
Uncertainties, Trends, and Hottest and Coldest Years of U.S. Surface Air Temperature
since 1895: An Update Based on the USHCN V2 TOB Data

SAMUEL S. P. SHEN AND CHRISTINE K. LEE

Department of Mathematics and Statistics, San Diego State University, San Diego, California

JAY LAWRIMORE

NOAA/National Climatic Data Center, Asheville, North Carolina

(Manuscript received 23 February 2011, in final form 17 December 2011)

ABSTRACT

This paper estimates the sampling error variances of gridded monthly U.S. Historical Climatology Network,

version 2 (USHCN V2), time-of-observation-biases (TOB)-adjusted data. The analysis of mean surface air

temperature (SAT) assesses uncertainties, trends, and the rankings of the hottest and coldest years for the

contiguous United States in the period of 1895–2008. Data from the USHCN stations are aggregated onto

a 2.58 3 3.58 latitude–longitude grid by an arithmetic mean of the stations inside a grid box. The sampling error

variances of the gridded monthly data are estimated for every month and every grid box with data. The

gridded data and their sampling error variances are used to calculate the contiguous U.S. averages and their

trends and associated uncertainties. The sampling error variances are smaller (mostly less than 0.28C2) over

the eastern United States, where the station density is greater and larger (with values of 1.38C2 for some grid

boxes in the earlier period) over mountain and coastal areas. In the period of 1895–2008, every month from

January to December has a positive linear trend. February has the largest trend of 0.1628C (10 yr)21, and

September has the smallest trend at 0.0208C (10 yr)21. The three hottest (coldest) years measured by the

mean SAT over the United States were ranked as 1998, 2006, and 1934 (1917, 1895, and 1912).

1. Introduction

Many applications require the knowledge of data er-

rors to quantitatively understand the relevant uncer-

tainties (Brohan et al. 2006; Folland et al. 2001) and to

make meaningful statistical inferences for scientific

conclusions. For example, an uncertainty assessment of

the optimal global average annual mean surface air tem-

perature (SAT) requires information on data errors (Jones

et al. 1997; Shen et al. 1998, 2007; Folland et al. 2001).

The uncertainties of SAT trend and the statistical in-

ference of extreme SAT also need error data.

The uncertainties of a climate dataset have many as-

pects. Three fundamental types are 1) observational

errors due to station data quality; 2) sampling errors due

to data gridding, reconstruction, or spatial or temporal

averaging; and 3) temporal interpolation errors when

filling in the missing values of station data. This paper

will focus on investigating the sampling errors of data

gridding and spatial averaging as well as associated un-

certainties when including observational errors for the

U.S. Historical Climatology Network, version 2 (USHCN

V2), dataset. This dataset was recently developed by the

U.S. National Oceanic and Atmospheric Administra-

tion’s (NOAA) National Climatic Data Center (NCDC)

(Menne et al. 2009) and is an improved dataset from

USHCN V1 (Easterling et al. 1996). The USHCN V2

contains the monthly means of daily maximum (Tmax),

daily minimum (Tmin), and daily mean (Tmean) SAT

as well as precipitation data from 1218 stations over

the contiguous United States. These primarily compose

a subset of stations from NOAA’s Cooperative Ob-

server Program (COOP) selected using various criteria,

including completeness and length of record. USHCN

V2’s development went through three steps: 1) data

quality evaluation and database construction, 2) time-of-

observation-biases (TOB) adjustment, and 3) pairwise

homogeneity adjustment (to correct for artificial discon-

tinuities) and missing-value estimation from surrounding
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stations. These three steps respectively generated three

USHCN V2 datasets named RAW, TOB, and F52 (Menne

and Williams 2009). The TOB data are used in this study

for our analysis of sampling error, trends, and hottest

and coldest years. We average the SAT anomaly data of

the USHCN stations within 2.58 3 3.58 latitude–longitude

grid boxes and use the resulting values within each grid

box to calculate the contiguous U.S. (CONUS) tem-

perature for each month and each year from January

1895 to December 2008. Further, we quantify the un-

certainties of the gridded USHCN V2 TOB SAT data by

estimating the sampling errors on the basis of the theory

of averaging correlated time series (Wigley et al. 1984;

Shen et al. 2007). The presence of sampling errors within

each grid box influences the calculation of the national

average and creates uncertainty in any analysis of CONUS

SAT trends.

