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MULTIPLE SUPERCRITICAL SOLITARY WAVE SOLUTIONS OF 
THE STATIONARY FORCED KORTEWEG-DE VRIES EQUATION 

AND THEIR STABILITY* 

LIANGER GONGt AND SAMUEL S. SHENt 

Abstract. The first-order approximation of long nonlinear surface waves in a channel flow of an 
inviscid, incompressible fluid over a bump results in a forced Korteweg-de Vries equation (fKdV): 

nt + Ax + 2a7x + I3xxx = fx(x), -O < X < o, t > 0. 

The forcing represented by the function f (x) in the fKdV equation is due to the bump on the bottom 
of the channel. In this paper, the solitary wave solutions of the stationary fKdV equation (sfKdV) 
are studied. The supercritical solitary wave solutions of the sfKdV equation exist only when the 
upstream flow velocity c* is greater than a crucial value uc > gH, or equivalently, A > Ac > 0. The 
existence of supercritical positive solitary wave solutions (SPSWS) of the sfKdV equation is proved. 
Some ordered properties and extreme properties of SPSWS are discussed. There may exist more than 
two SPSWS for a nonlocal forcing. An analytic expression of the SPSWS is found when the forcing 
is a rectangular bump or dent (called the well-shape forcing). Analytic solutions explicitly reveal the 
multiplicity of solutions and make the complicated sfKdV bifurcation behavior more transparent. 
Multiple SPSWS are also found numerically when the forcing is a partly negative and partly positive 
bump, and two semi-elliptic bumps, respectively. Numerical simulations show that only one of the 
four SPSWS for a well-shape forcing is stable. 

Key words. forced Korteweg-de Vries equation, solitary waves, multiple solutions, stability 
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1. Introduction. Six years ago, Vanden-Broeck [11] considered the time- 
independent surface waves of an incompressible and inviscid fluid flow over a bump in 
a two-dimensional channel. The bottom of the channel has a semicircular bump and is 
otherwise flat. Both the upstream flow and the downstream flow are uniform with ve- 
locity c* and depth H. The upstream Froude number F, which is defined as the ratio 
of the upstream velocity to the critical speed of shallow water waves gH, is greater 
than one. He used the conformal mapping and Cauchy integration techniques to con- 
vert the Laplace equation in the fluid domain with nonlinear boundary conditions on 
the free surface into an integral equation of a complex variable. This integral equation 
was then solved numerically. This method was first derived by Forbes and Schwartz 
for the same fluid flow problem [4]. Vanden-Broeck's significant contribution to this 
problem is the discovery of the existence of two branches of supercritical positive 
solitary wave solutions (SPSWS). Here, "supercritical" means that F > FC > 1 where 
Fe is determined by the size of the bump. "Positive" means that the free surface 
elevation T(x) > 0 for any finite x C R. And "solitary wave" means that the free 
surface elevation r7 has the property: r7(?oo)- qx(o = ?xx(?00) = 0. Vanden- 
Broeck's computational results showed that when the Froude number F increases 
or the bump size approaches zero, the upper branch of the solutions approaches 
the solitary wave in a- flat channel and the lower branch approaches the uniform 
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flow (i.e., the null solution). Forbes and Schwartz's findings are the solutions of the 
lower branch. 

Two years later, Shen [8] published his findings on the similar bifurcation phe- 
nomenon from the time independent forced Korteweg-de Vries equation (sfKdV). The 
equation is of the following form: 

(1) Ax + 2ax + xxx = f(x), -oX < x < 00 

with the solitary wave boundary conditions 

(2) r(?o0) = 7rh(?00) = rqxx(?o) = 0. 

Here, A > 0 (means supercritical), a < 0 and j3 < 0 are constants. Shen's results 
obtained from this simple BVP of an ordinary differential equation qualitatively agree 
with Vanden-Broeck's. Namely, when A is sufficiently large, there exist two branches 
of SPSWS: r,u(x) and iqe(x) with the following properties: 

77,(x)- 3a sech2 (4/3(xx-o)) 

?7e(x) 0 

as A -* oo. In a two-dimensional channel, F = 1 + EA and e is a small positive 
constant. Therefore, A -- oo implies that F -- oc, the limit described by Vanden- 
Broeck (cf. [11]). 

The sfKdV equation (1) was derived for the small elevation of the free surface of 
order cH and for a small amplitude forcing of order 2H, whereas Vanden-Broeack's 
model was for finite amplitude waves and a large bump (the bump height R is as large 
as a half of the depth H of the upstream fluid). Hence, it was generally consented that 
Vanden-Broeck [111 and Shen [8] were studying different classes of models: Vanden- 
Broeck for large bumps and the finite elevation of the free surface, and Shen for small 
bumps and the small elevation of the free surface. Only until recently, Shen surpris- 
ingly found that the valid range of the simple sfKdV equation is not restricted to 
small bumps and small elevations [10]. Rather, with little error, it is a valid approx- 
imation model equation for all cases when Vanden-Broeck's computational scheme 
converges and when experiments can be conducted. Namely, the sfKdV equation is a 
valid approximation model as long as the corresponding physics exists. 

