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ABSTRACT

An improved land–ocean global monthly precipitation anomaly reconstruction is developed for the period

beginning in 1900. Reconstructions use the available historical data and statistics developed from the modern

satellite-sampled period to analyze variations over the historical presatellite period. This paper documents

the latest in a series of precipitation reconstructions developed by the authors. Although the reconstruction

principle is still theminimization ofmean-squared error, this latest reconstruction includes the following three

major improvements over previous reconstructions: (i) an improvedmethod that first produces an annual first

guess, which is then adjusted using a monthly increment analysis; (ii) improved use of oceanic observations in

the annual first guess using a canonical correlation analysis; and (iii) reinjection of gauge data where those

data are available. These improvements allowmore confident analyses and evaluations of global precipitation

variations over the reconstruction period. Quantitative error estimates for the reconstruction are being de-

veloped and will be documented in a later paper.

1. Introduction

Surface temperature and precipitation are arguably

the most basic climatic parameters. Precipitation vari-

ations control freshwater availability, food production,

disease outbreaks, floods, and droughts. Models suggest

that precipitation will change with global temperature,

and monitoring is critical for assessing changes both

globally and regionally.

Although many land regions have long precipitation

records from gauges, there are spatial gaps in the sam-

pling for undeveloped regions, areas with low popula-

tions, and over oceans. Since 1979 satellite data have

been used to fill in those sampling gaps. Over longer

periods gaps can only be filled using reconstructions or

reanalyses. Here a statistical analysis is used to produce

a filled field of data from relatively sparse observations.

We call this type of analysis a reconstruction.We use the

word reanalysis to denote a dynamic analysis using data

assimilation (e.g., Compo et al. 2006).

Precipitation variations over oceans and land regions

with few data are important because they help to show

large-scale variations in precipitation over time. Al-

though individual precipitation events may be chaotic,

the mean large-scale precipitation shows high- and low-

precipitation zones. Important large-scale precipita-

tion features can be seen in maps of the 1979–2008

average Global Precipitation Climatology Project (GPCP;

Huffman et al. 1997a; Adler et al. 2003; Huffman et al.

2009) for averages over December–February (DJF),

June–August (JJA), and all months (Fig. 1). An impor-

tant high-precipitation zone is the intertropical conver-

gence zone (ITCZ), where strong convective precipitation

tends to develop, typically a few degrees north of the

equator. At roughly 308 latitude there are zones of atmos-

pheric subsidence with low precipitation, where many of
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the earth’s deserts tend to form. Poleward of that are the

midlatitude storm tracks. Large seasonal changes occur

in the tropics resulting from the monsoons and seasonal

shifts of the ITCZ. In the extratropics the magnitudes

are smaller but the seasonal variations are important to

the supply of freshwater in those regions. Shifts, expan-

sions, or intensifications of these zones can have a large

influence on precipitation over land regions and thus can

influence the spatial–temporal availability of freshwater.

Large-scale complete data that include oceanic regions are

necessary for detecting andmonitoring possible changes

in the large-scale precipitation patterns. Dynamic models

are useful tools to help identify physical processes that

can cause precipitation changes, but observation-based

analyses are needed for model validation.

Statistical reconstructions require dense modern-period

base data for generating statistics. Satellite-based anal-

yses are typically used to generate spatially complete

statistics. Several different satellite and gauge analyses

are available based on different analysis methods. The

most advanced of these analyses rely on the improved

precipitation estimates derived from passive micro-

wave observations, available with enough density for

high-frequency analyses since about 1998. Analyses

such as Climate Prediction Center (CPC) morphing

method (CMORPH; Joyce et al. 2004), Tropical Rainfall

Measuring Mission (TRMM) Multisatellite Precipita-

tion Analysis (TMPA; Huffman et al. 1997b), and Pre-

cipitationEstimation fromRemotely Sensed Information

usingArtificial Neural Networks (PERSIANN;Hsu et al.

1997; Sorooshian et al. 2000) all use high space–time re-

solution infrared (IR) observations in combination with

instantaneous estimates derived from passive microwave

observations to derive precipitation on time scales of

1–3 h and spatial scales of 0.258 for the tropics and mid-

latitudes. These analyses are becoming widely used for

monitoring and understanding precipitation variability

on fine scales, but their length of record is too brief to be

used to compute statistics for a century-long statistical

reconstruction.

Another satellite analysis approach is to use a wide

range of different infrared and microwave satellite es-

timates of precipitation merged with gauge estimates.

Two principal datasets using this approach have been

published: the previously mentioned Global Precipita-

tion Climatology Project (GPCP) and the CPC Merged

Analysis of Precipitation (CMAP; Xie and Arkin 1996,

1997). In these datasets, time-averaged satellite-derived

estimates are combined with an analysis based on gauge

observations beginning in 1979 to yield monthly global

analyses at 2.58 spatial grid. CMAP uses a linear com-

bination of the available satellite-derived estimates, while

inGPCPdifferent satellite estimates are adjusted relative

to each other to minimize satellite-to-satellite biases be-

fore they are merged. The available blend of satellite-

derived estimates provides good spatial coverage, but

neither the infrared nor the microwave estimates can be

used over snow and ice surfaces. For GPCP some high-

latitude regions are filled using lower-quality estimates

based on Television and Infrared Observation Satellite

(TIROS) Operational Vertical Sounder (TOVS) satel-

lite estimates of deep extensive clouds, which are used to

infer precipitation.

