
APPLIED STOCHASTIC MODELS IN BUSINESS AND INDUSTRY
Appl. Stochastic Models Bus. Ind., 2003; 19:361 (DOI: 10.1002/asmb.506)

ERRATUM

In Huang NE, Wu M-L, Qu W, Long SR, and Shen SSP, Applications of Hilbert–Huang
transform to non-stationary financial time series analysis, Applied Stochastic Models in Business
and Industry 2003; 19: 245–268, the author Jin E. Zhang should have been included in the list of
authors. The author list should read as follows:

Applications of Hilbert–Huang transform to non-stationary
financial time series analysis

Norden E. Huang1,*,y, Man-Li Wu2, Wendong Qu3, Steven R. Long4,
Samuel S. P. Shen5 and Jin E. Zhang6,z

1Laboratory for Hydrospheric Processes/Code 971, NASA Goddard Space Flight Center, Greenbelt, MD 20771, U.S.A.
2Laboratory for Atmospheres/Code 910, NASA Goddard Space Flight Center, Greenbelt, MD 20771, U.S.A.

3Engineering Sciences, California Institute of Technology, Pasadena, CA 91125, U.S.A.
4Laboratory for Hydrospheric Processes/Code 972, NASA Wallops Flight Facility, Wallops Island, VA 23337, U.S.A.

5Department of Mathematical Sciences, University of Alberta, Edmonton, Canada T6G 2G1
6Department of Finance, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong

Copyright # 2003 John Wiley & Sons, Ltd.

*Correspondence to: Norden E. Huang, Laboratory for Hydrospheric Processes/Code 971, NASA Goddard Space
Flight Center, Greenbelt, MD 20771, U.S.A.

yE-mail: norden@neptune.gsfc.nasa.gov
zJin E. Zhang is supported by the Research Grants Council of Hong Kong.



APPLIED STOCHASTIC MODELS IN BUSINESS AND INDUSTRY
Appl. Stochastic Models Bus. Ind., 2003; 19:245–268 (DOI: 10.1002/asmb.501)

Applications of Hilbert–Huang transform to non-stationary
financial time series analysisz

Norden E. Huang1,*,y, Man-Li Wu2, Wendong Qu3, Steven R. Long4 and
Samuel S. P. Shen5

1Laboratory for Hydrospheric Processes/Code 971, NASA Goddard Space Flight Center, Greenbelt, MD 20771, U.S.A.
2Laboratory for Atmospheres/Code 910, NASA Goddard Space Flight Center, Greenbelt, MD 20771, U.S.A.

3Engineering Sciences, California Institute of Technology, Pasadena, CA 91125, U.S.A.
4Laboratory for Hydrospheric Processes/Code 972, NASA Wallops Flight Facility, Wallops Island, VA 23337, U.S.A.

5Department of Mathematical Sciences, University of Alberta, Edmonton, Canada T6G 2G1

SUMMARY

A new method, the Hilbert–Huang Transform (HHT), developed initially for natural and engineering
sciences has now been applied to financial data. The HHT method is specially developed for analysing non-
linear and non-stationary data. The method consists of two parts: (1) the empirical mode decomposition
(EMD), and (2) the Hilbert spectral analysis. The key part of the method is the first step, the EMD, with
which any complicated data set can be decomposed into a finite and often small number of intrinsic mode
functions (IMF). An IMF is defined here as any function having the same number of zero-crossing and
extrema, and also having symmetric envelopes defined by the local maxima, and minima respectively. The
IMF also thus admits well-behaved Hilbert transforms. This decomposition method is adaptive, and,
therefore, highly efficient. Since the decomposition is based on the local characteristic time scale of the
data, it is applicable to non-linear and non-stationary processes. With the Hilbert transform, the IMF yield
instantaneous frequencies as functions of time that give sharp identifications of imbedded structures. The
final presentation of the results is an energy–frequency–time distribution, which we designate as the Hilbert
Spectrum. Comparisons with Wavelet and Fourier analyses show the new method offers much better
temporal and frequency resolutions. The EMD is also useful as a filter to extract variability of different
scales. In the present application, HHT has been used to examine the changeability of the market, as a
measure of volatility of the market. Published in 2003 by John Wiley & Sons, Ltd.
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1. INTRODUCTION

