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BLOCKING OF SOLITARY PULSES IN A NONLINEAR FIBER
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By studying solutions to a forced cubic-nonlinear Schrédinger equation, we conclude that solitary pulse transmission in a
fiber with an external disturbance (referred to as blocking) is possible only when the supplying power is sufficiently large.
This result is justified theoretically by proving an existence and nonexistence theorem, and numerically by finding profiles
of envelopes of the transverse electric field in the fiber.

1. Introduction

Pulse transmission in an optic fiber has attracted many people’s attention in the last 25 years (see [1-4]
and references therein). Due to the balance of dispersion and nonlinearity, the governing equation for
the modulation of the electric waves is a cubic-nonlinear equation of Schrodinger type.

The independent variables of this equation are the longitudinal coordinate x and the time coordinate
t. Recent developmerit on the theoretical studies of optic fiber may be classified into the following two
categories: (i) complex geometry of the fiber cross-section; and (ii) complex material structure of the
fiber. In the category (i) (see [2]), the modulation of a pulse is governed by a cubic-nonlinear Schrodinger
equation with constant coefficients. The solutions to this equation are translation invariant. That is, if
@(x, t) is a solution, then ¢(x +a, t+ b) is also a solution for any constants @ and b. While in the category
(ii), the governing equation is a cubic-nonlinear equation with variable coeflicients. This equation is
referred to as the cubic-nonlinear equation of Schrodinger type. Because the coefficients of the equation
depend on x and ¢ explicitly, the property of translation invariance is lost in the category (ii). The electric
waves travel along a ray. This ray is no longer a straight line (see [1] and [6]).

The breaking of the translation invariance property may come about in many other ways. In this paper,
we present a specific way, which is different from category (ii), to break translation invariance. This is to
exert a moving disturbance to the fiber. The disturbance travels at the group velocity of the pulse being
transmitted. This disturbance is called a blocking. The governing equation for the wave modulation is
then a forced cubic-nonlinear Schrodinger equation (fCNLS). The forcing term on the right-hand side of
the fCNLS is due to the blocking, which depends on x and ¢ explicitly. For the solitary pulse to overcome
the blocking, the intensity of the pulse must be sufficiently strong. In mathematical terms, if the intensity
of the pulse is not strong enough, then that {CNLS has no solutions. It appears that such an intuitively
obvious claim has not been rigorously justified yet. This paper is addressed to this problem.

2. Pulse blocking

The incoming solitary pulse is assumed to be an amplitude modulated plane wave exp[i(kx —wt)],
where x is the longitudinal coordinate of the fiber. The index of refraction of the fiber is

n=ny(w)+ n2|E|2.
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Here E is the electric field, and |n,/n| < 1. The plane wave being amplitude modulated is assumed to be
composed of harmonics near a monochromatic wave exp[i(k,x — wyt)]. Namely, w =w,+ 2, k =k +k,
and |2/ w,| <1, |k/ k| < 1. The zeroth order asymptotic approximation of the dispersion relation for the
monochromatic wave exp[i(«,x —wgt)] is

wini(w) = k3
where ¢ is the light speed. The exact dispersion relation = e (x) is not known, but it is usually a smooth
function [5]. We have the following approximation:

w=wlky+tk)=wlky)+wik)k+iwi(ko)k’+ = wy+ 2.
Then the group velocity is

Jw
g=a—kxw6(ko)+w8(ko)k-

For a radially symmetric fiber, a transverse component of the electric field is assumed to be of the form

v

E(r, x, t) =Re{R(r) ¢(x, 1) exp[i(kox — wo1)]}
where R(r) is a radial eigenfunction as a result of separation of variables of the wave equation [1, 2, 4],

¢(x, t) is the modulation of the monochromatic wave exp[i(kox —wqt)], and ¢(x, t) satisfies a fCNLS
equation:

. wWolly
(@, + wops) Fiwie., + o le[Pe = F(x, 1). (1)
0

F(x, t) is the external disturbance added to the CNLS equation. In this article, this disturbance is assumed
to be a slowly oscillating wave traveling at the group velocity of the pulse. Explicitly,