The merged satellite estimate is blended with gauge

estimates in both products. CMAP additionally adjusts

tropical and midlatitude oceanic values to match gauge

observations in the central and western equatorial Pa-

cific Ocean. We have found that using GPCP base data

yields a more realistic reconstruction of twentieth-century

precipitation (Smith et al. 2008b, 2009a), although the

specific reasons are not completely clear. Although

a number of satellite estimates are merged for the GPCP,

the intersatellite bias adjustments remove the most se-

vere relative biases between satellites. In addition, recent

salinity budget studies suggest that GPCP precipitation

provides a better salinity balance over the oceans com-

pared to other satellite-based analyses (Yu 2011; Ren and

FIG. 1. GPCP 1979–2008 seasonal DJF, JJA, and annual

climatology.
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Riser 2009; Yaremchuk et al. 2005; Yaremchuk 2006).

Here the GPCP-merged satellite and gauge analysis is

used as the base data to form statistics for the reconstruc-

tion of historical precipitation. Because of compromises

made in forming GPCP these base data can introduce

some uncertainty in the reconstructions, particularly at

high latitudes, further improvements in such global anal-

yses are desirable.

Several precipitation reconstructions have been de-

veloped, with varying degrees of success. Xie et al. (2001)

and Efthymiadis et al. (2005) each developed recon-

structions that give useful skill in the tropics, although

their reconstructions have lower extratropical skill. A

series of reconstructions were developed by Smith et al.

(2008b, 2009a, 2010) to improve the overall skill of his-

torical reconstructions. Those studies, summarized in

section 2b, showed the potential for skillful oceanic pre-

cipitation reconstruction beginning in 1900. Each study

provides some improvement. Because the historical pre-

cipitation data used for reconstruction over ocean areas

are sparse, we continue to seek improvements in analysis

methods, understanding problems, and uncertainty quan-

tification. The reconstruction described here is the latest

in the series of studies. It gives the greatest improvement

in the spatial resolution of oceanic precipitation patterns,

alongwith some improvements in land–area precipitation.

The greatest improvement comes from development

of a first-guess annual anomaly analysis that includes

oceanic data. The first guess is a global analysis using

a limited number of spatial reconstructionmodes. Those

annual modes are used to filter a combination of annual

gauge data and oceanic estimatesmade using a canonical

correlation analysis (CCA). The CCA annual anomaly

estimates are based on annual sea surface temperature

(SST) and sea level pressure (SLP) anomalies. Com-

bining the CCA estimates with gauges and filtering them

using the spatial modes allows us to retain most of the

signal that they resolve while adjusting for spatial biases

that appear to be present in the CCA. The annual first

guess is adjusted using a monthly increment reconstruc-

tion based on a larger number of spatial modes. Historical

gauge-based increments are used with those modes to

produce the increment analysis, which is added to the

first-guess analysis. Finally, the monthly gauge data are

statistically reinjected into the analysis where those data

are available. In Smith et al. (2010), the CCA data are

also used over oceanic regions, but in that reconstruction

the CCA data are not combined with gauges and filtered

using global modes. The presence of apparent spatial

biases over oceanic regions in the Smith et al. (2010)

analysis motivated the development of this improved

reconstruction. In addition, the reinjection of gauge data

over land regions was developed since that study.

2. Historical data and precipitation reconstructions

The historical data used for the improved recon-

struction are the same as those used in our earlier re-

constructions, and are briefly described here. The earlier

reconstructions by Smith et al. (2008b, 2009a, 2010) are

described to illustrate how those data may be used, and

to discuss the strengths and weaknesses in the earlier

reconstructions.

a. Historical data

Gauge-based analyses provide the most direct mea-

surement of historical precipitation. In reconstructions

the gauge analyses may be used to anchor large-scale

precipitation for analysis over undersampled areas. Our

earlier studies used several historical gauge analyses.

One is the Global Historical Climatology Network

(GHCN; Vose et al. 1998), produced by the National

Climatic Data Center. The gridded GHCN is a monthly

dataset on a 58 spatial grid, 1900–2008. Other gauge-

based gridded datasets were evaluated, including the

Global Precipitation Climatology Center (GPCC), ver-

sion 4 (Schneider et al. 2008; Rudolf 2005) and the Uni-

versity of East Anglia Climate Research Unit (CRU)

analysis (Hulme et al. 1998). Both of these datasets are

available on a 2.58monthly grid, and are averaged to the

GHCN 58 monthly grid. The GPCC dataset begins in

1901 while the CRU begins in 1900. Both yield recon-

structions that are qualitatively similar to GHCN-based

reconstructions. However, the GHCN has a slightly lon-

ger period and uses less gap filling, and therefore was

used for this study.

The GHCN analysis of gauge data has the best sampl-

ing beginning about 1950, when most 58 regions over land
have enough data for an analysis value (Fig. 2). From 1900

to about 1950 the sampling area gradually increased as

more global stations became available. After about 1990

sampling begins to gradually decrease, resulting from time

FIG. 2. Annual average percent of 58 areas sampled in the GHCN

gauge analysis.
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lags in incorporating some data and also some stations

being discontinued.

Both SST and SLP historical analyses have been used

to reconstruct annual historical precipitation anomalies.

