INTRODUCTION TO MODERN MATHEMATICAL MODELING WITH R

44

CONTENTS

Foreword	xi
Glossary	XV

PART I SHORTCUT TO DISCOVERING LAWS OF NATURE AND LINEAR REGRESSION MODELS

1	Dimensional analysis						
	1.1	Dimension and units	3				
	1.2	Fundamental physics dimensions: $LMT\theta I$ -class	4				
	1.3	Relationships between magnetic and electric fields	7				
	1.4	The general principle of dimensional analysis					
	1.4.1 A universal mathematical model for nature						
		1.4.2 Dimensional analysis for a simple pendulum and calculation					
		of the pendulum period	10				
		1.4.3 The instantaneous speed of a free-fall body of mass m	11				
	1.5	Shock wave radius of a nuclear explosion					
	Exercises						
2	Basics of R Programming						
	Download and install R software package	19					
	2.2						
			v				

VI CONTENTS

		2.2.1 R as a smart calculator	20				
		2.2.2 Write a function in R	21				
		2.2.3 Plot with R	21				
		2.2.4 Symbolic calculations by R	21				
		2.2.5 Vectors and matrices	22				
		2.2.6 Statistics	24				
	2.3	Online Tutorials	25				
		2.3.1 Youtube tutorial: for true beginners	25				
		2.3.2 Youtube tutorial: for some basic statistical summaries	25				
		2.3.3 Youtube tutorial: Input data by reading a csv file into R	25				
		Exercises	26				
3	Linear Models by Regression						
	3.1	Introduction to a linear model	29				
	3.2	Formula derivation and interpretation for the trend and intercept of a					
		linear regression	31				
	3.3	Evaluate a linear model by regression using R	33				
	3.4	Research level exploration	39				
		Exercises	40				
4	Dring	inles of Methometical Medeling	40				
4		iples of Mathematical Modeling	43				
	4.1	Principles of mathematical modeling and client report template	43				
	4.2	Zeroing a rifle	44				
	4.3						
		Temperature Climate	48				
		4.3.1 Earth's energy budget	48				
		4.3.2 A uniform water-covered Earth	50				
	4.4	EBM for a uniform Earth with nonlinear albedo feedback	52				
	4.5	Modeling mortgage payment	55				
	4.6	Template of a client report	57				
	4.7	Term Project #1.	58				
		Exercises	59				
5	Math	ematical Modeling by Linear Algebra	61				
	5.1	Kirchhoff's laws and solution of an electric circuit	61				
	5.2	Mass balance models for chemical equations	63				
	5.3	Leontif production model: a balance of the output and input	64				
	5.4	An SVD representation model for space-time data	66				
		5.4.1 The fundamental idea of SVD: space-time-energy separation	66				
		5.4.2 SVD for a 2-Dim spatial domain and 1-Dim temporal domain	70				
		5.4.3 An SVD algorithm and covariance matrix	72				
		5.4.4 SVD analysis for El Nino Southern Oscillation data	72				