The detailed objectives of our current work include 1)

an estimate of the error variance of the gridded USHCN

V2 SAT data, 2) a calculation of the monthly and annual

means of the CONUS SAT and their uncertainties by

using the gridded data and their errors, 3) an analysis of

the U.S. SAT trends and their errors from 1895 to 2008,

and 4) identification of the 10 hottest and coldest years

between 1895 and 2008.

The rest of the paper is arranged as follows. Section 2

describes the USHCN V2 data and the method for cal-

culating the sampling error variances. Section 3 presents

the results of this paper. Section 4 contains the conclu-

sions and discussion.

2. Data and method

a. Data

The USHCN V2 dataset (Menne et al. 2009) consists

of long-term stations selected from the COOP network

on the basis of many factors, including length of record,

spatial coverage, and stability. A criterion for a station

to be included in the USHCN is a minimum continuous

record of 80 yr. However, in the process of developing

the USHCN V2 dataset, the station-sparse areas of the

United States required that 208 series be formed as

composites. Each of these series is a joined record of two

or more neighboring stations of consecutive records of

less than 80 yr. The total of 1218 stations in USHCN V2

includes these 208 composite series.

Among the three USHCN V2 datasets (RAW, TOB,

and F52), TOB data have corrected the bias in the RAW

data that is due to different local observational times of

a day. The F52 data, also called the fully adjusted data,

contain corrections for TOB, a homogenization process

of pairwise comparison, and fill-in- the-network (FILNET)

estimates. The FILNET estimates fill in all of the miss-

ing data of a station, and hence F52 data of each station

are complete from 1895. This data-filling process may

have introduced some temporal and spatial smoothness

into the USHCN dataset. Detailed estimation of the

FILNET estimation error and a quality assessment of

the FILNET procedures are still to be made. We chose

to use the TOB-adjustment data for assessing the sam-

pling error, trend, and extremes for the U.S. gridded

data and U.S. spatially averaged data.

The history of the number of these USHCN V2 TOB

stations from January 1895 to December 2008 is shown

in Fig. 1. The number of stations increased from a min-

imum of 481 in January 1895 to a maximum of 1209 in

March 1962. Never have all 1218 USHCN stations been

operating at the same time. The recent drop in the number

of stations as shown in Fig. 1 is primarily due to station

closures. The spatial distribution of the 1218 stations

is shown in Fig. 2. This figure indicates that the CONUS

is well covered, with a higher station density in the more

heavily populated eastern United States.

We aggregate the TOB station data onto 2.58 3 3.58

latitude–longitude grid boxes. Figure 3 shows the 2.58 3

3.58grid with the northwestmost grid box’s northwest

vertex as 508N, 1268W. Altogether, the 1218 USHCN V2

stations fall within 120 grid boxes. The number of sta-

tions in a grid box has a maximum of 32 (the centroid

of this grid box is 41.258N, 75.258W) and a minimum of

1 for several grid boxes on the border of the CONUS.

We have excluded these seven 1-station grid boxes on

the southern and northern borders in our error calcu-

lation. Four of these boxes are along the Atlantic Ocean

and Gulf of Mexico and have their stations on islands.

Each of these boxes has most of its area over water.

Another one-station box is farther west and near the

U.S.–Mexico border and has about one-third of its area

over water. Inclusion of these one-station grid boxes

yields more noise. If these one-station grid boxes are

used in calculating a national average, then each grid

box should be weighted by its land area. Thus, the ex-

clusion of these boundary grid boxes does not signifi-

cantly affect the applications of the gridded USHCN

data and conclusions regarding the CONUS tempera-

ture change. Two other excluded one-station grid boxes

are near the U.S.–Canada border. A strong spatial dis-

continuity of the SAT anomalies at the one-station grid

boxes was identified over Minnesota when compared

with the adjacent grid boxes. This discontinuity led us to

exclude these two boxes near the Canadian border. Thus,

only 113 grid boxes are left for our analysis.