The SSTs are from the analysis of Smith et al. (2008a)

and the SLPs are from the analysis of Allan and Ansell

(2006). As discussed in Smith et al. (2009a), anomalies of

annual SST and SLP have been found to correlate with

large-scale annual precipitation anomalies, and there-

fore they can be used as proxies for historical precipi-

tation. Individual precipitation events have small time

and space scales, and in any case precipitation is typi-

cally not measured by ships. In contrast, the available

monthly SST and SLP tend to have larger scales and

have beenmeasured by ships since before 1900 (Woodruff

et al. 1998). Although ship measurements have some

spatial biases, they are sufficient for analyses of both

historical fields. The existence of the SST and SLPmakes

it possible to measure their correlations with mean pre-

cipitation for large spatial and temporal scales. Evalua-

tions suggest that the SST and SLP correlations may not

be useful for anomaly reconstruction on temporal scales

shorter than annual. Monthly correlations were evalu-

ated, but the results were poor compared to the annual

correlations. On longer time scales the background SST

and SLP appear to be more directly linked to precipi-

tation, while on shorter time scales dynamics not as closely

linked to those background conditions may exert more

influence.

b. Recent historical reconstructions

Building on findings from earlier reconstructions of

SST and precipitation, Smith et al. (2008b) developed

a direct reconstruction of monthly precipitation. That

reconstruction used spatial covariance empirical orthog-

onal functions (EOFs) for the following three separate

areas: 808–208S, 308S–308N, and 208–808N. That separa-

tion was done to keep the much larger tropical variability

from dominating extratropical variations. The recon-

struction was produced by fitting the available monthly

gauge anomalies to the set of EOFmodes in each region

using a least squares regression procedure. In each re-

gion the reconstruction is the weighted sum of themodes.

For that earlier reconstruction the three regions are

merged by interpolation as a function of latitude in their

overlap regions.

That direct reconstruction of monthly anomalies gave

physically reasonable monthly to interannual variations

over the oceans. In the overlap regions where the anal-

yses were merged the variance was damped, because the

linear interpolation smoothed the overlap region. The

greatest potential problem with that reconstruction was

its multidecadal variations, which were inconsistent with

the theoretical understanding of how large-scale multi-

decadal precipitation should vary. Both theory and cli-

mate models suggest that precipitation should increase

with warming temperatures, because warmer air tem-

peratures had a much larger saturation vapor pressure.

Therefore, both global evaporation and precipitation

are expected to increase under warming conditions (Held

and Soden 2006; Allan and Soden 2008). Over land the

global average of gauge data indicates a positive trend

over the twentieth century (Trenberth et al. 2007). Be-

ginning in about 1950 the ocean-area multidecadal var-

iations in the Smith et al. (2008a) reconstruction were

consistent with the theory. Before 1950, when sampling

was less frequent and the reconstruction was less reli-

able, the variations were inconsistent with the theory.

That inconsistency in a period with lower sampling made

us suspicious of the multidecadal signal before 1950.

Historical precipitation data are extremely limited

over oceans. There are coastal and island gauge obser-

vations, but there are also large expanses of oceans far

from any gauges. Present weather is recorded in ship

logs, but it is difficult to convert that to large-scale pre-

cipitation, both because such records do not give pre-

cipitation amounts and because of the short space and

time scales of individual precipitation events. Therefore,

to reconstruct historical precipitation on large scales we

used correlations between annual precipitation anoma-

lies and annual SST and SLP anomalies. We did this by

using a CCA. Although both SST and SLP have sam-

pling errors, they are both sampled much better than

oceanic precipitation, and thereforemay be used to infer

some aspects of precipitation variations that may not

be detectable from historical precipitation data alone.

The CCA method is described in detail by Barnett and

Preisendorfer (1987), and its application to historical

precipitation reconstruction is described by Smith et al.

(2009a). Briefly, the CCA correlates fields of predictors

with predictand fields. It is similar to ordinary regres-

sion, except that ordinary regression is between local

points on the fields, while CCA can relate regions of one

field with different regions on another. The CCA used

the combined annual SST and SLP anomalies as pre-

dictors, and the annual precipitation anomalies as pre-

dictands. The CCA was trained using GPCP data over

1979–2004. The training period did not extend past 2004

because the SLP data for the later years were from up-

dates that had different a variance than the SLP analysis

in earlier years, and we did not want that change in var-

iance to influence the correlations.

The CCA relationships developed in the training pe-

riod were used with the historical annual SST and SLP

anomalies to reconstruct the annual precipitation anom-

alies globally. Examination of the global averages over
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land showed that the CCA reproduced the major gauge-

averaged variations over the historical period, before

the training period of 1979–2004, as shown by Smith

et al. (2009a). Because the gauges were not used in the

CCA reconstruction that result was encouraging. In the

modern GPCP period, the global averages over oceans

were reproduced by the CCA, although that was a com-

parison of dependent data. Over the historical period,

the CCA indicated increasing precipitation with warm-

ing, consistent with theory and models. We believe that its

consistency with theory, in combination with the other

comparisons discussed, makes the CCA a better analysis

of multidecadal ocean-area variations, compared to the

direct monthly reconstruction that had preceded it.