Since the sfKdV equation is the result of the first order approximation, an error 
usually exists when using the sfKdV equation as a model equation to quantitatively 
describe the wave physics. This error should be of order c2 and hence varies according 
to the "small" dimensionless number "c" . This "small" dimensionless number "e" is 
determined by the size of the bump and measures the nonlinearity and dispersion, and 
is used as an ordering scale in the formal asymptotic approximation. Shen's startling 
findings showed that the error is still within 10% when the "small" number e is as large 
as 0.7. When e = 0.7, the sfKdV equation models the same physics as that studied 
by Vanden-Broeck for a = R/H = 0.5, where R is the radius of the circular bump. 
Shen's investigation has provided sufficient evidence that the sfKdV equation is a 
parsimonious asymptotic model for the corresponding physics. Here,"parsimonious" 
is a word adopted from Ludwig's paper [5] and means "simple" and "correct" in the 
sense of small error. 

In the sfKdV equation, the forcing is usually classified into two types. One type 
of the forcing called "local" forcing, whose height is comparable with the length of the 
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base support, can be approximated by the Dirac delta function in the dimensionless 
long wave coordinates. In Shen's 1992 paper [10], considered was basically this type 
of the forcing. All the solutions of the sfKdV equation can be found analytically. The 
other type of forcing is called "nonlocal" forcing. In the laboratory coordinates, it 
means that the support of the bump is much longer than the height of the bump. In 
particular, the bump length under our consideration is comparable with the length 
scale of the free surface wave. The sfKdV equation with nonlocal forcing has some 
different properties from that with local forcing. For instance, the sfKdV equation 
may admit more than two SPSWS when the forcing is nonlocal and negative. This 
is in sharp contrast to the fact that the locally sfKdV equation have at most two 
SPSWS. In this study, our focus is on the multiple SPSWS of the sfKdV equation 
with nonlocal forcing and their stability. The following results constitute the novel 
features of this paper: 

(i) Proof of the positivity of solitary wave solutions of the sfKdV equation; 
(ii) Some ordered properties and extreme properties of the SPSWS; 
(iii) Analytic expressions of the SPSWS when the forcing is a rectangular bump 

or dent; 
(iv) Numerical SPSWS and their bifurcation when the forcing is a partly negative 

and partly positive bump, and two semi-elliptic bumps, respectively; 
(v) Numerical simulations on the instability of the SPSWS. 
The proof of the existence of the SPSWS, although not completely new, fills up 

a gap in Shen's earlier proof (cf. [8]). The ordered properties and extreme properties 
are useful in understanding the differences among multiple SPSWS and envisaging the 
bifurcation behavior of the boundary value problem for the sfKdV equation. These 
properties, some of which are sharp, have not appeared in literature before. Analytic 
solutions explicitly reveal the multiplicity of the solutions and make the complicated 
sfKdV bifurcation behavior more transparent. Although the analytic solutions are 
constructed for the particular rectangular forcing, some of their properties which 
depend only on the area of the forcing (i.e., f?O. f(x) dx) are applicable to the 
forcing of other shapes. Numerical solutions are necessary for most types of forcing. 
The most subtle point in searching for multiple solutions is the transition from 2 
solutions to 4 solutions, from 4 solutions to 6 solutions, and so on. The stability of an 
SPSWS is defined according to the evolution of this solution with respect to the time 
dependent fKdV equation. Our study is based on numerical simulations and the small 
perturbation to the original SPSWS is introduced through truncation errors (or called 
numerical noise) in numerical calculation. Our numerical results show that only one 
SPSWS is stable and the co-existence of two or more stable states does not appear 
although it is common in biological and chemical models. To the authors' knowledge, 
all these conclusions are new to the existing literature. 

We have arranged the context of this paper as follows. To make the paper self- 
contained, we recapitulate the derivation of the sfKdV equation in ?2. Analytical 
properties are studied in ?3. These include the existence of the SPSWS, some ordered 
and extreme properties of the SPSWS. A well-shape forcing is considered in ?4. An 
analytic expression of the SPSWS is found in term of the Weierstrass elliptic func- 
tion. Numerical SPSWS for different types of forcing are presented in ?5. Numerical 
simulations on the instability of the SPSWS are carried out in ?6. In ?7, we make 
some concluding remarks. 

2. Derivation of the sfKdV equation. The fluid under consideration is in- 
viscid and incompressible. The fluid flow configuration is shown in Fig. 1. Let the 
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__~~~~~~l(x)Fe surface 

c h * (X*) 9~~~~~~~X 

FIG. 1. Configuration of a single-layer fluid flow forced by a bump on the bottom of a two- 
dimensional channel. 

x*-axis be aligned along the longitudinal direction and on the bottom of the chan- 
nel, and the y*-axis vertically opposite to the gravitational direction. Let H be the 
upstream depth of the fluid, p the density, p* the pressure, (u*,v*) the velocity, r7* 
the free-surface elevation, c* the upstream uniform velocity, y* = h*(x*) the bottom 
topography and g is the gravitational acceleration. 

Let L be the typical wave length. We use L, H and p as the horizontal length 
scale, the vertical length scale and the density scale, respectively. The following 
dimensionless variables are introduced: 

e = (H/L)2 <K 1 (the small parameter in the sfKdV asymptotic analysis), 

(X y) = (c1/2x*,y*)/H, p = /(c*H), 

P / (pgH), (u, v) = (u*, el/2v*)/ gHI 
F c*/ vgH (Froude number), Tj = */H, 

h(x) = 6-2h*(x*)/H (the small bump assumption). 