Application of rigorous mathematical statistic methods to financial data can be traced to
Bachelier [1], who proposed a Brownian motion model for the Paris stock price. From that time
on, there have been many new developments: good summaries of the subsequent progress in
various aspects can be found in [2–5], as examples. Many of the new statistical analysis and
modelling efforts are built on the variable, hn, which is the logarithm of the ratio of consecutive
financial variable values defined as

hn ¼ log
Sn
Sn�1

ð1Þ

in which Sn is the value of the financial variable at the nth time step. For lack of a proper name,
we will here designate it as LRCV, which stands for logarithmic ratio for consecutive values.
The advantage of this new variable is obvious: even for a highly non-stationary time history of
S, the LRCV are seemingly stationary. This should not be a surprise, for it actually is a
differentiation operation of the logarithm value of the variable. Indeed,

hn ¼ log
Sn
Sn�1

¼ log Sn � log Sn�1 ð2Þ

This operation allows LRCV to satisfy the properties of the classical Wiener processes
approximately, but only approximately. LRCV is so important that many critical parameters of
the financial market are defined in terms of it. For example, the most popular form of volatility,
the measure of the variability of a market, is defined as

sn ¼
1

n� 1

Xn
i¼1

ðhi � mÞ2
* +1=2

ð3Þ

where m is the mean value of hn. As straightforward as it looks, there are many difficulties in this
approach: To begin with, LRCV is no longer the price but the logarithm of the price, as
observed by Samuelson [6]. More seriously, Shiryaev [4] also pointed out correctly that the
volatility is itself volatile; it should be a function of time, and even a random variable. But if the
volatility is defined as in Equation (3), it would be a constant. Then we might well ask, how
representative is it for the volatility measure?

The main difficulty for the existing statistical financial analysis methods as we see it arises
from the basic assumption that, even if the market processes are not stationary, LRCV is
stationary. This is a consequence of the fact that most of our statistical tools were developed for
stationary processes. So, we have to force the data into the stationary mode, otherwise, we will
have no tools to process them. For example, if we give up the stationary assumption, we cannot
even define the mean, for mean value is only meaningful if the process is stationary within the
interval where the averaging operation is carried out. Without the operation of mean, we would
not have standard deviation or many of the statistical measures of a random variable. Then,
the statistical landscape would be totally different. But with the stationary assumption, we
are neglecting the real changes of the market, and are forced to look at the properties of the
data globally in an artificial way. Unfortunately, for most of the financial applications, the local
properties are more pertinent, for a financial market is inherently non-stationary. Therefore,
to analyse financial data, we cannot just assume the data to be stationary, or carry out simple
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pre-whitening differencing operations in one form or the other just to make the data seemingly
stationary. We should employ a method designed genuinely for non-stationary processes.

In this paper, we present such a method, the Hilbert–Huang transform (HHT) method, which
consists of the two steps: (1) the empirical mode decomposition (EMD), and (2) the Hilbert
Spectral Analysis, designed specifically for analysing non-stationary and non-linear time series.
We will first give a summary of the method, and then apply it to time-frequency analysis of a
financial record from the mortgage market. Then, we will also introduce a new way to measure
the variability of the market by using the EMD approach as a filtering technique. It is hoped
that this new method, which has found many applications in engineering and science problems,
might also find some other unique and useful application in the financial arena. Before getting
into the specifics of these new applications, we will first present a brief summary of the new
method.

2. THE HILBERT–HUANG TRANSFORM

To accommodate the inherent non-linearity and non-stationarity of many data types, we have to
utilize the new methods that are designed to accommodate such processes. There are many
methods for analysing data from linear non-stationary processes. For example, the spectrogam
or the fixed window Fourier spectral analysis for musical and speech signals (see, for example,
Oppenheim and Shafer [7]); the Wavelet analysis for image representation and compression (see,
for example, Daubechies [8]); the Wagner–Ville distribution for electrical engineering and
communication problems (see, for example, Cohen [9] and Flandrin [10]); the Evolutionary
spectral analysis (see, for example, Lin and Cai [11]); the Empirical Orthogonal Function
expansion for meteorological and oceanographic data explorations (see, for example, Simpson
[12]); and other miscellaneous methods such as the least squared estimation of the trend,
smoothing by moving mean, and differencing to pre-whiten the data (see, for example,
Brockwell and Davis [13]); each has its special merits, but all suffer one flaw or another due to
the non-linearity and non-stationarity in the data generating processes as discussed by Huang
et al. [14]. In this paper, we will only compare the HHT with the straightforward Fourier
spectral analysis and the continuous Wavelet analysis to demonstrate ability of the new method.