Although the CCA is in some ways an improvement

for analysis of multidecadal variations, it also has some

weaknesses. Examination of the trends over the GPCP

period showed that the spatial scales of the CCA trends

are several times larger than the spatial scales of the

GPCP trends. The overall location of the positive and

negative trends in both are similar, but the CCA trend

patterns are more spread out compared to GPCP. Those

large spatial scales of trends are maintained over the

entire CCA reconstruction. We found that the likely

cause for the large spatial scales of trends was that the

correlated data used for the CCA simply could not give

better spatial resolution. Tests were performed using

local pseudoprecipitation constructed from ordinary

local regression of SST anomalies against precipitation

anomalies. That pseudoprecipitation was used for re-

construction, and yielded trend patterns with spatial

scales and magnitudes similar to those from the CCA.

Another test reconstruction used joint EOFs of nor-

malized annual precipitation and SST to develop joint

SST and precipitation modes. Those joint modes were

then used for reconstruction using the historical nor-

malized SST to find weights for the joint modes. Again

the trend scales and magnitudes resembled those of the

CCA. Although these test results were in many ways

similar to CCA results, their skill was less when tested

against dependent data and in cross-validation tests, so

we only use them for evaluating the CCA.

To use the strengths of both the direct monthly re-

construction of Smith et al. (2008b) and the indirect an-

nual reconstruction of Smith et al. (2009a), we developed

the merged reconstruction of Smith et al. (2010). The

merged reconstruction uses the multidecadal variations

of Smith et al. (2009a) over the oceans. Multidecadal

signals are separated from higher-frequency signals us-

ing a 7-yr filter. The annual averages of the direct re-

construction and the CCA were filtered and the direct

reconstruction multidecadal signal was replaced with the

CCAmultidecadal signal over ocean areas. The oceanic

higher-frequency signals were not changed. In addition,

over land variations where gauges are available the di-

rect signal was not changed. This merged analysis should

yield better multidecadal ocean-area variations com-

pared to Smith et al. (2008b), while retaining the strengths

of that reconstruction. It will, however, still retain theCCA

problems discussed above.

3. EOF-based reconstructions

The improved reconstruction method is described in

this section. This includes the comparison of results us-

ing only gauge data and gauge data supplemented by

oceanic CCA results to show the influence of the addi-

tional data. The EOFmethod described here is different

from similar methods used in earlier studies for two

reasons. One is that here we develop an annual first-

guess analysis using one set of modes and then adjust

that using a monthly increment analysis using a second

set of modes. The other is that both annual and monthly

increment modes used here are computed globally and

not separately for different regions, as was done earlier.

The CCA used here is the analysis described by Smith

et al. (2009a). The difference here is how results of that

CCA analysis are used. We test the method with and with-

out the CCA results to show its influence on the im-

proved analysis.

a. Method

The basic EOF reconstruction method was described

in Smith et al. (1996, 1998). Here we summarize the

method and describe how it is used for the improved

analysis. The basic idea is to use a set of covariance EOFs

to estimate historical variations by estimating time series

for the EOFs using the incomplete historical data. Be-

cause the data are incomplete, the historical time series

values are estimated by minimizing the mean-square-

error (MSE) of the fit compared to the available data. A

screening procedure is used to remove EOF modes that

are not adequately sampled by the historical data.

The reconstruction as a function of space and time is

a weighted linear combination of a set ofMEOFmodes,

F(x, t)5 �
M

n51

wn(t)En(x) . (1)

Here the weight wn(t) is the time series value for time t

and mode n, and the EOF mode En(x) is a function of

only spatial location x. We optimize the weights by min-

imizing the integrated mean square differences (MSD)

between the reconstruction F(x, t) and dataD(x, t) over

the data-sampled domain,
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«25 �
x
[D(x, t)2F(x, t)]2 d(x, t)a(x) .

Here the delta function defines data sampling, with

d(x, t)5 1 if there is sampling for the spatial location and

time, and d(x, t)5 0 if there is no sampling. The function

a(x) denotes the relative area of each location, which can

be estimated by the cosine of the latitude for the grid

box’s centroid. To minimize the MSD, we differentiate

«2 with respect to weights wn for n5 1, 2, . . . ,M, and

obtain the set of linear equations for the optimal weights,

�
M

n51

wn�
x
En(x)Ek(x)d(x)a(x)

5 �
x
D(x, t)Ek(x)d(x)a(x) , for k5 1, . . . ,M . (2)

This system of equations is solved for each time step to

give a set of weights for that time step for each mode.

The set of spatial modes is assumed to be stationary, and

therefore historical variations are assumed to be linear

combinations of the modes. Thus, all reconstructed

variations are a weighted linear sum of the basis modes.

The relative variance associated with each mode may

change in time because the time series is computed sep-

arately for each time. That means that climate processes

dominant in the base period may not be dominant in the

historical period.

Note that with complete sampling orthonormal prop-

erty of the EOFs yields

�
x
En(x)Ek(x)a(x)5 dnk ,

which is 1 if n5 k and 0 otherwise. Thus, with complete

sampling Eq. (2) reduces to

wn5 �
x
D(x, t)En(x)a(x) . (3)

This is the orthogonal projection of the completely

sampled data onto the mode En(x). Because historical

sampling is incomplete, it is necessary to use Eq. (2) to

find the best-fit weights over the historical period.

A problem can occur with this type of reconstruction

when data become too sparse to sample a mode. All

historical data will contain noise in addition to signal.

When there are many observations random noise will be

filtered out because it will not fit the spatial covariance

patterns. However, if there are too few data, then noise

can cause large inflation in one or more of the modes,

which will spread the error over the mode’s spatial do-

main. To avoid that problem we test the sampling of

eachmode and screen outmodes that are not adequately

sampled. The reconstruction is then performedusing only

those modes that pass the screening test. The screening

test was described by Smith et al. (1998) and is summa-

rized here.