Since the flow is laminar, both the free-surface and the bottom of the channel are 
stream lines. Let b be the dimensionless stream function such that ') = 1 on the 
free-surface and 0b = 0 on the bottom. Then 

u=F- v=-F-- 
ay ax, 

We make the following coordinate transformation: (x,y) ((,X6) such that = 
x, g6 = 0(x, y). Hence (( = x,-0 = ' (x, y)) maps the fluid domain in the x, y-plane 
onto a strip Q = R x (0, 1) in the (, +)-plane. Here ((, ?b) is called the streamline 
coordinate system. Let (x = y = f((, )) be the inverse transformation of (x, y) 

- ((, ?). In terms of the streamline coordinates ((, Vi), we have 

F f _ a v a _ u a 
U'OI = f-, ax a= F a=o' ay F aV) 

From the irrotational property of the flow, one can derive a second-order partial 
differential equation for f with independent variables ( and / in Q. Since the stream 
function is used, the kinematic boundary conditions on both the free-surface and the 



1272 L. GONG AND S. S. SHEN 

bottom are satisfied automatically. Hence, the Bernoulli equation shall serve as the 
boundary condition on Vb = 1, and the bottom topography shall serve as the boundary 
condition on -b 0. The resulting boundary value problem is posed by 

(3) cf~fi,-2efJfCV, + (I + cf )io, = O in Q, 

(4) F 2( +C 2f;) + [2(f -1) - F2] 2; = o on 0 = 1, 

(5) f = e2h(() on ?1= 0. 

The above procedure was used back in 1960 by Peters and Stoker [7]. 
Let Fo be the critical Froude number. It is assumed that the upstream velocity 

is near the critical speed and the response of the free-surface elevation to the bump 
is of order 0(e). Hence we have the following asymptotic expansion: 

(6) f = 4' + Cfi((, 4) + E2f2((, ) + O(e3), 

(7) F = Fo +?eA + O(E2). 

Substituting (6)-(7) into (3)-(5), one can obtain a sequence of equations of successive 
orders. We need to use only those equations of the first two orders. 

The equations of the first order (i.e., 0(e) order) imply that 

fi =,OA((), F2 = 1 (the critical speed of the shallow water waves), 

where A is an arbitrary function of ( to be determined by the solvability condition 
of the second order (i.e., 0(e2) order) problem. Since fi(Qlb 1) A(( =x), the 
function A(x) is actually the profile of the first order elevation of the free-surface and 
satisfies the equation 

A" - 6AA =- 2A2 - 3h. 
2 

This is the first integral of the stationary fKdV problem (1)-(2) when a = -3/4, 
/ = -1/6, f(x) = h(x)/2, and A(x) = i7(x) 

3. Analytical properties of the SPSWS. In this section, we assume that 
A > 0, a < 0, /3 < 0, and f(x) c C6o(J). Shen proved that the BVP (1)-(2) for 
f(x) > 0 has at least one solution if A is sufficiently large [8]. Also, he claimed that 
every solution is positive. Namely, every solution is an SPSWS. However, there was 
a gap in Shen's proof of this positivity claim. Here, we provide a complete proof that 
fills up the gap. 

THEOREM 3.1 (positivity property). Suppose that q(x) is a solution of the fol- 
lowing BVP: 

(8) Aq?+r2?+ ir"=f(x), -oo < x < +oo, 

(9) 1(? oo) = <'(? oo) = O, 

where A > 0, a < 0, 3 < 0, f(x) > 0 and f(x) c C0(J), then rl(x) > 0 for any 
x C R. 

Proof. If 7j(x) is a solution of the BVP (8)-(9), then we have 

1 j+( f (10) 71(X) = - K K(x, ,) (aq2/ ()f (()) d( 
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where K(x, I) = exp(-vt - xl) is the Green's function satisfying 

Kf - v >2K = -6(&,- x), { K(? = ?oo,x) = 0, v - VA//. 

Clearly, 17(x) > 0 holds for any x c X since oa < 0, , < 0, K(x, ) > 0 and f(S) > 0 
for any ( C R. 

Now, suppose that there exists a point a c R such that y7(a) = 0. From (10), 

r1(a) = : j K(a, &) (oa2(() - f(s)) d - 0. 
-00 

Since K(a, () > 0 and aq2( )f (() < 0 we have aq2(() = f () for any R C R. This 
is a contradiction since f(Q,) > 0 for some (i C R whereas a7 2(s,) is always less or 
equal to zero. Hence, q7(x) > 0 for any x c R. l 

After resolving the existence question of the SPSWS, let us discuss various prop- 
erties of the SPSWS. For multiple solutions, it is interesting to investigate the relative 
position of the solutions. When we say that two solutions q7 (x) and 72 (X) of the BVP 
(8)-(9) are ordered, we mean that 171(x) = r12(x) for any x c R. Numerous numerical 
solutions we obtained seem to suggest that if there exists a third solution of the BVP 
(8)-(9), then it cannot be ordered with other already ordered solutions. Indeed, this is 
generally true. We have found that the SPSWS of the BVP (8)-(9) have the following 
ordered properties. 

THEOREM 3.2 (ordered properties). (i) The BVP (8)-(9) admits at most two 
ordered SPSWS; (ii) If two distinct solutions q17(x) and 72(x) of the BVP (8)-(9) 
satisfy 11 7i Iloo>ll 72 1l1 and 11 2 11- oo , then i71(x) > 2(X) for each x c R. 