The HHT was proposed by Huang et al. [14, 15]. HHT consists of two parts: (1) The
Empirical Mode Decomposition, and (2) the Hilbert Spectral Analysis. The key part of the
method is the EMD technique with which any complicated data set can be decomposed into a
finite and often small number of intrinsic mode functions (IMF). An IMF is defined as any
function having the same number of zero-crossings and extrema, and also having symmetric
envelopes defined by the local maxima and minima, respectively. The IMF admits well-behaved
Hilbert transforms. This decomposition method is adaptive, and therefore, highly efficient. Since
the decomposition is based on the local characteristic time scale of the data, it is applicable
to non-linear and non-stationary processes. With the Hilbert transform, the IMF yield
instantaneous frequencies as functions of time that give sharp identifications of imbedded
structures. The final presentation of the results is an energy–frequency–time distribution,
designated as the Hilbert Spectrum. We will give a brief description here to make this
paper somewhat self-contained. Interested readers should read the original papers by Huang
et al. [14, 15], where the method was described in great detail. The following is a brief summary
from Huang et al. [14]:
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For an arbitrary time series, X ðtÞ; we can always compute its Hilbert transform, Y ðtÞ; as

Y ðtÞ ¼
1

p
P
Z

X ðt0Þ
t � t0

dt0 ð4Þ

where P indicates the Cauchy principal value. This transform exists for all functions of Lp-class
(see, for example, Titchmarsh [16]). With this definition, X ðtÞ and Y ðtÞ form a complex conjugate
pair, so that we can have an analytic signal, ZðtÞ; as

ZðtÞ ¼ X ðtÞ þ iY ðtÞ ¼ aðtÞeiyðtÞ ð5Þ

in which

aðtÞ ¼ X 2ðtÞ þ Y 2ðtÞ
� �1=2

yðtÞ ¼ arctan
Y ðtÞ
X ðtÞ

ð6Þ

A description on the Hilbert transform with the emphasis on its mathematical formality can be
found in Bendat and Piersol [17, 18], for example. Essentially, Equation (4) defines the Hilbert
transform as the convolution of X(t) with 1/t; and it therefore emphasizes the local properties of
X(t), even though the transform is global. In Equation (5), the polar co-ordinate expression
further clarifies the local nature of this representation. It is the local fit of an amplitude and
phase varying trigonometric function to X(t). Even with the Hilbert transform, there is still
considerable controversy in defining the instantaneous frequency as

oðtÞ ¼
d yðtÞ
dt

ð7Þ

A detailed discussion and justification are given by Huang et al. [14].
Independently, the Hilbert transform has also been applied to study vibration problems and

to identify some of the non-linear characteristics through the frequency modulation in a non-
linear structure by Worden and Tomlinson [19]. Contrary to the suggestion given by Hahn [18],
one should not just take any data, perform a Hilbert transform, find the phase function, and
define the instantaneous frequency as the derivative of this phase function. If one follows this
path, one would obtain negative frequency, and get frequency values that bear no relationship
to the real oscillation of the data. This limitation of the data for the straightforward application
of Hilbert transform has rendered the method to be of little practical value. The real advantage
of the Hilbert transform only became obvious after Huang et al. [14, 15] introduced the EMD
method.

The EMD method is a necessary pre-processing of the data before the Hilbert transform can
be applied. The EMD will reduce the data into a collection of IMF defined as any function
satisfying the following conditions:

(a) in the whole data set, the number of extrema and the number of zero-crossings must
either equal or differ at most by one, and

(b) at any point, the mean value of the envelope defined by the local maxima and the
envelope defined by the local minima is zero.

An IMF, representing a simple oscillatory mode, is a counterpart to the simple harmonic
function, but it is much more general. With this definition, one can decompose any function as
follows: Identify all the local extrema, and then connect all the local maxima by a cubic spline
line as the upper envelope. Repeat the procedure for the local minima to produce the lower
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envelope. The upper and lower envelopes should cover all the data between them. The mean of
the upper and lower envelopes is then designated as m1, and the difference between the data and
m1 is the first ‘Proto-Intrinsic Mode Function’, h1, i. e.,

X ðtÞ � m1 ¼ h1 ð8Þ

The procedure is illustrated in Huang et al. [14].
Ideally, h1 should be an IMF, for the construction of h1 described above should have made it

satisfy all the requirements of an IMF. Yet, even if the fitting is perfect, a gentle hump on a slope
can be amplified to become a local extremum by changing the local zero from a rectangular to a
curvilinear co-ordinate system. After the first round of sifting, the hump may become a local
maximum. Therefore, the sifting process should be applied repeatedly.