To estimate the sampling error variance for each grid

box that had monthly-mean SAT data, we used the

correlation-factor method of Shen et al. (2007). The
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aggregated SAT data and their estimated errors are used

to calculate the CONUS SAT time series and their un-

certainties from 1895 to 2008 at the monthly, seasonal,

and annual time scales. The trends of the mean SAT for

1895–2008 are assessed.

Our calculations are made with temperature data ex-

pressed as anomalies, that is, departures from the cli-

matology as defined by the mean in the base period of

1961–90. Almost all of the USHCN stations have at least

21 yr of data during this base period. However, for each

FIG. 1. History of the number of USHCN V2 stations from January 1895 to December 2008.

FIG. 2. Spatial distribution of the 1218 USHCN V2 stations.
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month there are still a few stations that did not have

21 yr of data in 1961–90. For example, for November,

eight stations had fewer than 21 yr of data. Their station

identifiers are 47195, 49490, 105559, 300023, 300321,

308906, 352135, and 355362. We cannot calculate the

climatology and anomalies for these stations. Thus, the

data from these stations are not used to derive the results

of this paper.

b. Method

Consider an SAT anomaly field T(r, t), over a grid box

V, where r is the position vector and t is time. Let T be

the true average of the SAT field over the grid box:

T(t) 5
1

kVk

ð
V

T(r, t) dV, (1)

where jjVjj is the grid box’s area. An estimator of this

spatial average from station data is

bT(t) 5
1

N
�
N

i51

Ti(t). (2)

In the above equation, Ti(t) 5 T(ri, t) is a sampling-

anomaly datum of the station at ri and time t and N is the

number of stations in the grid box.

The SAT field over a grid box is not white noise and is

inhomogeneous. The data of different stations in a grid

box are correlated. Hence, the aggregation of the data

for the stations inside a grid box is basically a problem

of finding the average value of correlated time series

(Wigley et al. 1984; Shen et al. 2007). The conventional

convenient sampling error formula s2/N does not apply.

Here, we adopt the method of Shen et al. (2007) that

uses spatial variances and a correlation factor to estimate

the standard error of the gridbox data, that is, the mean-

square error (MSE) of bT. The MSE is also referred to as

error variance, and its estimation formula is

E2 5 h(bT 2 T)2i 5 as

s2
s

N
, (3)

where

s2
s 5

1

N
�
N

j51

[Tj(t) 2 T(t)]2

* +
(4)

is the spatial variance,

as 5 1 1
1

N
�
N

i, j51
i 6¼ j

(Ti 2 T)

ss

(Tj 2 T)

ss

* +
(5)

is the correlation factor, and the angle brackets stand for

the operation of ensemble mean, or expected value.

The spatial variance s2
s is estimated by

ŝ2
s (t) 5

1

kMTW(t)k �
t2MTW(t)

1

N
�
N

j51

[Tj(t) 2
bT(t)]2,

(6)

where MTW(t) 5 ft 2 t0, . . . , t 2 2, t 2 1, tg denotes the

set of a moving time window (MTW) and jjMTW(t)jj is
the cardinality of the set. We follow the idea of piecewise

FIG. 3. Total number of stations N in a box in the USHCN history for the 2.58 3 3.58 gridbox

resolution over the CONUS. The sum of the numbers in all of the grid boxes is 1218.
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stationarity (Folland et al. 2001) and use a 5-yr backward

MTW. If a grid box has data for every year in the MTW,

then t0 5 4 and MTW 5 ft 2 4, t 2 3, t 2 2, t 2 1, tg. If an

MTW does not have data for every year, then we require

a minimum of 3 yr of data in an MTW to make a calcu-

lation that is based on Eq. (6). For 1897, the MTW has

only 3 yr of data: MTW 5 f1895, 1896, 1897g and hence

jjMTW(1897)jj5 3. For spatial variance, N 5 4 is chosen

as the minimum number of stations within a box, because

the following regression estimate of as needs at least four

stations.

The correlation factor as is estimated by using a re-

gression rather than being computed directly from Eq.