Proof. (i) If the theorem were not true, the BVP (8)-(9) would admit at least 
three ordered SPSWS. Assume that rRi (i = 1, 2, 3) are three ordered solutions and, 
without loss of generality, 0 < mI < q2 < 73. Let w1 = 172 - Iji, and w2 = 13-72 
From (8), it follows that 

(11) /3w'- [-A - a(17 + 72)]Wi, 

(12) 3w' - 
[-A - a(172 + 3)]W2- 

Multiplying (11) by w2 and (12) by -w1, adding the two resulting equations together 
and integrating the sum from -oo to oo, we have 

J (W1 + W2)WlW2 dx =0 . 

Clearly, w1 and w2 are positive for any x c R. This is a contradiction and the proof 
of (i) is finished. 

Hence, if there exists a third SPSWS of the BVP (8)-(9), then it cannot be 
ordered with the other two. 

(ii) The second ordered property is based on the following two facts. First, under 
the assumptions of (ii), 17 (x) ?> 72(x) for any x c R. If this were not true, there would 
exist xo C R such that 17i(xo) < 172(xo). Let w(x) = 171(x) - 172(x). Then, putting 
17l(X) = w(x) + 72(x) into (8), one gets 

(13) (A + 2oa72(x)) w(x) + aw2(x) + ?,w"(x) = 0, x C R. 
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On the other hand, the function w(x) has at least a local minimum point a such 
that w(a) < 0 and w"(a) > 0 since w(x0) < 0 and w(?oo) = 0. Also, by the 
assumption (ii) A + 2ac72(a) > 0, we have 

(A + 2ac2(a)) w(a) + aw2 (a) + /w"(a) < 0. 

This contradicts (13). Hence, TI1(x) > 712(x) for any x C R. 
The second fact is, according to the theory of ordinary differential equations, that 

the IVP 

(14) (A + 2cT12(X)) W(X) ?X+ W2(X) + ?W"(X) = 0, X C 

(15) w(x0) = W'(x0) = 0, Xo C R, 

has only a trivial solution when ?72(x) is a given bounded function. In fact, (14)-(15) 
can be viewed as a system of the first-order differential equations: 

dw 
(16) d V 

dv I 12 (17) dx - [(A + 2ac2)W+ aW2], 

with initial value conditions: w(x0) = 0 and v(xo) = 0. 
Since the right-hand side of (16)-(17) is obviously in C1 and hence satisfies Lip- 

schitz condition, the IVP (16)-(17) has only a trivial solution, that is, w(x) = 0 for 
any x E R. 

Now, let us return to the proof of the claim (ii). Suppose that the conclusion fails 
to hold. There must exist x0 e R such that rm1(xo) =72(x0), i.e., w(xo) = 0. By the 
first fact, x0 is a minimum point of w(x), hence, w'(x0) = 0. Then, by the second 
fact, nl (X) = i2(X) for any x E R. This is a contradiction to the assumption and 
completes our proof. El 

It is clear that every solution to the BVP (8)-(9) is bounded. Finally, our concerns 
are on the extreme properties of solutions of the BVP (8)-(9). 

THEOREM 3.3 (extreme properties). (i) If r/(x) is a solution of the BVP (8)-(9) 
and f(x) C Cof(R), then either 

(18) 7 1o < A2+ 21 fl f 11 or 11 A-2 ?4 cf + A ? 

where I f I oo= max{If (x) l, x C R}; (ii) if r (x) is an SPSWS of the BVP (8)-(9) and 
f(x) < 0, then 11 ? lo>-A/a; (iii) if i7(x) is an SPSWS of the BVP (8)-(9) and 
f(x) > 0 and xo is a local minimum point of r/(x) in R, then i7(xo) < -A/ao; (iv) 
if r/(x) is an SPSWS of the BVP (8)-(9), and if i7(x) > -A/ai and f(x) > 0 for all 
x c supp(f), then r/(x) has at most one local extreme point in supp(f). 

Proof. (i) By (10), one can get 

P+CO 

l(x)~ ? < -1(lal 1 a 112 + 1? f IICx) jK(x ,)d. 

Direct calculation of the aboye integral yields 
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Thus 

Hll 11 HII2 -A 1 A, Il? II f 11f?> 0 

which is equivalent to (18). 
(ii) By the continuity of i7(x), there exists x0 E R such that 71(xo) =11 i7 || 

i?'(xo) = 0, and 7i"(xo) < 0. Since f(x) < 0, from (8), we have 

Ain(xo) + an2(Xo) = f (Xo) _- 3r('(Xo) < 0. 

The condition i7(xo) > 0 implies that A + ac7(xo) < 0. Therefore, 11 71 lloo= 71(xo) > 

(iii) Since x0 is a local minimum point of i7(x), then 77'(xo) = 0, and 7i"(xo) > 0. 
By (8), the condition f(x) > 0 implies 

A?7(xo) + a?2(xo) = f (X0) -_/3r'(Xo) > i0. 

Hence, from 77(xo) > 0, we have A + a?7(xo) > 0, i.e., 71(xo) < -A/a. 
(iv) Suppose that i7(x) has two local extreme points a and b with a < b in 

supp(f), then 77'(a) = r7'(b) = 0. Integrating (8) with respect to x from a to b yields 

b b 

Aj [>1(x) +? ac2(x)] dx + 13 [r'(b) - 7'(a)] f (x)dx. 