This sifting process serves two purposes: to eliminate riding waves and to make the wave
profiles symmetric. While the first condition is absolutely necessary for separating the intrinsic
modes and for defining a meaningful instantaneous frequency, the second condition is also
necessary in case the neighbouring wave amplitudes have too large a disparity. Toward these
ends, the sifting process has to be repeated as many times as is required to reduce the extracted
signal from a ‘Proto-IMF’ to an IMF. In the subsequent sifting processes, h1 is treated as the
data, and then

h1 � m11 ¼ h11 ð9Þ

Repeated siftings, up to k times, yield

h1ðk�1Þ � m1k ¼ h1k ð10Þ

and h1k becomes an IMF. It is designated as

c1 ¼ h1k ð11Þ

the first IMF component from the data.
Overall, c1 should contain the finest scale or the shortest period component of the signal. We

can separate c1 from the rest of the data by

X ðtÞ � c1 ¼ r1 ð12Þ

Since the residue, r1, still contains longer period components, it is treated as the new data and
subjected to the same sifting process as described above. This procedure can be repeated to
obtain all the subsequent rj’s, and the result is

r1 � c2 ¼ r2

� � �

rn�1 � cn ¼ rn

ð13Þ

The sifting process will end finally when the residue, rn, becomes a constant, a monotonic
function, or a function with only one maximum and one minimum from which no more IMF
can be extracted. Even for data with zero mean, the final residue still can be different from zero.
If the data have a trend, the final residue should be that trend. By summing up Equations (12)
and (13), we finally obtain

X ðtÞ ¼
Xn
j¼1

cj þ rn ð14Þ
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Thus, we achieve a decomposition of the data into n-empirical modes, and a residue, rn, which
can be either the mean trend or a constant. The components of the EMD are usually physically
meaningful, for the characteristic scales are defined by the physical data. Additionally, we can
also identify a new usage of the IMF components: filtering. Traditionally, filtering is carried out
in frequency space only. But there is a great difficultly in applying the established frequency
filtering techniques when the data is either non-linear or non-stationary, or both, for both non-
linear and non-stationary data generate harmonics of all ranges with these earlier methods.
Therefore, any filtering with these original methods will eliminate some of the harmonics, which
will cause deformation of the wave forms of the fundamental modes even if they are outside of
the filtering range. Using IMF, however, we can devise a time–space filtering approach.
For example, a low pass filtered result of a signal having n-IMF components can be simply
expressed as

XlkðtÞ ¼
Xn
k

cj þ rn ð15Þ

and high pass results can be expressed as

XhkðtÞ ¼
Xk
1

cj ð16Þ

further, a band pass result can be expressed as

XbkðtÞ ¼
Xk
b

cj ð17Þ

The advantage of this time-space filtering is that the results preserve the full non-linearity and
non-stationarity in physical space.

Contrary to almost all other earlier methods, this new method is intuitive and direct, its basis
is a posteriori and also adaptive, which mean it is based on and derived from the data. The
decomposition steps are based on the simple assumption that any data consists of different
simple intrinsic modes of oscillations. Each mode may or may not be linear, and will have the
same number of extrema and zero-crossings. Furthermore, the oscillation will also be symmetric
with respect to the ‘local mean’. At any given time, the data may have many different coexisting
modes of oscillation, one superimposing on the others. The result is the final complicated data.
Each of these oscillatory modes is represented by an IMF.

Having obtained the IMF components, one will have no difficulty in applying the Hilbert
transform to each IMF component, and computing the instantaneous frequency according to
Equation (7). After performing the Hilbert transform on each IMF component, the original
data can be expressed as the real part, RP, in the following form:

X ðtÞ ¼ RP
Xn
j¼1

ajðtÞe
i
R

ojðtÞdt ð18Þ

Here we have left out the residue, rn, on purpose, for it is either a monotonic function, or a
constant. Although the Hilbert transform can treat the monotonic trend as part of a longer
oscillation, the energy involved in the residual trend representing a mean offset could
be overpowering. In consideration of the uncertainty of the longer trend, and in the interest of
the information contained in the other low energy but clearly oscillatory components, the final
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non-IMF component should be left out. It could, however, be included, but only if physical
considerations justify its inclusion. The energy of the signal given in Equation (18) presented in
time–energy–frequency space as H(o, t) is designed as the Hilbert spectrum.