To screen modes we measure the fraction of the var-

iance for each mode sampled by the available data at

each time. At each point the variance of a mode is pro-

portional to the mode squared. Thus, the fraction of var-

iance sampled by each mode can be defined as

fn5
�
x
E2
n(x)d(x)a(x)

�
x
E2
n(x)a(x)

. (4)

Using properly scaled orthogonal modes the denom-

inator in Eq. (4) is equal to 1. When this fraction of

sampling gets below a critical value for amode, thatmode

is screened out of the reconstruction. Cross-validation

testing has shown that the critical fraction for screening

is usually 0.05–0.10, although there is usually little dif-

ference in cross-validation error using values between

0.10 and 0.20. When the critical value is set too high

error increases due to the exclusion of well-supported

modes.

The improved reconstruction is formed using the basic

method described above. However, rather than direct

reconstruction of monthly anomalies a two-step ap-

proach is used using two sets of EOF modes. The initial

step is reconstruction of annual average anomalies glob-

ally using a limited number of modes to focus on longer-

period variations. The annual GPCP anomalies are used

to compute a set of 20 global covariance EOFs, which is

about as many annual modes as can be computed from

the 1979–2008 record. Annual historical data anomalies

are used to reconstruct the annual global anomalies using

the method described above. Note that this annual re-

construction is separate from the CCA and could be

produced with or without CCA inputs, as discussed be-

low. Because month-to-month variations and noise are

filtered out of this analysis, the reconstruction modes

and data can focus on multidecadal variations more ac-

curately. Month-to-month variations in the modes would

require many more modes in a direct reconstruction, and

month-to-month noise could contaminate the weaker

multidecadal signal. This annual reconstruction provides

a first-guess analysis that can be adjusted to give monthly

anomalies.

The annual global reconstruction is adjusted using

reconstructed monthly increments. Increments are de-

fined as the difference between the monthly anomaly and

the annual anomaly. To avoid possible steps between

years the annual anomaly linearly interpolated in time
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to the month of the year. This correction of the annual

anomaly is what needs to be analyzed to adjust the an-

nual first guess. The GPCP increments are used to com-

pute a set of 40monthly global incrementEOFs.Historical

data increments are defined as differences between the

data and the global annual reconstructed anomaly lin-

early interpolated to the month. Those data increments

are used to compute the monthly global increment re-

construction. Adding the increment to the annual recon-

struction gives the reconstructed monthly anomaly.

All of these reconstructions are computed on the same

58 spatial grid as our earlier reconstructions. For both

the annual and monthly increment reconstructions, we

screen out modes with less than 5% variance sampling.

This relatively low sampling is assigned so that most

modes will be used in the analysis most of the time. For

the annual global component of the analysis there are

only a few years when sampling falls below 5% for the

first mode (Fig. 3). For the monthly increments we al-

ways use the historical GHCN gauge analysis to com-

pute historical weights for the EOFs. For the annual

global reconstruction we tested two sets of historical

inputs. One is the GHCN gauge analysis alone. The

other is the GHCN gauge analysis supplemented using

the CCA precipitation estimates in ocean grids for which

there is no GHCN estimate. All historical anomaly data

are centered onto the same base period before com-

puting the reconstruction. Both reconstructions, with

and without CCA, are described and evaluated in later

subsections.

b. Reconstruction using gauge data

The reconstruction methods described above were

first tested using historical GHCN gauge data, referred

to here as EOF1(GHCN). The annual and ocean aver-

ages over 758S–758N are used for overall comparisons

with CCA and GPCP (Fig. 4). In the satellite period

both reconstructions compare well to GPCP. That is not

surprising because GPCP is used to form reconstruction

statistics for both. The satellite period comparisons do

show the potential for using relatively sparse gauge data

for reconstruction globally.

Over the full reconstruction period both CCA and

EOF1(GHCN) indicate similar interannual variations,

although interannual variations in EOF1(GHCN) tend

to be stronger than those from CCA. The CCA and

EOF1(GHCN) have qualitatively consistentmultidecadal

variations over the full period, although the CCA multi-

decadal change is stronger than that indicated by EOF1

(GHCN). The CCA linear trend over the full period is

1.6 mm month21 (100 yr)21, while for EOF1(GHCN) it

is 0.3 mm month21 (100 yr)21. After about 1980 the two

have similar multidecadal tendencies, but the CCA has

more multidecadal change before then.

The CCA was developed to use ocean information

in order to have an improved estimate of multidecadal

ocean-area variations. Because the CCA is strongly in-

fluenced by SST it is sensitive to SST changes, which is

FIG. 3. Percent of variance sampled for each of the 20 global annual

reconstruction modes using annual GHCN.

FIG. 4. Annual and ocean-area average precipitation anomalies

(758S–758N) of the CCA, the EOF1 using only gauges, and the

GPCP satellite-based analysis.
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especially apparent in the 1970s when there was a cli-

mate shift in SST (Trenberth and Hurrell 1994). Com-

parisons of an ensemble of coupledmodel output showed

that the average ocean CCA multidecadal signal is 2–3

times larger than the coupled model ensemble multi-

decadal signal (Smith et al. 2009b). Recent analyses of

salinity for the second half of the twentieth century sup-

ports the larger CCA signal (Durack et al. 2012).Without

oceanic data the gauge-only reconstruction is not able to

fully resolve the stronger low-frequency variations ap-

parent in the CCA.

