nneh
I .

> w; =4,

j

(21)

where ¢ " is the projection of ,(r) on ¢,(r). A scaled
minimum mean-square error is

(Do > MY = 2w () da(rp)|?

o7 SN S
!

For the special case of ¢(r) = ¢(r),
> N‘/fl(rj)ll’n(rj)_z Wi (r ), (1) — A
! k

= n(lfi(rj) for j = 1a Tty Nne(’ (23)
and the minimum mean-square error is

o
(D 1 25 wpice)

A
+ E;’ [ wan(r) . (r)]2.  (24)
1 Mg

3. Results and discussion

Throughout the discussion, percent sampling error
squared is used as a measure of the accuracy of an
estimation technique. The percent sampling error
squared is defined by €2,/(o%, + €2,) X 100%. When
€* is much bigger than o2, the percent sampling error
squared approaches 100%, while it becomes zero if €
is much smaller than o>.

Figure 1 shows the percent sampling error squared
for four different regular networks and for the Angell—
Korshover (A-K) network (Angell and Korshover
1983). For the uniform weighting case, we simply use
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there are certain modes for which accuracy of estima-
tion would not improve with the number of stations. In
our example, estimate improvement is very sluggish for
all the zero-rank modes. This peculiar behavior is due
to the neglect of areal weighting. With a proper account
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FiG. 5. The 100-yr time series of Ty, component from the United
Kingdom dataset. The estimation technique is based on a 6 X 4 reg-
ular network. Employed weighting schemes are (a) optimal, (b) uni-
form, and (c) Gaussian. The respective percent sampling errors
squared are 42%, 82%, and 85%.

a constant value of w; = 47/N,,,. The optimal weight-
ing scheme far excels the uniform weighting scheme.
As the number of stations exceeds 200, percent sam-
pling error squared is almost zero for the optimal
weighting scheme. For the uniform case, however,
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FIG. 6. The 100-yr time series of Ty component from the United
Kingdom dataset. The estimation technique is based on a 20 X 10
regular network. Employed weighting schemes are (a) optimal, (b)
uniform, and (c) Gaussian. The respective percent sampling errors
squared are 0%, 5%, and 0%.
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for the areal representation of each quadrature point, as
in the Gaussian method below, the estimate should con-
verge to an accurate value with a large number of sta-
tions. The optimization of the sampling positions (such
as the A—K network) has little effect in the present
estimation technique.

We also investigated the percent sampling error for
irregular networks (Fig. 2). An irregular network was
generated by randomly selecting sampling points with
a constraint that the minimum distance with other
points is about 7°. If the stations are very close to each
other, the matrix problem (15) would be nearly sin-
gular and result in large computational error. For a
small number of sampling stations, an irregular net-
work performs better than a regular network for the
optimal weighting scheme. For such a sparse network,
estimation error is large even for the optimal estimator
and the fortuitous cancellation of error due to random
selection of stations may be more important. As the
number of stations exceeds about 50, an irregular net-
work becomes inferior to a regular network. For a
dense network one may need to thoroughly cover the
observational field without a large gap. Even with 200
sampling stations, percent sampling error squared for
an optimal weighting scheme on an irregular network
does not approach zero for some modes. For the uni-
form weighting scheme, however, irregular networks
eliminate the estimation inaccuracy associated with
zero-rank modes in Fig. 1. These results are robust as
shown in the tables below.

Next we consider Gaussian networks. The Gaussian
network gauges are at Gaussian points in the meridio-
nal direction and are uniformly distributed in the zonal
direction. The weights are a set of properly scaled
Gaussian weights, which is a function only of latitude.
This might be the most popular scheme for computing
spherical harmonic coefficients. As shown in Fig. 3,
the Gaussian scheme surpasses in performance the uni-
form weighting scheme because the former accounts
for the areal weighting by using an independent vari-
able x (sine of latitude) in its formulation. Also, it is
an optimal estimation method in a sense that the result
is exact for a polynomial up to a certain degree. It is
slightly inferior to the optimal weighting scheme. The
Gaussian scheme was not customized for the particular
variable we are considering. The Gaussian scheme,
however, is difficult to implement for an irregular net-
work.

As a demonstration of practical applicability, we es-
timated the spherical harmonic coefficients from the
100-yr (1890-1990) United Kingdom dataset. It is a
global surface temperature data gridded on a 72 X 36
uniform array. The surface temperatures over land are
from Jones et al. (1986a,b), and those over the ocean
are from the Comprehensive Ocean—Atmosphere Data
Set (‘Woodruff et al. 1987). Then we calculated the
percent sampling error squared based on the assump-
tion that we can calculate true coefficients from a dense
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FiG. 7. The 100-yr time series of Tg component from the United
Kingdom dataset. The estimation technique is based on a 20 X 10
regular network. Employed weighting schemes are (a) optimal, (b)
uniform, and (c) Gaussian. The respective percent sampling errors
squared are 0%, 83%, and 0%.