		CONTENTS	vil
		5.4.5 SVD analysis for the tropical Pacific's precipitation data	79
		Exercises	79
6	Mathe	ematical Modeling by Calculus	83
	6.1	Optimal production level of oil	83
	6.2	Optimal dimensions of food cans	86
	6.3	Exponential decrease of pressure in an isothermal layer of atmosphere	88
	6.4	Modeling blackbody radiation	89
	6.5	Chemical mixture problems in a natural or chemical engineering process	93
		Exercises	94
7	Proba	bilistic Models	97
	7.1	Two-dice probability problems	97
	7.2	Optimal design for product test	98
	7.3	Buffon's needle problem	98
	7.4	Detecting a round cloud by a radar	103
	7.5	Markov chains	103
			103
			107
	7.6		111
			111
		7.6.2 Use Monte Carlo simulation to estimate the volume of an n-ball	113
8	Stoch	astic Models 1	115
	8.1	A nowhere differentiable but everywhere continuous model	115
	8.2		1.1.6
	0.4		116
	8.3		116 117
		Ito calculus	117
	8.3	Ito calculus Fractal dimension and similarity	
	8.3	Ito calculusIFractal dimension and similarityI8.4.1References	117 119 119
	8.3	Ito calculusIFractal dimension and similarityI8.4.1References8.4.2Dimension of Koch curve	117 119 119 119
	8.3	Ito calculusIFractal dimension and similarityI8.4.1References8.4.2Dimension of Koch curve8.4.3Use R to calculate the fractal dimension	117 119 119 119 120
	8.3 8.4	Ito calculusIFractal dimension and similarityI8.4.1References8.4.2Dimension of Koch curve8.4.3Use R to calculate the fractal dimensionStochastic differential equationsI	117 119 119 119
9	8.3 8.4 8.5 8.6	Ito calculusIFractal dimension and similarityI8.4.1References8.4.2Dimension of Koch curve8.4.3Use R to calculate the fractal dimensionStochastic differential equationsSolving SDE using R	117 119 119 119 120 121
9	8.3 8.4 8.5 8.6	Ito calculusIFractal dimension and similarityI8.4.1References8.4.2Dimension of Koch curve8.4.3Use R to calculate the fractal dimensionStochastic differential equationsSolving SDE using RIize Mathematical Models by R	117 119 119 120 121 121
9	 8.3 8.4 8.5 8.6 Visual 9.1 	Ito calculus Ito calculus Fractal dimension and similarity Ito calculate the fractal dimension 8.4.1 References 8.4.2 Dimension of Koch curve 8.4.3 Use R to calculate the fractal dimension Stochastic differential equations Ito calculate the fractal dimension Solving SDE using R Ito calculate the fractal dimension Itize Mathematical Models by R Ito calculate the fractal dimension	117 119 119 119 120 121 121
9	8.3 8.4 8.5 8.6 Visua 9.1	Ito calculus I Fractal dimension and similarity I 8.4.1 References I 8.4.2 Dimension of Koch curve I 8.4.3 Use R to calculate the fractal dimension I Stochastic differential equations I I Solving SDE using R I I Iize Mathematical Models by R I I R graphics examples I I 9.1.1 Plot two different time series on the same plot I	117 119 119 120 121 121 121 123 123
9	8.3 8.4 8.5 8.6 Visua 9.1	Ito calculus I Fractal dimension and similarity I 8.4.1 References I 8.4.2 Dimension of Koch curve I 8.4.3 Use R to calculate the fractal dimension I Stochastic differential equations I I Solving SDE using R I I Ize Mathematical Models by R I I R graphics examples I I 9.1.1 Plot two different time series on the same plot I 9.1.2 Figure setups: margins, fonts, mathematical symbols, and more I	117 119 119 120 121 121 121 123 123 123
9	8.3 8.4 8.5 8.6 Visua 9.1	Ito calculus I Fractal dimension and similarity I 8.4.1 References I 8.4.2 Dimension of Koch curve I 8.4.3 Use R to calculate the fractal dimension I Stochastic differential equations I I Solving SDE using R I I Iize Mathematical Models by R I I R graphics examples I I 9.1.1 Plot two different time series on the same plot I 9.1.2 Figure setups: margins, fonts, mathematical symbols, and more I I 9.1.3 Plot two or more panels on the same figure I	117 119 119 120 121 121 121 123 123 124 127
9	 8.3 8.4 8.5 8.6 Visual 9.1 9.2 	Ito calculus I Fractal dimension and similarity I 8.4.1 References I 8.4.2 Dimension of Koch curve I 8.4.3 Use R to calculate the fractal dimension I Stochastic differential equations I I Solving SDE using R I I Iize Mathematical Models by R I I R graphics examples I I 9.1.1 Plot two different time series on the same plot I 9.1.2 Figure setups: margins, fonts, mathematical symbols, and more I I 9.1.3 Plot two or more panels on the same figure I Contour color maps I I	117 119 119 120 121 121 121 123 123 123