Compared to the earlier period, since about 1950 the

EOF1(GHCN) averages indicate a trend that is more

similar to that from the CCA. Before 1950 is the time

when GHCN sampling is lowest (Figs. 2 and 3), sug-

gesting that the greater damping in that period may be

due to inadequate resolution of some of the modes.

The 20 reconstruction modes used for the annual

component of the EOF1(GHCN) reconstruction are ca-

pable of representing multidecadal variations if those

modes are resolved by the data. This is shown by com-

paring trends in the annualGPCPwith trends fromannual

GPCP filtered using the 20 modes (Fig. 5). Practically all

of the zonal trend over the satellite period can be de-

scribed using the set of reconstruction modes. The prob-

lem is being able to adequately sample enough modes

through the entire reconstruction period. For compari-

son the zonal CCA trend over the same period is also

shown. On very large scales the zonal CCA trend resem-

bles the GPCP trend, with a generally decreasing trend

from south to north. However, the CCA fails to resolve

the narrow positive trend just north of the equator. Ex-

amination of maps of trends shows that the CCA trends

have similar shapes, but they are spatially spread over

large regions with some shifts in latitude. In contrast to

that the GPCP trends tend to have smaller spatial scales.

These zonal average trends suggest that compared to the

CCA, the EOF1 could yield better spatial resolution of

multidecadal variations in periods when its modes can

be adequately resolved.

Although most global annual modes are used in the

annual component of the EOF1(GHCN) reconstruction,

the sparser sampling early in the analysis period may

produce larger errors in the weights of some of themodes

used in that period, which could influence themultidecadal

signal. To test the influence of sampling we reconstructed

the base GPCP data using sampling masks to match the

GHCN sampling for 1900 and 1950. Results were com-

pared to the reconstruction with the full GPCP sampling.

Average ocean-area trends were evaluated. This test

showed that the trend with 1950 GHCN sampling

differed from the full GPCP trend by about 10%,

while the trend with 1900 sampling differed by about

200%. The test shows that nearly full land sampling

similar to the sampling available in 1950 may be suffi-

cient to resolve most ocean-area multidecadal variations.

The much worse match using 1900 sampling shows clearly

that multidecadal variations from the early twentieth

century are less reliable and more historical precipitation

information is needed to anchor the analysis for the pe-

riod before 1950. The next subsection describes a way to

reconstruct using more historical information on mul-

tidecadal oceanic precipitation.

c. Reconstruction using both CCA and gauge data

As described above, the EOF1 modes for the annual

component of the reconstruction can resolve most

multidecadal variations if the historical sampling is ad-

equate. The annual GHCN gauge analysis resolves most

of the variance associated with those modes since 1950,

but it resolves much less in earlier years. The CCA uses

ocean data to reconstruct ocean-area annual variations.

For very large spatial scales, roughly 308 or larger, CCA
multidecadal variations are consistent with GPCP in the

overlap period, suggesting that the CCA may be supe-

rior to the EOF1(GHCN) on such large scales because

of its use of oceanic data. The problem with the CCA is

that it does not resolve multidecadal variations on finer

spatial scales.

To incorporate ocean data into the EOF1 reconstruc-

tion, the ocean-area CCA precipitation anomalies

are used as additional input in the global annual

EOF1component of the reconstruction. The GHCN

annual anomalies are still used where they are avail-

able, and CCA annual anomalies are only used for

ocean grid squares that do not contain a GHCN esti-

mate. This annual global component of the EOF1 re-

construction has good sampling for all 20 modes in all

years. Because theCCA is an annual analysis used here to

improvemultidecadal variations, the monthly increment

adjustments to this analysis are computed using only the

FIG. 5. Ocean-area zonal average trends over 1979–2008 from

the annual GPCP, the annual GPCP filtered using the 20 annual-

global reconstruction modes, and the CCA.
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increment GHCN gauge analyses. We call this analysis

EOF1(GHCN 1 CCA).

Incorporation of both CCA and GHCN data yields

EOF1 near-global averages with roughly the same mul-

tidecadal variations as the CCAover ocean areas (Fig. 6).

For EOF1(GHCN 1 CCA) the ocean average trend

over the analysis period is 1.5 mm month21 (100 yr)21,

compared to 0.3 for EOF1(GHCN) and 1.6 for the CCA.

However, the annual EOF1(GHCN1 CCA) has larger

interannual variations than the CCA.

Ocean-area zonal average trends over the entire anal-

ysis period show how the inclusion of CCA influences

multidecadal variations (Fig. 7). The CCA has a large,

broad positive trend centered on the equator. For the

EOF1(GHCN) the tropical maximum is weaker, nar-

rower, and shifted to north of the equator. Incorporation

of bothGHCNandCCA in the EOF1 keeps the location

and scale of the tropical maximum, but increases its

strength. It also removes a negative trend in EOF1

(GHCN) centered just south of the equator, replacing it

with a modest positive trend. By filtering the CCA and

annual GHCN using the global annual modes we are

able to keep the oceanic information provided by the

CCA but with finer resolution of spatial scales in the

multidecadal variations. This analysis resolves multi-

decadal variations that cannot be resolved using his-

torical GHCN alone.

d. Reinjection of gauge data

We use an optimum interpolation (OI) analysis to

adjust the reconstruction using the GHCN gauge data.