This implies that 

(19) Aj [>7(x) + a?72(x)] dx > 0 

since f(x) > 0 for any x c [a, b] c supp(f). On the other hand, the assumption 
i7(x) > -A/ai > 0 for all x E supp(f) leads to 

rb 

A?[A(x) + a?2(x)] dx < 0. 

This contradicts (19), and our proof is completed. El 

4. Analytic expression of the SPSWS. It is interesting to solve the BVP 
(8)-(9) analytically. Patoine and Warn [6], Shen [9], and Wu [13] have found analytic 
expressions for the solutions of the BVP (8)-(9) with different types of forcing func- 
tions. In this section, we show that the solitary wave solutions of the BVP (8)-(9) 
for a nonlocal well-shape forcing 

f(x) _ f-1, Ixl < a/2, 
0, otherwise 

can be expressed in terms of Weierstrass' elliptic functions in the region of the rect- 
angular dent and matched by hyperbolic sech2-type of functions outside of the dent. 
Here a is a positive constant which represents the length of the rectangular dent. 
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4.1. Analytic expression of the SPSWS. Since the forcing function f(x) has 
a jump discontinuity, the SPSWS 77(x) of the BVP (8)-(9) are all in Cl (J). When 
x < -a/2, the SPSWS T7(x) of the BVP(8)-(9) can be expressed by 

71(x) - --sech2 (x-LO), 

where the phase shift Lo is to be determined. 
When ixi < a/2, the SPSWS 7(x) must satisfy the equation 

(20) A77 + c72 ? /" = -1 

The continuity of Dj and 77' at x =-a/2 and x = a/2 yields 

(21) q7(-a/2)=- sech2 (a/2+Lo)=-h, 4,3 

(22) 77'(-a/2) = <70 tanh (a/2 + Lo) -71, 

(23) i7(-a/2) = r1(a/2), 

(24) 77'(-a/2) = i7'(a/2), or 77'(-a/2) -77'(a/2). 

The first integral of (20) from -a/2 to x (< a/2) satisfies 

(25) (7')2= b1n3 + b2n2 + b377 + b4, 

where b1 = -(2a)/(3/3),b2 -A/,3 b3 = -2/3, and b4 =-b3770. By making a 
transform ? = C1U + C2, (25) is converted into 

(26) (U' 4u _ 4 2U-93, 

where cl = 4/blI,c2 = -b2/(3b1),g2 =-(b2c2 + b3)/cl, and g3 2-(bic ? b2c2 ? 
b3c2 + b4)/c 2. Here, g2 is a constant and g3 is a function of Lo for given A, a, ,3, and a. 
The general solution of (26) can be expressed in term of Weierstrass' elliptic function 
U = P(X + T, g2,g3) (cf. [12, p. 470]). Thus, when |x| < a/2, the SPSWS 7(x) can be 
written as 

(27) 77(X) = cl g(x + T, g2, g3) + C2 . 

Equations (21) and (22) are reduced to 

(28) 770 = clp(-a/2+ T, g2,g3) + C2, 

(29) 771 = clgp(-a/2+ T, 92, 93). 

Further, from the following identity of Weierstrass' elliptic function (cf. [12, p. 482]) 

1 r g'(x, g2, g3) - gd(y,g2, g3) 2 
(x + Y, g2, g3) + ?(X, g2, g3) + ? (Y, g2, g3)- X,2,3) - (Y9293) 

2 
X 4 P(, 2 93a.) - P(M 2 9) 
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Weierstrass' elliptic function V(x + T, 92, g3) in (27) can be rewritten in the following 
form: 

4 {gclp(x + a/2,{2,93)7-< 0 + C2 2 Cl 

Equation (23) yields another equation: 

(30) B(A, Lo) =_ {- 1(a,g2,g3) o } -Cl c(a, 92g 93) + 2c2 - 277o 0, 

which determines the phase shift Lo. 
On the other hand, when x > a/2, the SPSWS can be expressed by 

3A -2 71 (x) - -sech2 (x -L), 

where the phase shift L1 is to be determined by the continuity conditions (23)-(24). 
Consequently, for each solution Lo of (30), we are able to construct an SPSWS 

to the BVP (8)-(9), which is expressed by 

( -2 sech2 (x- Lo), -oo < x <-a/2, 

(31) r (x) ccl (x + T, g2, g3) + C2, -a/2 < x < a/2, 

|-3sech2 (x-L1), a/2 < x < oo. 

4.2. Existence of multiple SPSWS. A salient feature of the BVP (8)-(9) 
with a well-shape forcing is that it may admit indefinitely large number of SPSWS 
for suitable parameters Ol and /3, and sufficiently large values A and a. We have 
numerically found that the number of the SPSWS of the BVP (8)-(9) is an increasing 
function of A and the dent length a. In fact, (30) may define Lo as a multivalued 
function of A. For a given A, the number of the corresponding solutions of Lo to 
(30) is equal to the number of SPSWS of the BVP (8)-(9). Thus, the contour plot 
of z = B(A, Lo) at level zero reveals the bifurcation behavior of the solutions to the 
BVP (8)-(9). 

