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New applications of satellite data can better predict growing conditions

worldwide. This can be used to forecast crop production that leads the

widely followed government reports.

Microwave imaging
that predicts yields

BY ALAN BASIST, ROBIN HULT, SAMUEL SHEN, NEIL THOMAS & MARC BASIST

magine if you could forecast crop

conditions better and faster

than the U.S Department of

Agriculture (USDA)Y. Well,
it’s possible using technology
known as special sensing microwave
imaging (SSMI).

This technology can objectively cal-
culate changes in growing conditions
and yields for major crops ar the coun-
ty-equivalent level throughout the
world. This permits independent and
objective assessment of yield where
limited data previously existed.

Crop models that exploit this data
use the statistical relationships
between temperature and wetness vari-
ations and yield figures at the county
level. Running on near real-time SSMI
data, the output is highly correlated
with yield values supplied by the
National Agriculrural Statistical
Service (NASS), which are followed
world-wide as the definitive source of
crop data. Moreover, the SSMI derived
yield index provides an excellent tech-
nique to objectively assess yields with-
out extensive, expensive and subjec-
tive field surveys.

The benefit for the trader is clear:

faster, accurate, more affordable crop
assessments result in better models.
These models result in satellite derived
accurate forecasts, and ostensibly, more
profitable rrades.

THE TECHNOLOGY

This technique uses the microwave
spectrum to identify changes in surface
wetness and temperature. [t then incor-
porates these changes, measured as
anomalies, into crop models, which
explain variations in yields for soybean,
comn, wheat and cotton in the United
States. Alternative methods, such as tra-
ditional field surveys, are based on few
and frequently unrepresentative spot
ohservations and these findings tend to
be subjective in nature.

SSMI technology was initially devel-
oped to monitor surface temperature
and wetness from microwave energy
narturally emitted from the land sur-
face. The SSMI can observe, monitor
and measure the land surface under
almost all sky conditions. Thus, SSMI
provides better risk coverage than opti-
cal-based satellite methods because
clouds can cover much of the earth’s
surface at any time.

The temperature measurement tool
was calibrated on an extensive network
of surface stations. The wetness mea-
surement tool is a composite of any
source of moisture near the surface.
These developed models have been
combined and integrared as two inputs
to create yield indexes for corn, soy-
beans, wheat and cotton.

The data come from a satellite
platform flown by the Defense
Meteorological Satellite Program
(DMSP) that orbits the globe 14 times
a day, and has been doing so since
1987. The DMSP satellites have sun-
synchronized overpasses at 6 a.m. and 6
p-m. These satellite overpasses occur
twice daily and are processed into 1/3 x
1/3 degree “pixels” by the National
Environmental Satellite and Data
Information and Satellite (NESDIS).
These data are archived at NOAA’s
Sarellite Active Archive (SAA) in
near real time.

The data received from these satel-
lite observations are processed mto
three classes of values: the actual, cli-
matology and anomaly. Both the tem-
perature, measured in Celsius, and wet-
ness measurements are available as
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morning and afternoon observations.

Anomalies are departures from the
expected value for thar location and
time of year. The surface wetness index
is derived as the percentage of the radi-
ating surface that is in any form of
moisture (liguid water). Anomalies for
the werness product are defined by a
cumulative probability function, where
low values are extremely dry and high
values are extremely wet for that loca-
tion and time of year.

Using techniques that measure the
true spatial structure of the temperature
is elusive in most areas of the world
because isolated point measurements are
smeared across the region, hiding the
true spatial structure and gradients. This
is particularly true in mountainous areas
or regions where steep and irregular gra-
dients in temperature and precipitation
occur. The satellite sensor’s ability to
monitor the true surface wetness and
temperature patterns, and departures
from normal in near-real time provides
a great utility to an array of applications.

The satellite observations are aver-
aged throughout a base period from
1988 1o 2005 for each month at every
30-kilometer pixel across the land sur-
face. The mean values are compared
against the ohserved temperatures for a
particular time and location. The
departure from rhe mean defines the
temperature anomaly, which identify
whether a location has above, below or
average temperatures during that time
of year. Anomalies range from severely
dry to severely wet using a cumulative
probability scale.