The OI analysis is done each month on GHCN 58 gauge
(G) minus reconstruction (R) differences. Both the re-

construction and gauge data are anomalies, recentered

for this step so that their 1900–99 mean is zero. Because

the gauge data can be noisy, the differences are checked

before analysis and large differences are not used for

reinjection. The root-mean-square difference (RMSD)

between gauges and reconstructions across latitude bands

are computed. Because of sparse matchups in some re-

gions, the zonal RMSD is smoothed by averaging over

three latitude bands, or 158 of latitude. The individual

absolute differences are then compared to the smoothed

zonal RMSD. If the individual absolute value is greater

than 20 times, the RMSD it is not used. For the EOF1

reconstruction this eliminated an average of just over

two differences per year.

The OI uses isotropic spatial scales set to one equa-

torial gridbox distance, 58 or 555.95 km. This is about the

smallest spatial scale possible for data on this spatial grid

and should preserve the greatest spatial resolution pos-

sible with this grid. The noise-to-signal variance ratio is

set to 0.5 in midlatitudes (258–608) and 1.0 poleward of

658, with a linear interpolation between 608 and 658
latitude. The high-latitude values can be noisier due

to problems associated with blowing snow. Such high-

latitude gauges are sparse and do not greatly influence

the analysis except where they are locally available, so

we use this simple boosting of the noise at high latitudes

with no seasonal component for the noise-to-signal ra-

tio. Within 208S–208N the ratio is 0.5 before 1960, in-

creasing to 1.0 after 1970, with linear interpolation in

between. When the tropical ratio is above 0.5, a linear

interpolation is used to assign values between 208 and
258 latitude. The more recent tropical values are assigned

larger noise-to-signal ratios to account for a possible

decrease in quality in recent years as local less devel-

oped governments took over the making and keeping of

records.

The OI uses these statistics and between one and nine

GHCN differences over a 158 square centered on the 58
grid box of interest. The OI analyzes the difference for

the central box, with damping of the difference when

FIG. 6. Annual and ocean-area average precipitation anomalies

(758S–758N) of the CCA, the EOF1 incorporating both CCA and

gauges, and the GPCP satellite-based analysis.

FIG. 7. Ocean-area zonal average trends over 1900–2008 from

EOF1(GHCN), EOF1(GHCN 1 CCA), and CCA.
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there are few differences or when the assigned error is

high. Table 1 illustrates the amount of damping for a single

observation at the center or offset by one grid square, and

when all nine grid squares have defined differences. This

analyzed difference is added to the reconstruction to form

the gauge-adjusted value. When the sum of the weights

indicated in Table 1 approaches 1, the adjusted value ap-

proaches the GHCN, while the adjusted value is near the

reanalysis when the sum of the weights is low.

The reinjection of gauge data has practically no in-

fluence on ocean areas. For land areas it also has only

a slight influence on the global spatial mean (Fig. 8).

Over land areas the GHCN trend over the analysis pe-

riod is 1.6 mm month21 (100 yr)21, while the EOF1

(GHCN 1 CCA) with reinjection has a trend of

0.7 mm month21 (100 yr)21. Most interannual varia-

tions are similar in both, but the GHCN has stronger

interannual amplitudes, especially in the more recent

decades when sampling is better. Stronger amplitudes

may contribute to the stronger GHCN trends compared

to the reconstruction.

Reinjection causes greater spatial variations over land

areas, as shown by the spatial RMS differences between

reconstructions andGHCN (Fig. 9).Without reinjection

the spatial RMS difference from GHCN is much larger,

as expected. With reinjection there is still a spatial RMS

difference from GHCN, because the reinjection is a

statistical adjustment and not a simple replacement, but

the difference is much less. Reinjection of gauge data

improves the land-area analysis for local evaluations and

evaluations of seasonal or shorter-period variations that

may not be fully resolved by the reconstruction modes.

As shown by the land-area averages, the reinjection of

data only slightly influences large-scale variations.

e. Summary of method

The improved reconstruction method has three basic

steps. First, an annual average anomaly first guess is

reconstructed (outlined on the upper left of Fig. 10). In

the figure, arrows show the information flow in this step.

Second, the anomaly increment between the annual av-

erage guess and the monthly average is reconstructed

(outlined on the upper right of Fig. 10). Third, the annual

guess is added to the monthly increment to form a

monthly anomaly reconstruction, which is then further

adjusted by statistical reinjection of the gauge data

where those data are available (outlined on the lower

center of Fig. 10). The anomaly statistics for all of these

analyses are based on GPCP.

The annual first-guess analysis is computed by fitting

historical data to a set of 10 annual global EOF modes.

The EOF modes are based on GPCP anomalies from

1979 to 2008. Two types of annual average historical

precipitation anomaly estimates were tested for the first

guess: GHCN anomalies alone and GHCN combined

with CCA. The annual CCA anomalies are based on

correlations with annual SST and SLP anomalies and are

used only over oceanic areas where there is no GHCN.

Both SST and SLP annual anomalies are based on

analyses of those fields, which have been historically

sampled over oceanic regions. The SST data used are

TABLE 1. Sum of the OI weights for the given values of noise/

signal variance ratios and one difference at the center (1C), one

difference offset by one grid box (1O), and with values filled in all

nine grid squares (F9).