(72 X 36) array. Tables 1 and 2 summarize the results
of the experiments. The optimal weighting scheme is
consistently better than the uniform and Gaussian
weighting schemes for both the regular networks (Ta-
ble 1) and irregular networks (Table 2). The percent
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FiG. 8. Percent sampling error squared for four regular networks
(20 X 10, 10 X 6, 6 X 4, 4 X 4) and for the Angell-Korshover
network. The employed weighting schemes are (a) optimal, (b) uni-
form, and (c¢) Gaussian.

sampling error squared obtained from the observation
data is very consistent with the theoretical estimation
(values in parenthesis).

To better interpret the tables, we plotted a few se-
lected time series. Figures 4 and 5 show, respectively,
the time series of T and T on a regular 6 X 4 grid.

Even with such a sparse network, the optimal weighting
scheme does an excellent job. The Gaussian weighting
scheme is reasonable for low mode numbers (Fig. 4)
but gradually deteriorates with the mode number (Fig.
5). Figures 6 and 7 are the same time series but for a
regular 20 X 10 grid. With this large number of gauges,
both the optimal and Gaussian weighting schemes do
superior jobs. But the uniform weighting scheme does
a poor job for certain modes as exemplified in Fig. 7.

Finally, we applied the estimation techniques to cal-
culating the EOF amplitudes. Figure 8 shows the per-
cent sampling error squared for regular networks.
Again, the optimal weighting scheme performs best.
The uniform weighting scheme introduces large sam-
pling error. The Gaussian scheme improves as the num-
ber of gauges is increased but is inferior to the optimal
scheme. As shown in Fig. 9, sampling error for the EOF
amplitude is not very sensitive to the network config-
uration. The performance of the estimation schemes at
irregular network is comparable to that at regular net-
work.
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F1G. 9. Percent sampling error squared for four irregular networks
(200, 63, 24, 16 points) and for the Angell-Korshover network: (a)
optimal weighting scheme, (b) uniform weighting scheme.
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4. Summary and concluding remarks

In this study, we implemented an optimal estimation
technique for the spherical harmonic coefficients from
a network of gauges of certain configuration. The
method is based on the variational principle of mini-
mizing least-square error and constitutes computing a
set of optimal weights for a given network of gauges.
The optimal weights in turn are based on the detailed
covariance structure of the field to be estimated, which
is represented in terms of EOFs. The optimal estimation
technique was tested and was compared with a uniform
weighting scheme and a Gaussian weighting scheme to
assess the performance of the developed estimation
technique. A summary of the results follows.

1) Asexpected, percent sampling error squared gen-
erally decreases with the number of sampling gauges
for all the estimation techniques we considered. It tends
to increase with the mode number. For an optimal
weighting scheme, however, the growth rate of percent
sampling error increases slowly with the mode number.

2) The optimal weighting scheme is consistently
better than a uniform weighting scheme or a Gaussian
scheme. For a small number of sampling gauges
(<50), regular and irregular network configurations
result in similar performances in an optimal weighting
technique. For a large number of stations, a regular
network performs better.

3) For a uniform weighting scheme, use of regular
networks results in significant sampling errors for cer-
tain modes. The performance of the estimation tech-
nique improves little for these modes even with a dense
network. In our example, all the zero-rank modes were
erroneously estimated. For an irregular network, the
performance of the uniform weighting scheme im-
proves monotonically with the number of gauges, but
the sampling error is still significant even for 200 sta-
tions.

4) A Gaussian weighting scheme is much better
than a uniform weighting scheme but is inferior to an
optimal scheme. It performs well for a given mode if
a sufficient number of gauges are available. A remark-
able shortcoming of the Gaussian scheme is its large
growth rate of percent sampling error squared with the
mode number. This implies that for a given number of
gauges, there is a rather stringent limitation in the mode
numbers that can be estimated accurately. Another de-
ficiency of the scheme is its requirement for a regular
network.

5) We validated theoretical estimations of the per-
cent sampling error squared from the observational
data. We calculated the percent sampling error squared
from a 100-yr United Kingdom dataset. The estimated
values are remarkably close to the theoretical limit,
thereby demonstrating the utility of the method.

6) For the amplitudes of EOFs, an optimal weight-
ing scheme again performs best. An optimal weighting
scheme works well both on regular and irregular net-
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works, and the percent sampling error squared quickly
flattens with the mode number and with the number of
gauges.

In view of these findings, we feel that the optimal
weighting scheme presented here is a useful estimation
technique for spherical harmonic coefficients and the
amplitudes of EOFs in a spherical harmonic space.
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