VIII CONTENTS

		9.2.3	Plot contour maps from climate model data in NetCDF files	131	
	9.3	Visualize regression models using R			
	9.4	Animation of a free fall based on model			
	9.5	Visualiz	ze El Niño models and data	134	
		9.5.1	A sea level pressure model	134	
		9.5.2	A surface temperature model	134	
		9.5.3	A precipitation model	134	
10	Stat	stical Mo	odels and Hypothesis Tests	135	
	10.1	Statistic	al indices from the global temperature data from 1880 to 2015	136	
	10.2	Commo	nly used statistical plots	140	
		10.2.1	Histogram of a set of data	140	
		10.2.2	Box plot	140	
		10.2.3	Scatter plot	141	
		10.2.4	QQ-plot	144	
	10.3	Probabil	lity distributions	145	
		10.3.1	What is a probability distribution?	145	
		10.3.2	Normal distribution	148	
		10.3.3	Student's t-distribution	150	
	10.4	Estimate	e and its error	151	
		10.4.1	Probability of a sample inside a confidence interval	151	
		10.4.2	Mean of a large sample size: Approximately normal		
			distribution	153	
		10.4.3	Mean of a small sample size: t-test	160	
	10.5		al inference of a linear trend	163	
	10.6	Free onl	ine statistics tutorials	165	
Refe	rences			167	
		Exercise	28	168	
11	Conc	ept of bi	g data modeling	169	
	11.1	Big data	: books for layman and techies	169	
	11.2	A guide	to propose and review a big data project	170	
	11.3	The concept of fitting a model to data			
	11.4	Why over fitting is bad?			
	11.5	Good models and decision-analytic thinking			
	11.6	Big data practice			
	11.7		ualization	171	
	11.8	Term Pro	oject #3–The Final Project	171	
12	Concepts of machine learning				
	12.1	What is	machine learning?	174	
	12.2	K-means clustering			

					CONTENTS	ix
			10.0	T		177
*7	Σ.		12.3	Logistic regression		177
			12.4	CART classification		177
			12.5	SVM classification		177
		Refe	erences			179
				Exercises		180
		13	Artifi	cial Intelligence Models		181
			13.1	Introduction		181
			13.2	Searching		181
			13.3	First-order logic		181
			13.4	Planning		181
			13.5	Knowledge representation		181
			13.6	Uncertainty quantification		181
		14	Netw	ork models		183
			14.1	Introduction		183
			14.2	An example of transportation network		185
			14.3	An example of communication network		185
			14.4	Matching algorithms		185
			14.5	Flow maximization		185
			14.6	Shortest path between two nodes in a network		185
			14.7	Neural network models and their simulations		185
		15	Math	Mathematical and Statistical Consulting		187
			15.1	How to conduct the first meeting		187
				15.1.1 When to hold the first meeting		187
				15.1.2 What to present at the first meeting as a consultant		187
				15.1.3 What questions to ask		187
			15.2	How to write an SOW		187
		5	15.3	Deliver the consulting results		187
			15.4	Maintain the conducts		187

FOREWORD

This is primarily a textbook for the first course of undergraduate mathematical modeling, although many of its R codes and modeling methods can be useful research tools in natural sciences, engineering, social sciences, and even applied mathematics. The book includes basic skills of applied mathematics consulting, such as dimensional analysis for exploring possible relationships among the relevant variables, R programs for time series analysis, map plotting, data visualization, basic probability, statistics, linear algebra, calculus, and 5-step method of mathematical modeling principles.

The book is based on the lecture notes I developed for an upper division course "Math 336: Introduction to Mathematical Modeling" at San Diego State University since 2015. The mathematical prerequisite for this course are Calculus I and the first semester of linear algebra. The book includes the following topics: dimensional analysis, R programming, principles of 5-step mathematical modeling, linear regression models, linear algebra models, probability models, calculus models, stochastic models, statistical inference, big data models, machine learning models, artificial intelligence models, network models, R graphics models, and principles of applied mathematics consulting.

Computer programming experience is not required for reading this book. R programming tutorial is described in book and taught in class from beginning, and is the official computer program language for the course. R and R Studio are free for public download and can be installed easily for either PC or Mac.