To illustrate our numerical results, let us take Ol =-3/4, 3 =-1/6, and a as a 
parameter. When a = 1, the contour plot (Fig. 2) of z = B(A, Lo) at level zero shows 
that there exist at most two solutions to (30) for 0 < A < 4. Precisely, there are no 
solution, one solution, and two solutions for A < Ac(_ 0.9916), A = AC, and AC < 
A < 4, respectively. This AC is called the turning point of the SPSWS bifurcation. 
Figure 3 (a) shows that there are four solutions to (30) for sufficiently large A > Ac2 
when a = 2. There are two turning points in this case. One is Ac1 (r 0.22175) 
and the other is AC2 (_ 0.339). Also, our numerical result demonstrates that there 
exists a pitchfork bifurcation at the turning point AC2. Figure 3 (b) displays the 
local bifurcation diagram in the neighborhood of the two turning points. The gaps in 
Figs. 3 (a)-(b) are due to numerical errors. Moreover, we have found that there exist 
eight solutions to the BVP (8)-(9) when a = 8. In the case of a = 8, there are four 
turning points: AC1(, 0.3132), Ac2(, 0.3395), AC3(- 1.3866), and AC4(, 2.2545). 
Figure 4 (a) shows the bifurcation diagram for 0 < A < 4, and Fig. 4 (b) shows 
the local bifurcation diagram for 0.3 < A < 0.4. Our numerical results have clearly 



1278 L. GONG AND S. S. SHEN 

0.25 

-0.25 

-0.75 
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lambda 

FIG. 2. Bifurcation diagram of the SPSWS in the plane (A, Lo) for a 1 determined by the 
contour plot of z = B(A, Lo) at level zero. 

demonstrated the existence of two pitchfork bifurcations at the turning point Ac2 
(Fig. 4 (b)) and AC4 (Fig. 4 (a)). Another interesting feature is that there may 
exist nonsymmetric solutions in response to symmetric forcing and the nonsymmetric 
solutions must occur in pairs. In fact, for a symmetric forcing, q (-x) is also an SPSWS 
if i7(x) is an SPSWS. Hence, the number of nonsymmetric solutions must be even. 
Figures 5 (a)-(b) show the graphs of two symmetric SPSWS and two nonsymmetric 
SPSWS when a = 2 and A = 3, respectively. These two nonsymmetric SPSWS are 
indeed antisymmetric. 

5. Numerical SPSWS. In ?4, we have analytically solved the BVP (8)-(9) 
with a rectangular dent forcing function. But, the BVP (8)-(9), in general, cannot be 
solved analytically. It appears that it is not a trivial work to find multiple solutions 
numerically. Shen developed an efficient scheme which has proved to be applicable to 
any piecewise continuous forcing function in Col [8]. In this section, our objective is 
to use Shen's scheme to search for multiple numerical solutions for different forcings, 
for which analytic expressions of solutions cannot be found. 

In order to make the numerical method and results self-contained here, we briefly 
describe Shen's numerical scheme in the first subsection before presenting the numer- 
ical results in the later subsections. The well-shape forcing function is reconsidered in 
the second subsection. The numerical results obtained here coincide with the analytic 
results obtained in ?4. A partly negative and partly positive forcing function and 
two semi-elliptic bumps are taken as the forcing functions in the last two subsections, 
respectively. 

5.1. Numerical scheme. Suppose that the forcing function vanishes outside 
the interval (x_, x+). For x < x_, the solution of the BVP (8)-(9) is expressed by 

7 (x) =-2- sech 4(x- o) 

Here the phase shift Lo is to be determined. We need to solve the BVP (8)' (9) for 
x > x_. Different solutions are distinguished by different values of the phase shift Lo. 
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FIG. 3. (a) Bifurcation diagram of the SPSWS in the plane (A, LO) for a = 2 determined by the 
contour plot of z = B(A, LO) at level zero. (b) Local bifurcation diagram of the SPSWS in the plane 
(A, LO) for a = 2 near the two turning points. 

To determine Lo, we solve the following initial value problem: 

(32) A? + o7?2 + ,/, = f(X), x > x_, 

(33) TI(x-) =- - sech2 -(x-Lo), 2a 41( 3 

(34) r'(x-) - jii(x-)tanhA >x- - Lo) 
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FIG. 4. (a) Bifurcation diagram of the SPSWS in the plane (A, Lo) for a = 8 determined by the 
contour plot of z = B(A, Lo) at level zero. (b) Local bifurcation diagram of the SPSWS in the plane 
(A, Lo) for a = 8 near the first two turning points. 



MULTIPLE SOLITARY WAVE SOLUTIONS AND STABILITY 1281 

eta (x) 
7 ---- L01=0.2014360 

L02=-0 .793253 

I 5 

3 

x 
-3 -2 -1 0 1 2 3 

(a) 

eta(x) 
7 --~-- L03=-0.0669117 

/\ - L04=-1.9330900 

/ 

x 
-3 -2 -1 0 1 2 3 

(b) 

FIG. 5. (a) Two symmetric solutions of the sfKdV BVP when a = 2 and A = 3 (solid line, 
Lo1 = 0.201436, and dashed line, L02 = -0.793253). (b) Two nonsymmetric solutions of 
the sfKdV BVP when a = 2 and A = 3 (dashed line, L03 = -0.0669117, and dot-dashed line, 
L4 = -1.93309). 

up to x+ for a trial value of Lo, and compute 

BA(Lo) _ (3 (77(X+))2 + ? + ? 77(X+) 772(X+) 

The SPSWS 7/(x) satisfies 7r(+oo) = 0 if and only if BA(Lo) = 0 and 7/(x+) > 0 
for some Lo. If JBA(Lo)j < 10-5, we consider this Lo as a numerical approximation 
solution to B,(Lo) = 0. Using a do loop for Lo, a function BA(Lo) versus Lo can 
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be plotted in the (Lo, BA (Lo)) rectangular coordinate plane. The number of the 
intersections of the graph of the function BA(Lo) with the L0-axis is equal to the 
number of SPSWS of the BVP (8)-(9). 