Equation (18) gives both amplitude and frequency of each component as functions of time.
The same data if expanded in a Fourier representation would be

X ðtÞ ¼ RP
X1
j¼1

ajeiojt ð19Þ

with both aj and oj as constants. The contrast between Equations (18) and (19) is clear: The
IMF represents a generalized Fourier expansion. The variable amplitude and the instantaneous
frequency have not only greatly improved the efficiency of the expansion, but also enabled the
expansion to accommodate non-linear and non-stationary data. With the IMF expansion, the
amplitude and frequency modulations are also clearly separated. Thus, we have broken through
the previous restriction of the constant amplitude and fixed frequency Fourier expansion, and
arrived at a variable amplitude and frequency representation. This frequency–time distribution
of the amplitude is designated as the Hilbert amplitude spectrum, H(o, t), or simply the Hilbert
spectrum. If amplitude squared is more preferred (to represent energy density), then the squared
values of amplitude can be substituted to produce the Hilbert Energy Spectrum just as well.

The skeleton Hilbert spectrum presentation is more desirable, for it gives more quantitative
results. Actually, Bacry et al. [20] and Carmona et al. [21] have tried to extract the Wavelet
skeleton as the local maximum of the wavelet coefficient. Even that approach is still encumbered
by the harmonics. If more qualitative results are desired, a ‘fuzzy’ or ‘smeared’ view can also be
derived from the skeleton presentation by using two-dimensional smoothing.

With the Hilbert spectrum defined, we can also define the marginal spectrum, h(o), as

hðoÞ ¼
Z t

0

H ðo; tÞ dt ð20Þ

The marginal spectrum offers a measure of total amplitude (or energy) contribution from each
frequency value. It represents the cumulated amplitude over the entire data span in a
probabilistic sense.

The combination of the EMD and the Hilbert Spectral Analysis is designated as the Hilbert–
Huang Transform (HHT).

3. TIME–FREQUENCY ANALYSIS OF THE WEEKLY MORTGAGE RATE DATA

Having described the method, we will present an example to illustrate the differences among the
Fourier, Wavelet and Hilbert spectral analyses. The data used here is the weekly mean of the
thirty year mortgage rate covering the period from January 1972 to December 2000. The raw
data are shown in Figure 1. This data set, after subjected to the EMD, yields eight IMF
components shown in Figure 2. Here we can immediately see many interesting features of the
data from just the IMF components. To begin with, there is an obvious change in the data
quality starting around 1980, when the amplitudes of the short period IMF components ( i.e. c1
and c2) suddenly increase. Can this change in short period components be interpreted as
volatility? We think so, and we will return to this point later. Second, there is a large amplitude,
long period IMF component seen in c6 with a period of approximately 8 years. More details of
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the properties from the IMF will have to wait until we construct the Hilbert Spectrum. Now let
us examine the meaning of and utility for the IMF from a different point of view: the
reconstruction of the data.

To demonstrate the intrinsic meaning of these IMF components, we will reconstitute the
data from the components. The sequence of steps is shown as follows in Figure 3: In each of the
sub-panels, we plot the data as a dotted line and the partial sum of the IMFs as a solid line.
In Figure 3(a), we plot the data and component c8, the residue of the sifting. As we can see
from Figure 2, the slope of the residue term is very small, about 0.05% over the total
period. This certainly is not a significant trend, but it establishes global level of the data.
It should be noted that the residue term is not the mean, for it is not derived from
averaging processes. Rather, it is the residue after all possible oscillations are removed by
the EMD steps. To this residual trend, if we add the longest oscillatory component, c7, we
have the result in Figure 3(b). This smooth line clearly gives the smoothest trend of the data
variation. With step by step adding of the IMF components, we finally arrived at the sum of
all the IMF components shown in Figure 3(h). It looks like the original data. In fact,
the difference between the total sum of IMFs and the original data is of the order of (10�5)
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Figure 1. The raw data of weekly averaged quotations for the 30-year mortgage rate covering the period
January 1972 to December 2000.
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shown in Figure 4. As the data are only kept to the third place decimal, this difference is the
round-off error in the computation. The completeness of the decomposition is thus
demonstrated.