“World assessment” (right) shows
the full global structure of land surface
temperatures for a week in July 2005
(top charr). It idenrifies the areas
where temperatures are above average
(in much of the United States, Brazil
and eastern Russia) as well as areas
where temperatures are below normal
(such as Canada, Argentina and parts
of China). The bottom chart shows
the corresponding surface wetness
anomalies for the same week. It shows
much of China slightly wetter than
normal, while the largest positive wet-

ness anomalies are in northeastern
Australia and across much of India.

By transferring the magnitudes of
these anomalies to our crop model, we
can explain variations in yield by mea-
suring the combined impact of surface
wetness and temperature anomalies
during planting, emergence, filling,
maturation and harvest.

METHODOLOGY

Numerous approaches have tried to

WORLD ASSESSMENT

model how changes in growing
conditions impact variability in yield.
Some of the techniques integrate
remotely sensed data into the models.
However, the inter-annual variations of
soil moisture can be quite different from
actual observations. Soil moisture is an
important variable in assessing growing
conditions, and if a certain technique
cannot measure it accurately, then a
new technique is needed.

Using only two sets of predictors,

This shows how temperatures around the world vary from their norm, New technology allows
this data collection to be unaffected by cloud cover.

SATELLITE DERIVED SURFACE TEMPERATURE ANOMALIES - 6LOBAL ANOMALIES (DEGRESS C) |
FOR JULY 18-24, 2005 BASE PERIOD 1988-2005

-

1200 60W
I i —
3 b -4 1 -

We also can measure various moisture levels around the world. By inputting the temperature
and moisture data into'our model, we can improve on crop forecasts.
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INSIDE IOWA

Technology & Trading continues.

As expected, partly because it fakes time to perform field surveys and analyze the findings, the SSMI data generally lead the NASS reports. For
instance, in 1992 the madets consistently increased yields from the end of June, and the NASS yields approached the SSMI model resuls later.

‘Basist Yield lndex

[Planted yields from nonmalized data)

NASS Planted Yields
(from harvested production and plantad acreage)

Differenc OWA CORN

Sapt 30 . Report

= Final  date: Aug Sep. Oct Noy
B4 E B.7 1968 75.8 739 776 786 795
113.5 27 1989 106.9 1850 1108 | 1157 | 11a7
147.2 148 1992 1285 1285 132.4 142.3 1442
11956 e ] 1995 1316 121 8 117 9 1178 1199

1345 2.4 1996 1260 127.9 131.8 136.7 1347

1322 -4 4 1997 1366 1366 136 & 1366 1346
W4 12 1998 133B 196 1385 | 1416 | 1415
1423 4.0 1999 147 3 147.3 146.3 1453 1453
146 3 19 2000 151.2 151.2 144.4 142 4 1415
1445 7.2 2001 137.4 134.5 137.4 143 2 1423
1547 3 2002 1418 1447 154.4 165 4 16803
1431 78 2003 1528 149.0 150.9 1538 1919
177.0 =] 2004 158.2 159.1 175.7 178.7 Ve7

~ Archived satellite data was ncomplete in 1920,1992,1993 and 1994

10WA CORN
Data
ending: 30-Jun -
1988 913 849 543
1389 116.0 161 1161
1992 132.5 1459 147.3
1995 1226 121.3 118.2
1996 1268.8 1369 136.0
1997 1263 1258 1209.2
1996 139.8 138.6 1371
1999 147.0 139.3 143.2
2000 1540 15410 1480
2001 147.8 147.0 144.7
2002 1589 1531 1542
2003 1511 1510 142.8
2004 161 1 163 1 175.2
Source: Semmiodity Hedgers & USDA

monthly wetness and remperature
anomalies, we can relate changes in
the growing conditions to flucruations
in yield potential. This is done by cor-
relating the SSMI monthly anomalies
to yield and their explanation in yield
changes as the growing season pro-
gresses. The final counry-level sratis-
tics provided by the NASS can be
used to judge the accuracy and stabili-
ty of the models.