(5) (Shen et al. 2007). Suppose that a box has N (larger

than or equal to 4) station anomalies. We treat the data

of these N stations as a statistical population. The pop-

ulation mean of the station temperature anomalies in

the box is

bTN(t) 5
1

N
�
N

i51

Ti(t). (7)

If a simple random sampling of n stations is taken from

the population (Cochran 1977), then the sample mean of

the n stations is

bTn(t) 5
1

n
�
n

i51

Tn,i(t), (8)

where Tn,i is the ith station’s anomaly temperature in the

subsample network of size n. Following the method of

Shen et al. (2007), the mean-square difference Ê
2

n be-

tween the above two quantities over 1000 samples is

used as an initial estimate of the sampling error. We then

apply a regression procedure using the following data:

Ê
2

n

ŝ2
s

,
1

n

 !
(n 5 1, 2, 3, . . . , N 2 1). (9)

The regression coefficient is the â
S

value, which is the

estimate of as in Eqs. (3) and (5).

We then populate the â
S

and ŝ2
s values onto the grid

boxes with fewer than four stations by using a simple

interpolation method. Starting from the farthest south-

eastern grid box, if a grid box G has three or fewer sta-

tions, it will be assigned âS and ŝ2
s values according to

the following search procedure. On the same latitude

band, a search is done for the first box to the west. If this

box has four or more stations, the â
S

and ŝ2
s values of

this box are assigned to grid box G. Otherwise, we search

to the first box on the same latitude band to the east. If the

box does not meet the criterion, then the search goes to

the second box to the west. This west and east alternation

can acquire the â
S

and ŝ2
s values for grid box G if the

latitude band has at least one grid box that has four or

more stations. If it does not, we search for a grid box on

the first latitude band to the north. The first search is to

the box directly north of grid box G, then to the first box

to the west, and then to the right. The alternation goes on

until âS and ŝ2
s values are found or the entire latitude

band has been exhausted. If the entire band is exhausted

without â
S

and ŝ2
s values, we do the same search for the

first latitude band south. This north and south alternation

will eventually find at least one pair of âS and ŝ2
s values,

which are assigned to grid box G. This search procedure

has a preference to a western box and a northern box.

The temperature’s spatial variance over the CONUS is

more relevant to the west than to the east because of

the prevailing westerly atmospheric circulation patterns

(Washington and Parkinson 1986, chapter 2). However, it

is unknown whether our search procedure is optimum

to this atmospheric circulation. Alternative search pro-

cedures can also be used to fill in the values for grid box

G. For example, Shen et al. (2007) considered the errors

of the gridded data for the entire globe, searched from

a northwestmost grid box, and had a preference to the

south latitude band.

Last, the sampling error variance of the USHCN grid-

box data for a given box and a given month is computed by

E2 5 âS

ŝ2
s

N
. (10)

3. Results

a. Error variances of the gridded USHCN

Error variances Ê
2

n are calculated for all 113 grid

boxes (Fig. 3) for each month from January 1897 to

December 2008 for which a box had data. Figure 4 shows

the error variances of 4 months: January of 1897 and

1990 and July of 1897 and 1990. The year 1897 is the

earliest year for which the error variance can be com-

puted because the MTW requires at least 3 yr of data

within the 5-yr MTW. The sampling error variances are

inversely proportional to the number of stations. Thus,

the error variances for the eastern United States are

smaller than those of the western United States and

those of the boundary grid boxes. The large sample error

variances occurred over the grid boxes with few stations

and large spatial variances. These grid boxes are dis-

tributed along the mountain regions, the northern and

southern national borders, and some of the coastal grid

boxes. Although these error variances are relatively

larger than those over the eastern United States, they
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are in general still less than 1.38C2. In 1897, the eastern

U.S. error variances were still smaller than 0.38C2 when

only about 500 stations existed for the CONUS as

a whole. However, the sampling errors were large in

1897 in the western mountain regions and the south-

western United States, and many grid boxes had sam-

pling error variances greater than 1.08C2. Several grid

boxes had no station data in 1897, and they are left blank

in Figs. 4a and 4b. Because of the nontrivial sizes of the

sampling errors in the early part of the temperature

record, when identifying the SAT trend over certain

regions, the associated sampling uncertainties need to

be considered.

The station data have errors also. The errors include

the time-of-observation bias caused by the change of ob-

servational time during a day, bias caused by the changes

that result from station moves and changes in observing

practice, heat island effects, instrumental random mea-

surement errors, and others (Brohan et al. 2006; Folland

et al. 2001; Karl et al. 1986; Menne et al. 2009; Vose et al.