This reconstruction procedure also illustrates the use of the EMD process as a filter, as shown
in Equations (15) to (17). In the present case, it is the low pass filtering. If we stop at any step, we
would have the market trend with a time scale longer than the characteristic period of the next
IMF component not included. Note that this time scale is defined by the data, rather than by a
pre-assigned value, a truly crucial difference between EMD filtering and the Fourier analysis
based filtering. Additionally, this filtering is non-linear. Unlike the Fourier operation in
frequency space, it would not eliminate any harmonics of the fundamentals required by the non-
stationarity and non-linearity of the data. We will return to this point later in the paper when we
discuss the high pass application in defining the volatility. In the rest of this section, we will
concentrate on the study of the time–frequency characteristics of the data. For this purpose, we
need the Hilbert Spectrum.
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Figure 2. The IMF for the data shown in Figure 1 through the Empirical Mode Decomposition method
using extrema-based sifting.
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Figure 3. Re-construction of the data from the IMF components. This is also a demonstration for using
the EMD technique as a filter.
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Following the steps given in Equation (18), we can construct the Hilbert spectrum as shown in
Figure 5. From the same data, we can also compute the Wavelet spectrum. In order to extract
data variation features, we have used the continuous Morlet Wavelet transform, and the result is
given in Figure 6. When these two results are placed side by side, they bear little resemblance to
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Figure 4. The difference between the data and the reconstructed time series from IMF. The difference is of
the order of the round-off error.
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Figure 5. The Hilbert spectrum based on the IMF given in Figure 2.
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the first impression. Only through careful scrutiny, will one see that they are not inconsistent
with each other. In fact, the Hilbert spectrum is almost the skeleton form of the Wavelet
spectrum as proposed by Carmona et al. [21], but there are crucial differences: As the EMD
is a non-linear decomposition, the energy distribution in the Hilbert spectrum contains all
the non-linear waveform distortion, such as intra-wave frequency modulations Huang et al. [14].
This non-linear representation does not need the harmonics to fit the waveform. Furthermore,
the frequency determined by differentiation is precise in both time and frequency values; it
breaks through the limitation of the uncertainty principle (see, for example, Cohen [9] and
Flandrin [10]) inherited in the Fourier transform pairs, or Fourier type of transform pairs such
as the Wavelet transform.

But there are also some similarities between the Wavelet and HHT results, of course.
To illustrate some of the similarities, we have smoothed the Hilbert spectrum with an
11� 11 Laplacian filter applied repeatedly for six times, to really ‘smear out’ the result. This
is given in Figure 7. Now, one can see the general agreement of the energy distributions. To
go one step further, we also plotted the energy distribution contours of the smoothed Hilbert
spectrum on the Wavelet spectrum in Figure 8. Here, the agreement and disagreement are
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Figure 6. The Morlet Wavelet spectrum based on the data given in Figure 1.
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all clear: The gross energy distributions are the same in both, but there are no long streaks
of energy concentration covering all frequency ranges at any given time in the Hilbert spectrum
as is found in the Wavelet spectrum (the consequence of the harmonics). The results given
in the last four figures emphasize the time–frequency–energy resolution power of this different
method in the time–frequency space. To further illustrate the frequency resolution power of the
Hilbert spectral analysis, we plot the marginal spectra of Hilbert and Wavelet spectra together
with the Fourier spectrum in Figure 9, with their magnitude staggered by a decade to show the
individual spectral characteristics. The extreme redundancy and the uniform but poor frequency
resolution of the Wavelet spectrum are clear now. With 5.5 waves in the basic Wavelet, the
Morlet Wavelet gives the poorest overall frequency resolution. Although it does resolve
the energy variation in time, the result seems to be only qualitative; therefore, it should not
be used as a time–frequency analysis tool, as discussed in Flandrin [10] and Huang et al. [22].
The non-uniform frequency resolution of the Fourier spectrum, on the other hand, does a good
job in extracting some frequency bands, such as the location of the energy concentration, even
though it does not bear any information on the time axis. We believe that we have demonstrated
that both the Fourier and Wavelet representations are inferior to the Hilbert result, which gives
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Figure 7. The smoothed Hilbert spectrum using an 11� 11 Gaussian weighted Laplacian filter repeated
six times.
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a much more detailed frequency and time resolution. Let us discuss the variation of the data in
frequency space in more detail.