Monthly anomalies for the months
influencing growing conditions of
various crops are correlated to final
yvield values. Because the models are
calibrated against final yield, they
should correctly converge on rhe final
yield as the growing season unfolds.
We can test this hypothesis using the
monthly NASS estimated yield val-
ues, which are known as track yields.
The period of study begins with the
August report (July survey) and ends
with the final report, which is the
January annual crop production.

The main mputs to the models are
the anomalies during the main plant
growth cycle: vegetative, reproduction,
seed-pod filling and maturation. The
model parameters and correlation coef-
ficients are generated using nonlinear
regression analysis. The independent,

or exploratory, variables are monthly
anomalies of wetness and temperature,
and the statistical procedure corre-
sponds a beta coefficient to each of
these independent variables.

The data set used to generate the
weights for the independent variables
is huge. Dara are drawn from about 100
counties and 10 years of validation
data. This effectively creates 1,000
growing vears for testing the accuracy
and value of the model.

But that doesn’t mean that what
works well in one area works well in
another. In one particular area, anoma-
lous hot and wet surface conditions
may be optimum, while in another area
it may be better if conditions are cool
and wet. So, developing a model on
statewide statistics allows it to deter-
mine the best relationships to accom-
maodate regional differences.

Clearly, factors other than tempera-
ture and werness affect crop produc-
tion. However, because we are using
variations from the norm, then the
effect of other important variables,
such as soil types and climatic condi-
tions, can be ignored because they typ-
ically don’t change for a specific area.
Atfter all, the reason particular crops
are grown at a locarion is because that

location provides some stability
growing conditions.

Obviously, unusually hot and d
surface conditions will impact tt
crop’s development much different
from unusually cold and dry weathe
Therefore the models contain son
nonlinear interactions between the
two sets of variables. A primary reasc
why yields vary at a location relat
to the interaction of moisture ar
temperature at the site.

Because locarions can vary in the
productivity, the NASS yield valu
for each county are normalize
Specifically, we calculate the me:
yield for each county and use the ave
age to derive annual departures. Fi
instance if the mean is 100 bushels i
county A, and in a particular year
received a vield of 50 bushels, tt
value used in the model is 50%. Th
permics the anomalies to efficient
translate changes in growing cond
tions with expected vield.

RESULTS & VALIDATION

To test the hypothesis that the SSh
data lead the NASS reports, predicte
values can be compared to the yiel
values in the NASS August repor
based upon the agency’s July survey.
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second model correlates the SSMI dara
through July with NASS’s analyses end-
ing m August {reported in September).
Sequentially, the models are correlated
using SSMI anomalies ending in August
with the NASS September survey
{reported in October). Because NASS
releases its end-of-month report in the
middle of the following month, the
SSMI predictions therefore precede
NASS by more than five weeks.

The models must prove the validity
of the assumprtion that changes in
growing conditions can identify
changes in potenrial yield, and more
important, provide leading indications
of NASS reported yields and demon-
strate high correlation to final NASS
vield estimares.

“Inside lowa" (left) shows results
from our model for lowa, during the
period 1988 through 2004. The SMMI
data set is complete for the last 10
vears, and the near-real-time SSMI
data are operationally downloaded
each day. Alt NASS anomalies are cal-
culated in terms of a 17-year (1988 ro
2004) base period. The models are cali-
brated on these NASS anomalies,
which are normalized by counties. The
normalizarion procedure describes an
average year as 100%. A result of less
than 100 is the amount yields are
below average, and more than 100 is
the percent it is above average,

One hypothesis in this study is that
changes in yield are highly correlated
to changes in field conditions during
the growing season, and that the
SSMI-based models converge on
the final yield in a rrend similar to
NASS. Indeed, the SSMI data lead the
NASS reports. The models actually
explain variation in yield as early as
the end of June that NASS does not
report until mid-August.