F(x, t)=f(x—vgt) exp[ilkx — 1)]. (2)
Let
e(x, 1) =uv(x, ) expli(kx — 21)]. 3)

Substituting (2) and (3) into (1), we have

r/k2 "
(Q—w()k-—wo )v+ﬂuxx+w°n2|v]20+i(v,+vgvx)=f(x—vgt). (4)
2 2 2n,

Equation (4) has a solution of the form

v(x, t)=u(é), E=x—uv,t (5)
with u(¢) satisfying
1
u'—plu 3 u’=g(f), (6)
where
1w =Qlo)(wi/2)K*+whk —2)>0 (measure of the pulse power), (7)
vi= (nowg)/ (won>), (8)

g(£) = (2/ wg)f(4). 9)
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It is assumed that g is of compact support (i.e., g(£) is nonzero only in a bounded closed interval).
We denote ¢ =inf supp(g), £, =sup supp(g). The main result of this paper is that for a given » and g,
(6) possesses solutions only if w is sufficiently large and (6) possesses no solutions if u is sufficiently
small. In the following we justify this claim.

Let 9B be a complete metric space defined as

B={¢|ee C(R), | ¢l =suple(x)| exp(u|x|)<M for a fixed M >0.}
xeR

Theorem. For a given M and v, if u is sufficiently large, then (6) admits at least one solitary solution.

Proof. u(#) as a solitary solution to (6) infers that u(+oc0)=0. Then (6) can be converted into an integral
equation

u(€) =J K(& n)g(r)—(1/v*)u’ (7)1 dr = T(u)(¢) (10)

where
K(& 1) =(1/2u) exp(—u|é—1)).

It is readily shown that if

1 [ M? 2max{exp(2u|£]), exp(2u£.))} r }<
o [V2“+ Y , coshudlg(e)ldg | <1, (11)
and

3IM?

2/LSV2<1’ (12)

then T defined by (10) is a contraction map in 9. (11)-(12) always hold as long as u is sufficiently large,
thus u = T(u) has a unique solution in % if u satisfies (11)-(12). Further, if u € B, then T(u)e C*(R) by
(10). Hence u = T(u) is a classical solution of (6). This completes the proof. [

Remark. The above theorem only implies that there exists at least one solitary solution to equation (6).
And it does not imply that this solitary solution is the only solution to equation (6). We cannot exclude
the possibility that problem (6) possesses some solitary solutions which do not satisfy equations (11)-(12).
Actually, problem (6) has multiple solutions. Next, we will prove that (6) possesses at least three solitary
solutions, two of which are not in %, if u is sufficiently large. In fact numerically we have found four
solitary solutions to (6). The solution confirmed in the above theorem is the one having smallest amplitude
among others. This solution approaches the null solution as the disturbance f(¢) vanishes.

To show that at least three solutions exist, let u = ¢ (£) be a solitary solution to (6). Note that ¢ must
be bounded. Define

O ={¢|£€R, 0(£)#0, ¢'(£) =0}
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By the theorem and g(£)#0, @ is nonempty if u is sufficiently large. Now let z=1inf & and N = ¢(z).
Then u = ¢(&) is monotonic in (—, z], and hence ¢ has an inverse £ = £(¢) defined on (0, N] with range
(—o0, z].

Multiplying (6) by #'(¢) and integrating the resulting equation with respect to £ from —c to z, we have

2_
u’=

L2 JN (¢(e)) d (13
5,2 N2 . g(éle &, )
The curve S in the u-N-plane defined by (13) has continuous branches. Therefore, for u = u,=0, the
number of solutions to (6) is the number of intersections of the line u = p, with all branches of $ in the
w-N-plane.

Evaluating L’)V g(&(9)) de by the mean value theorem, one can see that N =0 and N=xV2vu are
three asymptotes to S as u goes to infinity. Thus, (6) possesses three solitary solutions if u is sufficiently
large. The branch of S which has N =0 as its asymptote corresponds to the solution confirmed by the
theorem, since small amplitude makes the contraction map possible and the contracting fixed point is
unique.