All computations were done on a SiliconGraphics workstation. The IVP (32)- 
(34) was solved by an ODE solver NDSolve [ ] in Mathematica. Numerical results 
for three types of forcing functions are reported below. 

5.2. Well-shape forcing. Here, the well-shape forcing introduced in ?4 is re- 
considered. Figure 6 displays the curve of BA(Lo) versus Lo for A = 3 in the case of 
a = 2. This curve has four intersection points with L0-axis, i.e., BA(Lo) has four zeros 
Lo = 0.201436, -0.0669117, -0.793253, and -1.93309. Therefore, the BVP (8)-(9) 
has four SPSWS. These results coincide with those obtained from analytic solutions 
in ?4 (see Fig. 3 (a)). All graphs of these solutions are shown in Figs. 5 (a)-(b). 

5.3. Sine-shape forcing. In this section, the forcing we consider is defined by 

f( ) { sin(7rx), -1 < x < 1, 
f 0, otherwise, 

which represents a partly positive bump and partly negative dent. The turning point 
of the bifurcation is Ac(- 1.391133). Namely, the BVP (8)-(9) has no solution, one 
solution, and two solutions for A < AC, A = AC, and A > AC, respectively. The 
corresponding bifurcation diagram of the solutions in the (A,?7(x_)) coordinates is 
shown in Fig. 7 (a). Figure 7 (b) shows the BA(Lo) curves when A=3.3, 1.391133 and 
1.1, respectively. When A = 1.1, BA(Lo) has no zero, which implies that the BVP 
(8)-(9) has no solution. When A = Ac, BA(Lo) has only one zero, Lo -1.003546. 
Hence, the BVP (8)-(9) has only one SPSWS (Fig. 7 (c)). When A 3.3, B,\(Lo) 
has two zeros: Lo1 =-1.1791328 and L02 -0.5662725. Hence, the BVP (8)-(9) 
has two SPSWS (Fig. 7 (d)). 

B_lambda (LO) 

3 

2 

- -.2 -1 . _ LO 

-1 

-2 

-3 

FIG. 6. BA\(LO) curve versus Lo when A = 3 and a = 2 described in ?5.2. 
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FIG. 7. (a) Bifurcation diagram of the sfKdV BVP in the plane (A, r7(x-)) described in section 
5.3. (b) BA(Lo) curves versus L0 described in ?5.3, when A = 1.1 (no intersection point with the 
Lo-axis), A = 1.391133 (one intersection point with the Lo-axis), and A = 3.3 (two intersection 
points with the Lo-axis). (c) The solution of the sfKdV BVP when A = 1.391133 (Lo = -1.003546). 
\(d) Two solutions of the sfKdV BVP when A = 3.3 (solid line, Lol = -1.1791328, and dashed line, 
L02 = -0.5662725). 

5.4. Two semi-elliptic bump forcing. In this section, the forcing we consider 
is defined by 

21 - ~(x+2)2, Ix+21 < 1, 

f(x) = { ,1 -1(X - 2)2, Ix - 21 < 1, 

ol 0,otherwise, 

which represents two positive semi-elliptic bumps. In this case, we find that the crucial 
value Ac is close to 0.94329. Thus, when A < Ac, the BVP (8)-(9) has no solution. 
When A = AC, the BVP (8)-(9) has only one solution (Fig. 8 (a)) since BA(Lo) has 
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FIG. 8. (a) The solution of the sfKdV BVP when A = 0.9433 (Lo =-1.7329) described in ?5.4. 

(b) Four solutions of the sfKdV BVP when A = 2.2 described in ?5.4. 

only one zero at Lo = -1.732782. When A > Ac, the BVP (8)-(9) has more than 
one solution. For instance, when A = 2.2, BA(Lo) has four zeros: Lo, =-1.480978, 
L02 = -1.487165, L03 = -1.534397, and L04 =-1.910591. Figure 8 (b) displays 
these four solutions: two symmetric (Lo1 =-1.480978 and L03 =-1.534397) and 
two nonsymmetric (Lo2 = -1.487165 and L04 = -1.910591). It is clear that two 
nonsymmetric solutions are antisymmetric. 

6. Stability of the SPSWS. We have analytically and numerically demon- 
strated that there are many branches of SPSWS to the BVP (8)-(9). A natural and 
important question is which solution is stable with respect to the time dependent 
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fKdV equation 

(35) t + Ax + 2ax + 37xxx = fx, -oo < x < oo, 

(36) 7/(x, t = 0) = s(x), (?o, t) = O, 

where 2q,(x) is a stationary SPSWS of the sfKdV BVP (8)-(9). 
This stability problem is numerically investigated in this section. The instability 

of the SPSWS may be loosely described in the following way. We numerically solve 
the IVP (35)-(36) up to a certain time t. Naturally, the small perturbation due to 
the truncation error in the numerical computation is introduced to the system. If the 
initial profile is subject to a dramatical change in a short time (say, t < 30), then we 
say that this stationary solution rq (x) is unstable. It is also noticed that the wave 
resistance coefficient 

(37) CD,, (t) -j fxdx= _ d j 2dx, 

introduced by Wu [13], characterizes the rate of the change of the momentum of the 
wave evolution. This quantity can be used to discern the stability of an SPSWS as 
well. Namely, the stationary solution q, (x) is said to be unstable if the wave resistance 
coefficient CDS (t) varies in time. Otherwise, it is stable. 

