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FOREWORD

This is primarily a textbook for the first course of undergraduate mathematical modeling,
although many of its R codes and modeling methods can be useful research tools in natural
sciences, engineering, social sciences, and even applied mathematics. The book includes
basic skills of applied mathematics consulting, such as dimensional analysis for exploring
possible relationships among the relevant variables, R programs for time series analysis,
map plotting, data visualization, basic probability, statistics, linear algebra, calculus, and
5-step method of mathematical modeling principles.

The book is based on the lecture notes I developed for an upper division course "Math
336: Introduction to Mathematical Modeling" at San Diego State University since 2015.
The mathematical prerequisite for this course are Calculus I and the first semester of linear
algebra. The book includes the following topics: dimensional analysis, R programming,
principles of 5-step mathematical modeling, linear regression models, linear algebra mod-
els, probability models, calculus models, stochastic models, statistical inference, big data
models, machine learning models, artiflcial intelligence models, network models, R graph-
ics models, and principles of applied mathematics consulting.

Computer programming experience is not required for reading this book. R program-
ming tutorial is described in book and taught in class from beginning, and is the official
computer program language for the course. R and R Studio are free for public download
and can be installed easily for either PC or Mac.

Mathematical model is a mathematical expression, often a formula or an equation, that
describes a phenomenon, such as the free-fall of an object from a height. The distance
between of the object and its initial release position is modeled by (l/2)gt2 , where g is the
gravitational acceleration and t is the time from the release. Science history implies that
Galileo Galilei (1564-1642) was the first who invented this formula. He designed a very

xt



xii FoREWoRD

smart experiment for this. At that time, it was hard to observe the free fall time I since a
body falls down very fast in the free fall environment. He slowed down the free fall by
a free roll of a ball on a plate with ticks (see Fig. 0. l). He placed a wire on the plate so
that the ball would make a click sound when the ball rolled over the wire. He adjusted
the positions of the four wires so that the ball would make click sound in uniform time
intervals. He then discovered that the distance after each click sound is

(L/2)at2lnll (0.1)

where a : g sin9 and I is the angle between the plate and the horizontal plane. The four
lines' distances from the releasing points are thus

0.5a x L2, 0.5a x 22, 0.5a x 52, 0.ba x 42 lml. (0.2)

$tarting Line

h/ire

Figure 0.1 Galileo's experiment for a ball falling down on an inclined plate

The formula s : (L/2)at2 is a mathematical model for the ball rolling down on a
plate under gravity. Because of measurement errors, the model is not 1007o accurate when
compared with the observed data of time and distance. The real world problem is often
that when a certain phenomenon is observed, a mathematical model is needed to describe
the phenomenon in a quantitative fashion, as accurately as one can. Because observations
are necessarily involved in most natural and engineering phenomena, the observational
records, called observed data, often used to develop a mathematical model. Linear regres-
sion is a commonly used approach to develop a mathematical model. This is an induction
approach, deriving a mathematical model using data.

However, some mathematical models can be established from mathematical point of
view, whose results are thought to be physically meaningful and to describe the nature.
Dimensional analysis is a good approach to develop a mathematical model, such as the
problem of an object's free fall. This is a deduction approach, which discover a mathemat-
ical model based on mathematical logic and the intrinsic relationships among the variables
of the problem. Observational data are still needed to validate the model or to determine
one or more critical free parameters of the model.

Both induction and deduction approaches demonstrate the power and beauty of math-
ematics. This book attempts to show the effectiveness, power, and wide applications of
mathematical modeling, using an updated modern approach. The book covers current and
future mathematical topics, such as big data, machine learning (ML), networks, artificial
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intelligence (AI), mathematical consulting, and R programming and graphics, which are
not covered in most of the existing mathematical modeling texts, but these topics are very
important in the big data and AI era. They are more frequently encountered by students
in their career than calculus or linear algebra alone. The book has another unique char-
acteristics of interdisciplinary approach that uses calculus, linear algebra, statistics, and
computing as an integrated tool to solve a practical problem, such as the analysis of spa-
tiotemporal pattem of the El Niffo climate phenomenon over the tropical Pacific, rather
than treats them as separated and isolated branches of mathematics and statistics. Many
existing mathematical modeling books are built on differential equation models, either or-
dinary differential equation or partial differential equation, and thus involve techniqucs of
solving differential equations, either analytically or numerically. Those books require the
background knowledge of Calculus II or III or more advanced mathematics, and are for
senior or graduate levels in mathematics physics or engineering. This book is different and
does not requires the knowledge of differential equations. It focuses on the current and
future needs of mathematical modeling on data and computer programming, such as linear
regression, stochastic modeling, and machine learning. This book emphasizes the model-
ing objectives and results interpretation, although the model development and solutions are
also described.

Another feature of this book is to show students how to write short proposals and con-
sulting reports based on mathematical modeling approaches. This helps train students to
pursue excellent jobs of mathematical consulting, a career similar to but different from the
popular statistical consulting.

By SSPS in San Diego, January 2018