Due to the poor frequency resolution of the Wavelet spectrum, it will not be discussed
any further, The Fourier spectrum, however, shows some interesting energy concentrations:
For example, the peak at around 0.3 cycle/year coincides with the one also in the Hilbert
spectrum. It represents a period of slightly more than 3 years. There should be energy
at frequency bands lower than this peak, but with the limited length of the data, Fourier
cannot resolve any peak beyond this value, except to show a general upward hump ending
at 0.034 cycle/year, the theoretical limit of the Fourier analysis with the given data. The
Hilbert spectrum, however, gives spectral values all the way down below 0.01 cycle/year.
The broad peak covering 0.02 to 0.05 cycle/year represents the period of the full data
length. Whether one can or cannot treat this as a genuine oscillatory component is debatable.
But the data certainly suggests such a period, and the Hilbert spectral analysis correctly
identifies it with only one cycle over the entire data span, a feat unmatched by any
other known data analysis method in existence The peak at around 0.12 cycle/year is an

Figure 8. The comparison between the Morlet Wavelet and the Hilbert spectra. The Wavelet spectral
values are in colour intensity, and the smoothed Hilbert values are given in contours.
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8 year period, which might be significant, for it is the usual tenure of the US Presidents.
With this as a guide, we can re-examine the peak at more than 3 years in both the Fourier
and Hilbert spectra. It is very close to, and therefore could also be, the 4 year general election
cycle. Another location of energy concentration is around 2 to 3 cycle/year, but this peak is
diffused and with much lower magnitude; therefore, it might not be significant. Now, let us
return to the application using the EMD as a filter.

In the last section, we have discussed the use of the EMD technique as a filter. If we apply
the high pass filter by summing only the first six IMF components, we would get the
result shown in Figure 10. The Fourier spectrum of this data is also given in Figure 9 in the thin
black line. Here the 0.12 cycle/year (or the eight year period) peak is clearly shown. In applying
the EMD-based filter, we only have to eliminate the component with the longest period, the
component covering the whole data span as a single cycle of oscillation. The next component
actually represents the 8-year peak. This filtering result cannot be derived with Fourier analysis
without a pre-determined low cut-off frequency. So the lower end can only represent the
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lower a priori determined cut-off frequency As a result, the peak in such a Fourier-filtered
spectrum, even if it shows up, would hardly be significant, for the selection of the cut-off
frequency is judgmental. The peak derived from the EMD-based filter in the figure, however, is
meaningful.

4. VOLATILITY

Having examined the data in time–frequency space, we would like to apply the EMD
technique in still another application, to address the question of volatility. As stated by Shiryaev
[4], the volatility as defined in Equation (3) is arguably the most loosely interpreted financial
variable. This is obvious, for in the definition we need the mean and the standard deviation
of LRCV. To implement it, we have to assume stationarity. If we compute the LRCV from
the data, the result is given in Figure 11. Even casual inspection reveals the non-uniform
characteristics of the time series. This change in characteristics is similar to, but not as clear
as, what we have shown in Figure 2. Thus we must ask: How can one justify the assignment
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Figure 10. The result of the EMD high-passed filtered data.
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of one volatility value to represent the whole time series? If we give up using one value to
represent all, how should one divide the time span into sub-periods? How can we be sure that
a time series is stationary within each sub-period? All of these uncertainties have contributed
to the looseness of the previous definition of volatility. In fact, if volatility should be a
function of time as suggested by Shiryaev [4], it should also have a time scale over which
it is applicable. With these observations, we decided to introduce a new measure of vola-
tility based on the EMD-produced IMF components. In order not to be confused with the
traditional volatility, we will designate this new measure of volatility as ‘variability’. The
variability is defined as the ratio of the absolute value of the IMF component(s) to the signal
at any time:

V ðt; T Þ ¼
ShðtÞ
SðtÞ

ð21Þ
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Figure 11. The values of the Logrithm Ratio of Consecutive Value (LRCV), a popular proxy to present the
market variability. Notice that the data is not stationary.
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where T correspond to the period at the Hilbert spectrum peak of the high passed signal up to h-
terms,

ShðtÞ ¼
Xh
j¼1

cjðtÞ

Therefore, the resulting variability is a function of time as suggested by Shiryaev [4],
and additionally, h shows over what time scale it is applicable. The unit of this variability
parameter is the fraction of the market value. It is a simple and direct measure of the market
volatility.