Mathematical model is a mathematical expression, often a formula or an equation, that describes a phenomenon, such as the free-fall of an object from a height. The distance between of the object and its initial release position is modeled by $(1/2)gt^2$, where g is the gravitational acceleration and t is the time from the release. Science history implies that Galileo Galilei (1564-1642) was the first who invented this formula. He designed a very

XII FOREWORD

smart experiment for this. At that time, it was hard to observe the free fall time t since a body falls down very fast in the free fall environment. He slowed down the free fall by a free roll of a ball on a plate with ticks (see Fig. 0.1). He placed a wire on the plate so that the ball would make a click sound when the ball rolled over the wire. He adjusted the positions of the four wires so that the ball would make click sound in uniform time intervals. He then discovered that the distance after each click sound is

$$(1/2)at^2 [m]$$
 (0.1)

where $a = g \sin \theta$ and θ is the angle between the plate and the horizontal plane. The four lines' distances from the releasing points are thus

$$0.5a \times 1^2, \quad 0.5a \times 2^2, \quad 0.5a \times 3^2, \quad 0.5a \times 4^2 \ [m].$$
 (0.2)

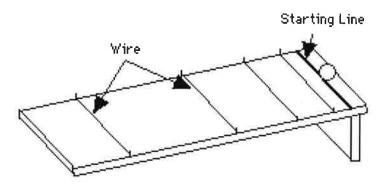


Figure 0.1 Galileo's experiment for a ball falling down on an inclined plate.

The formula $s = (1/2)at^2$ is a mathematical model for the ball rolling down on a plate under gravity. Because of measurement errors, the model is not 100% accurate when compared with the observed data of time and distance. The real world problem is often that when a certain phenomenon is observed, a mathematical model is needed to describe the phenomenon in a quantitative fashion, as accurately as one can. Because observations are necessarily involved in most natural and engineering phenomena, the observational records, called observed data, often used to develop a mathematical model. Linear regression is a commonly used approach to develop a mathematical model. This is an induction approach, deriving a mathematical model using data.

However, some mathematical models can be established from mathematical point of view, whose results are thought to be physically meaningful and to describe the nature. Dimensional analysis is a good approach to develop a mathematical model, such as the problem of an object's free fall. This is a deduction approach, which discover a mathematical model based on mathematical logic and the intrinsic relationships among the variables of the problem. Observational data are still needed to validate the model or to determine one or more critical free parameters of the model.

Both induction and deduction approaches demonstrate the power and beauty of mathematics. This book attempts to show the effectiveness, power, and wide applications of mathematical modeling, using an updated modern approach. The book covers current and future mathematical topics, such as big data, machine learning (ML), networks, artificial

FOREWORD XIII

intelligence (AI), mathematical consulting, and R programming and graphics, which are not covered in most of the existing mathematical modeling texts, but these topics are very important in the big data and AI era. They are more frequently encountered by students in their career than calculus or linear algebra alone. The book has another unique characteristics of interdisciplinary approach that uses calculus, linear algebra, statistics, and computing as an integrated tool to solve a practical problem, such as the analysis of spatiotemporal pattern of the El Niño climate phenomenon over the tropical Pacific, rather than treats them as separated and isolated branches of mathematics and statistics. Many existing mathematical modeling books are built on differential equation models, either ordinary differential equation or partial differential equation, and thus involve techniques of solving differential equations, either analytically or numerically. Those books require the background knowledge of Calculus II or III or more advanced mathematics, and are for senior or graduate levels in mathematics physics or engineering. This book is different and does not requires the knowledge of differential equations. It focuses on the current and future needs of mathematical modeling on data and computer programming, such as linear regression, stochastic modeling, and machine learning. This book emphasizes the modeling objectives and results interpretation, although the model development and solutions are also described.

Another feature of this book is to show students how to write short proposals and consulting reports based on mathematical modeling approaches. This helps train students to pursue excellent jobs of mathematical consulting, a career similar to but different from the popular statistical consulting.

By SSPS in San Diego, January 2018