During most years, the models con-
verged on the final vield in a consistent
pattern, indicating that growing condi-
tions can be determined to be anoma-
lies in remperature and wetness. The
yield dara were not trended, although
we are well aware that all conditions
being equal, we should expect a sub-

PREDICTING YIELDS

On average the accuracy of the SSMI was 1% hetter than NASS, and when 1988 (an atypical
drought year) is excluded, it was almost 2% higher. That's with more than a month lead time.
Verification of Estimation Error
Absolute Error Relative to Final NASS Yield

Basist end of Jun NASS middle of Aug
1988 14.8% 4.8%
1989 1.1% 6.8%
1992 81% 10.9%
1995 22% 9.8%
1996 4.4% B6.5%
1997 B.9% 1.4%
1998 1.2% 1 4%
1999 12% 13%
2000 58.9% £.9%
2001 39% 3.4%
2002 0.9% 11.5%
2003 0.5% 0.6%
2004 28% 10.5%
Average 4.8% 58%
‘wi/o 1988 4.0% 59%

Sousog; Commadily Hadners & LUSDA

stantially larger yield in 2004 than
1988. This is one reason why SSMI
predictions for 1988 are higher.

We can test this hypothesis further
by comparing the expected yields for
lowa corn early in the growing season.
The earliest available NASS data 1s
the July survey reported in August,
which we can compare with the SSMI-
based vields at the end of June. A 100
means a perfect first relationship
(SSMI at the end of June and NASS
in the middle of August) of the final
yield value. See “Predicting yields,”
above. For the vast majority of the
years, the June models identified final
yield better than NASS July numbers.

The next question is whether the
SSMI-based predictions lead the
NASS change in yield as the growing
scason develops. To test this, we can
use yield values from three crops in
high-production states: corn, soybeans
and wheat. The study used spring
wheat from North Dakota and winter
wheat from Kansas. [t used soybeans
from [linois and Nebraska, and corn
from [owa and Ohio. Initial findings
were only based on the relationship

between SSMI-based final vield values
(end of September) with the NASS
final yield values from the USDA
Annual Crop Production report
released in January the following year.
The correlation was more than 96%
for each crop in the various states.
Next, to increase the amount of
data used for this test, we can expand
it to include four periods of the grow-
ing season for each crop and state.
This better tests the ability of the
SSMI data to lead NASS as the grow-
ing season advances. As mentioned
above, the comparison is the end of
June value for the SSMI data to end
of July values for NASS, and then
advanced the models in a monthly
time step throughout the growing sea-
son (see “Tracking values,” page 54).
The results of all these tests reveal
three findings. First, NASS is generally
conservative, moving yields slowly in
the proper direction. Second, it takes
rime to perform field surveys and ana-
lyze the results. Third, the accurate,
near real-time and objective data can
provide valuable information and
shorten the analysis period that relates
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Technology & Trading continued

field condition to final yield.

Because the SSMI data ser is
objective, global and scientific, it
is being used by numerous govern-
mental and commercial organizations

ING VALUES

that have a need to make accurate
assessments of future agricultural
production. It has rapidly become
the scientific tool of choice in
predicting and more thoroughly

Generated a month before the NASS reports, the SSMI data are surprisingly accurate in
forecasfing the government figures across several crops.

NASS Track Yields regressed on Basist Yield Index

Annual Annual Monthly Maonthly
Obs. Correlation Obs. Caorrelation

MD Wheat 13 98 A% 52 94 7%
KS Wheat 12 97 5% 43 90.0%
NE Soy Bean 13 96.1% 52 90.2%
IL Soy Bean 13 97 6% a2 92.1%
No. IL Soy bean* 13 98.8% NLA N.A.

1A Corn 13 98.7% 52 95 0%
OH Corn 13 96.4% 52 94.2%
Average 129 97 7% a1.3 927%

* Monthly county estimates are not available from NASS

Soures: Commanty Hechers & USDA

understanding global vields on a near
real rime basis. Now sophisticared
traders may join these esteemed
organizations by taking advantage of
this superior technology. IFM

Note. For additional references and
suggestions for further reading on this sub-
ject, and for the online article “A better
model for crop forecasts,” please go to
www.fururesmag.com. The online article
provides more specific technical informa-
tion on the model.
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