Let us take IMF c1 as an example. The time series of c1 is shown in the top panel of
Figure 12. The change of variability is obvious. This variability measures the change with
respect to the local mean, but we achieve it without invoking an averaging process, but
instead through the EMD approach. Again without invoking averaging, instead of computing
the standard deviation, we simply rectified it by taking the absolute value and normalized
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Figure 12. The variability of the weekly mortgage quotations based on the first IMF component having a
monthly time scale.
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it by the instantaneous values of the signal there. This variability is a function of time,
with fluctuating values. The amplitude increases drastically after 1985. The overall mean of
this variability, though not very meaningful, is about 0.38%; its envelope mean is approxi-
mately 0.50%. The mean time scale associated with this variability is defined by the Hilbert
spectrum of the IMF c1, as shown in Figure 13. Roughly it is about a monthly period.
This again utilizes the filtered results of the EMD. This EMD filter is totally adaptive, and
applicable to non-linear and non-stationary processes. Precisely because of the non-linear and
non-stationary characteristics of the EMD filter, this kind of filtering is not amenable to
a Fourier approach, for the Fourier filter should only be applied to linear and stationary
processes. If one uses a Fourier-based monthly frequency band to filter the data, two
complications will arise: First, the non-linear harmonic distortion will cause leakage of energy
from the low frequency fundamentals to a higher frequency range of the result. Secondly, to fit
a non-stationary time series with constant amplitude and frequency, the sinusoidal functions
will require a much wider range of frequency. This will cause energy to leak out of the
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Figure 13. The marginal Hilbert spectrum based on the IMF c1, to determine the time scale for the
variability in Figure 12.
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designated range as shown in Figure 13. The combined effects of the above shortcomings will
make the final result unreliable.

If one wants to measure the variability over a longer period, one can sum more than one
IMF and get the combined results. Such results are shown in Figures 14 and 15. In the upper
panel of Figure 14, we have the data as the sum of IMFs c1 and c2. In the lower panel we have
the overall mean variability values increased to around 0.63%; the envelope mean is 0.86%. The
combined IMF components give a marginal Hilbert spectrum peaked around 2 cycles/year, or
with a half-yearly period. The combination of the first three IMFs gives the data and variability
in Figure 16. Now the variability is much higher. The values for overall and envelope means are
1.48 and 2.09%, respectively. Its corresponding period increases to around a year as shown in
Figure 17.

Thus, we have defined a variability value referenced to the local mean, as a function
of time, and also associated with a frequency range over which it is applicable. This
new definition can offer a direct measure of the market value in percentages rather than
the logarithm of the market value. It certainly provides another meaningful measure of
volatility.
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Figure 14. The variability of the weekly mortgage quotations based on the first and second IMF
components having a semi-annual time scale.
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5. DISCUSSIONS

We have introduced a new statistical analysis tool for non-linear and non-stationary
data. It gives results not only in time–frequency space, but also provides a detailed time
decomposition of the data. There is one further note on the frequency definition: As pointed out
by Flandrin [10], when the signal is non-linear, one cannot assume that the Hilbert transform
of the signal will have precisely the same phase function as the real part with only a phase
shift. Under such a condition, the instantaneous frequency might not be exactly the
differentiation of the phase function of the real part. An example of this has been given by
Huang et al. [14]. Therefore, in application, we have always checked the frequency of
the fundament modes with either Fourier or Wavelet analyses to guarantee the fidelity of
the results. A necessary condition is for the data to satisfy the Bedrosian theorem (see, for
example, Hahn [18]). It should also be pointed out that the Hilbert transform is not the
only way to compute the instantaneous frequency, Potamianos and Maragos [23] have
proposed an energy operator to compute the instantaneous frequency directly from the
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Figure 15. The marginal Hilbert spectrum based on the sum of the IMFs c1 and c2 to determine the time
scale for the variability in Figure 14.
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signal independent of the Hilbert transform. In most of the examples studied by them,
the results are almost identical to the values obtained through the Hilbert transform. The
frequency is certainly an important parameter to be derived from the data, but we have
also demonstrated the wide utilities of the IMF in defining the variability, such as the
volatility, as a basis for data expansion, and for filtering in temporal space. Therefore, the
EMD method by itself is also a useful tool in statistical analysis of non-linear and non-
stationary data.

6. CONCLUSIONS

We have introduced here a new statistical method for financial data analysis. As most of the
financial data are inherently non-stationary and non-linear, it is important that we adopt a
method designed for such processes. The insouciant assumptions of stationary and
homogeneous steps and many other similar ones need careful scrutiny. We feel that this new
method deserves a trial in this new area of financial data analysis.
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