For numerical simulations, the psuedo-spectral scheme developed by Chan and 
Kerkhoven [3] are extended to solve the IVP (35)-(36). In this scheme, the infinite 
domain in space is replaced by -L < x < L with L sufficiently large and the periodic 
boundary condition 7(-L, t) = (L, t) for any time t > 0 is used. We carried out 
numerical simulations for the case of the well-shape forcing introduced in ?4. As 
discussed earlier, the BVP (8)-(9) with the dent length a = 2 admits four SPSWS 
when A = 3. All numerical results are presented in Figs. 9-12 where (a) always 
shows the evolution of the initial wave profile and (b) manifests the wave resistance 
coefficient CDS (t). For a well-shape forcing, the wave resistance coefficient CD,, (t) is 
simply written as 

(38) CD. (t) = q(a/2, t) -(-a/2, t). 

Our numerical results suggest that only one SPSWS is stable and all the others are 
unstable. 

Let us explain the numerical results as follows. Figure 9 (a) exhibits the evolution 
of a symmetric SPSWS (solid line in Fig. 5 (a)). One can see that the initial wave 
profile remains in the same form up to time t = 30. Also, Fig. 9 (b) demonstrates that 
the curve of the wave resistance coefficient CDS (t) is fairly flat. Thus, this SPSWS is 
stable. Two nonsymmetric SPSWS are obviously unstable (Figs. 10-11). Figure 10 
(a) shows that the higher amplitude wave evolves into the stable steady-state while the 
lower amplitude wave deforms a little and propagates away from the initial state. This 
result provides evidence of the existence of "the basin of attraction" in the system. 
The terminology "the basin of attraction" is adopted from Camassa and Wu's paper 
[2]. The other symmetric SPSWS is unstable as well. Figure 12 (a) shows that the 
wave profiles shift left and right slightly around the initial profile and (b) shows the 
oscillation of the wave resistance coefficient CDS (t). 

Throughout our numerical computation, we have taken L = 32 and the number of 
the collocation points N = 512. Due to the requirement for the linear stability of the 
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FIG. 9. (a) Evolution of the stable SPSWS, corresponding to the solid line in Fig. 5 (a), when 
a - 2. (b) The wave resistance coefficient CDS (t) versus t. 

scheme (cf. [3]), the time step At is taken as 0.005. All numerical computations 
are implemented by a Mathematica code called "srecfkdv.m" on a SiliconGraph- 
ics workstation. For the purpose of viewing the main characteristics of the wave 
motion, Figs. 9-12 (a) only display the evolution of wave profiles in a subinterval 
of (-L, L). 

7. Concluding remarks. We have studied the supercritical positive solitary 
wave solutions (SPSWS) of the stationary forced Korteweg-de Vries equation (sfKdV) 
and their stability when the forcing is nonlocal. Here, a "nonlocal forcing" means that 
the support of the forcing in the physical problem is of comparable length with the 
length scale L of the free surface wave. Hence, each type of forcing considered here has 
a long support. In summary, we have analytically and numerically demonstrated that 
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FiG. 10. (a) Evolution of the unstable SPSWS, corresponding to the dashed line in Fig. 5 (b), 
when a = 2. (b) The wave resistance coefficient CDw (t) versus t. 

the stationary forced KdV equation can have more than two SPSWS for a nonlocal 
forcing. There may exist 2N SPSWS for an arbitrary integer N when a and A are 
sufficiently large in the case of the well-shape forcing. At the turning points from 
two SPSWS to four SPSWS, from four solutions to six solutions, and so on, there 
may exist pitchfork bifurcations. Nonsymmetric solutions exist in response to the 
symmetric forcing. They must occur in pairs. 

It is worth remarking that Camassa and Wu have recently investigated the stabil- 
ity of the forced sech2-like solitary waves [1]-[2]. They analyzed the linear instability 
of the stationary forced solitary waves due to infinitesimal disturbances. Three dif- 
ferent categories of the stationary forced solitary waves are identified, which occur 
in three different parametric re'gimes called a periodic bifurcating regime, an aperi- 
odic bifurcating regime, and a supercritical stable regime. They also did nonlinear 
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FIG. 11. (a) Evolution of the unstable SPSWS, corresponding to the dot-dashed line in Fig. 5 
(b), when a =2. (b) The wave resistance coefficient CD,, (t) versus t. 

stability analysis from the Hamiltonian functional formulation. In general, it is very 
difficult to analyze the stability of the stationary forced solitary waves. Even if ana- 
lytic expression of SPSWS to the sfKdV equation is found for a nonlocally negative 
forcing described in ?4, the structure of the SPSWS is still complicated. Numerical 
simulations reported in ?6 suggest that only one SPSWS is stable and the others are 
unstable. To the authors' knowledge, there have not been experiments conducted for 
nonlocally forced cases. It seems that a further experimental study on this stability 
problem will be worthwhile. 
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