Noise-to-signal

variance 1C 1O F9

0.5 0.67 0.25 0.91

1.0 0.50 0.18 0.81

FIG. 8. Global and annual land-area average precipitation

anomalies for EOF1(GHCN 1 CCA) reconstructions without

(No) and with (Reinj) GHCN reinjection. The GHCN average is

also shown.

FIG. 9. Global land-area spatial RMS differences between EOF1

(GHCN 1 CCA) without (No) and with (Reinj) GHCN re-

injection and between each reconstruction and GHCN (G). For

clarity annual averages are shown.
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from the Smith et al. (2008a) reconstruction, which was

developed for analysis of climate-scale SST variations.

The SLP data are from the Allan and Ansell (2006) re-

construction, which was developed for long-term moni-

toring of SLP variations.We found that the annual analysis

using both GHCN and CCA inputs are able to take ad-

vantage of information from the CCA while adjusting the

oceanic spatial patterns of variations to better match those

of the base data, compared to the raw CCA patterns.

The monthly increment analysis uses monthly GHCN

anomaly increments from the annual average. The CCA

is not used for the monthly increment analysis because it

is less reliable for shorter time periods and because the

GHCN sampling is generally sufficient to resolve month-

to-month variations. The monthly increments are added

to the first-guess annual analysis to give a monthly anom-

aly analysis. The GHCN monthly gauge anomalies are

then locally reinjected into the monthly anomaly anal-

ysis using optimum interpolation to minimize errors re-

lative to the gauges where they are available.

f. Spatial scales of variations

The spatial scales of precipitation variations over the

reconstruction period are illustrated by the difference

between the 1979 and 2008 climatology, shown in Fig. 1,

and the reconstruction 1909–38 climatology (Fig. 11).

Most of the differences have scales of several thousand

kilometers or larger. Over the reconstruction period the

tropical precipitation generally increased, although there

are regions in the tropics where precipitation decreased.

The generally stronger convection near the equator ap-

pears to be associated with stronger subsidence in the

poleward branches of the Hadley cells, leading to drying

in some of the dry-zone regions. That may be responsible

for the boreal winter drying along western North America

and in the Mediterranean region. The differences also

suggest zonal shifts in the most intense tropical pre-

cipitation, with more intense Pacific precipitation shift-

ing eastward. Zonal shifts influence the strength of the

zonal tropical circulation cells, such as the Walker cell,

which could be responsible for the alternating positive

and negative differences around the equator. The zonal

shifts also greatly influence precipitation teleconnections

to higher latitudes, which could be affecting the changes

in JJA monsoon precipitation across southern Asia and

the JJA increase in central North America.

4. Discussion

We show a method for improved statistical recon-

struction of ocean-area historical monthly precipitation.

Improvements include using global modes to elimi-

nate seams in the global analysis, computation of a first

guess using a low number of modes and increment

FIG. 10. The processing steps needed to produce the reconstruction.
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reconstructions to adjust the guess, and statistical opti-

mal reinjection of gauge data where they are available.

The improvement that makes the largest difference for

multidecadal variations is the computation of the annual

first guess using both gauge data and oceanic data that

are correlated with precipitation. The SST and SLP are

included in the first guess through a CCA process. Those

correlated data give similar interannual variations of an-

nual averages, but they strengthen the multidecadal var-

iations since 1900.

Compared to earlier studies, this method yields simi-

lar large-scale variations but with better resolution of

spatial patterns. The reinjection of gauge data also im-

proves resolution of smaller-scale features in the land-area

spatial patterns. This makes the improved reconstruc-

tion more appropriate for regional studies of oceanic

and land–ocean precipitation variations.

This study of oceanic precipitation variations is on-

going. An important aspect of this to be documented in

a future report is error estimates for the reconstruction.

Some components of the error can be quantified using

methods already developed, such asCCAerrors discussed

by Shen et al. (2001), EOF reconstruction errors in the

modes discussed by Shen et al. (2004), and a method for

computing the error of individual GHCN grid squares

given by Shen et al. (2007). Other error components

include error from using a limited set of modes, bias er-

rors, and changes in errors from the reinjection of gauge

data. All of these errors need to be estimated and their

influence on this multistep reconstruction requires quan-

tification. Because errors of averages are often desired,

methods are needed for computing the errors for both

monthly maps and temporal and spatial averages.

The error component that may be most difficult to

estimate is the bias error. Bias is also the error compo-

nent with greatest influence on multidecadal variations,

and therefore understanding the bias is important. Com-

parison of the ocean-area reconstruction without CCA

(Fig. 4) and with CCA (Fig. 6) shows the systematic dif-

ference in interannual variations that occurs from the

inclusion of oceanic data through the CCA. That dif-

ference implies a large-scale bias uncertainty, either from

bias in the data or from systematic underestimation of

multidecadal variations when only gauge data are available.

Testing is needed to understand and quantify this bias un-

certainty, and to more clearly show which of the two oce-

anic estimates is most reliable. We believe that including

oceanic data through the CCA improves the analysis, but

more testing is needed to prove that. Preliminary error

analyses indicate that although including CCA slightly in-

creases the random error and also adds significantly to the

bias error, the reduction in sampling error if greater, so the

reconstruction with CCA included has lower overall error.

Documentation of the error of this improved reconstruction

is in preparation. The analysis is available online (http://cics.

umd.edu/;tsmith/recpr/eof1/full/).
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