By (13), it can be shown that we=miny.p u° > 0. Hence there exist no solitary solutions to (6) with

pP <l

3. Numerical results

Numerical solutions are found by solving (6) analytically from —co to £_ and solving an initial value
problem on (£_, o0) as follows

w'—plut(1/ v’ =g(§), E-<é<wm, (14)
u(€)=v2 uvsech(u(é-§&)), E<¢, (15)
u'(£) =—v2 u’vsech(u(€—&)) tanh(u(£—£&)), ¢é<é (16)

where the phase shift & will be determined by the following analysis.
With u(—00) = u’(—00) =0, the integration of the product of (6) with u'(£) from —oo to {= £, results in

HKu) () =Pu))+B(&, n), (=&, (17)
where
P(u)(0) = (W*(0)/4)2u> = u?(0)/ V), (18)
N
B(‘fo,u):J g(¢) uw'(¢)de (19)

Fig. 1 shows the curve of P(u)+ B(&,, ) vs. u. We can see that solitary solutions to (6) exist if and only
if [6]

B(&,, u)=0. (20)
It is this condition which determines the phase shift &. To find &,, we can solve (14)-(16) up to £, for
a trial value of &, and compute B defined by (19). Using a do loop we can obtain a curve of B vs. &.

The intersections of the curve with the &, axis are the solutions of (20). The multiplicity of the solutions
of (20) is equal to the number of solitary solutions of (6).
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Fig. 1. Necessary and sufficient condition of existence of solitary solutions to (17). P(u) and B(&,, 1) are defined in (18)-(19).

As a numerical example, we take g as a Gaussian

(5)= {y(sNzw) exp(=12.5 %), [¢<1,
HA ) l€l>1,
and »=1.0. As y=1.0 and u =2.0, we find four values of &: &, =—1.5203, £, =—0.0298, £;=1.5173,
£04=0.0308. The corresponding solutions are shown in Fig. 2.

3.0

-3.0 R I 1 L 1 " 1 . 1 L ] ) | R 6
-4 -3 -2 -1 0 1 2 3 4
Fig. 2. Four solitary solutions to equation (6). Here we take »=1.0, . =2.0, g(&) = y(5/vV2w) exp(—12.5 £9), |€l=1; 0, elsewhere.
The correspondence of the solutions and phase shifts is: &, = —1.5203 for u;, £, = —0.0298 for u,, &;=1.5173 for u;, £,,=0.0308
for u,.
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Fig. 3. u-N diagram § determined by (13). The dashed curve corresponds to the solutions of two crests
(see solution u, in Fig. 2). » and g are the same as those in Fig. 2.

Fig. 3 shows the curve S for y=1.0 and »=1.0. From Fig. 3, we see that a solitary solution exists to
(6) only when u is large enough (i.e., the supplying energy must be large enough). There exist four
solutions, two solutions, and no solution for u > 0.8325, 0.8261 < u < 0.8325, and u < 0.8261 respectively.
Corresponding to the w-N diagram of Fig. 3, the energy density |~ u*(¢) d¢ of the electric field vs. u
is shown in Fig. 4.

4. Concluding remarks

We have studied solitary pulse transmission in a fiber under a disturbance moving at the group velocity
of the pulse. The pulse is the amplitude modulated near monochromatic plane wave exp[i((k,+k)x —
{(wo+12)1)]. The amplitude modulation function ¢(x, t) satisfies a forced cubic-nonlinear Schrodinger
equation. The forcing term F(x, t) is due to the moving disturbance. The zeroth order approximation of
the dispersion relation is not affected by the geometry of the cross-section of the fiber. The transmitted
power, measured by u? (see equation (7)), is a crucial parameter in our problem. A solitary pulse solution
of equation (6) exists if and only if u° is sufficiently large. Namely, for a solitary pulse to overcome the
blocking, the intensity of the pulse must be sufficiently strong. This is the main conclusion of this paper.
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Fig. 4. Curves sign(u)ffm u?(£) d¢ vs. w. Here v and g are the same as those in Fig. 2.

To my knowledge, there are no experimental results available on this type of blocking. External forcing
usually comes into a system through boundary conditions. It might be perceivable to exert the disturbance
in the medium outside of the fiber, in which the solitary pulses are transmitted. The technical details of
how to exert such a disturbance remain to be investigated.
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