2003). Some known biases, such as the TOB, have been

corrected in USHCN V2 (Menne et al. 2009). The ran-

dom errors, some of which were introduced during the

adjustment process, still remain. These random errors

have expected values that are close to 0 and are un-

correlated among the stations (Brohan et al. 2006). The

quantitative assessment of the remaining observational

errors, including both random and bias errors, is a chal-

lenging task and remains to be addressed, as pointed out

by Brohan et al. (2006) and Menne et al. (2009). Menne

et al. (2009) used the pairwise comparison and further

homogenized the USHCN data. However, the procedure

resulted in a larger warming trend of the U.S. SAT. We

have chosen to use the TOB-only data and used grid

boxes larger than those of Menne et al. (2009). Our grid-

box size ensures that at least one station exists in every grid

box across the country during the climatological period

1961–90. Our warming trend is 0.0578C (10 yr)21, whereas

FIG. 4. Spatial distribution of the sample error variances (8C2) of the USHCN TOB-adjusted Tmean anomaly data (relative to the 1961–90

climatology) over the grid boxes: (a) January 1897, (b) July 1897, (c) January 1990, and (d) July 1990.
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Menne et al. (2009)’s trend from F52 data is 0.0648C

(10 yr)21. When we apply our method to F52, the trend is

much larger: 0.0758C (10 yr)21. In future research we will

address detailed assessments of the results from RAW,

TOB and F52 data. Because the observational error and

the sampling error constitute the overall uncertainties of

the observed climate changes, the uncertainty of the grid-

ded data should incorporate both errors. Consequently, the

overall uncertainty is larger than the sampling error shown

in Fig. 4.

The observational random error variance of the grid-

ded data is denoted by E2
o. The gridded SAT field T may

be statistically modeled by

T 5
bT 1 �s 1 �o, (11)

where T is the true gridded SAT field, bT is the gridded

datum calculated by Eq. (7), �s is the sampling error, and

�o is the observational error. For our data, we assume that

both errors are normally distributed and have a mean of

0 (Brohan et al. 2006):

�s ; N(0, E2) and �o ; N(0, E2
o). (12)

This assumption for the sampling error has little ques-

tion, but that for observational error may be question-

able since bias may still exist after TOB and pairwise

corrections are applied (Williams et al. 2012). Thus, one

may regard this assumption for the observational error

as a mathematical approximation, which can still be sub-

ject to change.

By definition, the sampling error and the observational

errors may be assumed to be uncorrelated. Thus, when

both sampling and observational errors are taken into

account, the total error variance for a gridbox datum is

�2 5 E2 1 E2
o. (13)

Figure 4 shows that the sampling error variance of the

gridded data is bounded by 1.38C2. The standard sam-

pling errors for most grid boxes are thus less than 1.18C.

For many boxes, the errors are close to zero. Figure 1

indicates that the number of stations reached a maxi-

mum from the 1930s through the 1980s. Thus, the sam-

pling error variances were large in 1895 and gradually

diminished to almost zero in the 1930s for most grid

boxes. Figure 8 of Menne et al. (2009) shows the error

bars for the annual minimum SAT (Tmin) at Reno,

Nevada. This station may be the worst-case scenario for

the error-bar size. Those Monte Carlo–simulated error

bars 6 2Eo may be regarded as an upper bound of the

observation uncertainty, although the data have gone

through the full pairwise adjustment. In the earlier

years, 2Eo was about 1.08C. The error diminished to zero

in the 1990s. Brohan et al. (2006) and Folland et al.

(2001) postulated their observational error sizes. Here,

we do the same by comparing Fig. 4 of this paper with

Fig. 8 of Menne et al. (2009) and tentatively postulate

that the observational errors are about one-half of the

sampling errors for each grid box in the contiguous

United States. This assumption and Eq. (13) lead to

«2 5 (5/4)E2.

b. U.S. average SAT and its uncertainty

The CONUS spatial average of the mean SAT is cal-

culated at monthly, seasonal, and annual time scales by

an area-weighted averaging method applied to the 113

grid boxes. For the U.S. spatial average to truly reflect

the entire CONUS area, all 113 grid boxes are used to

calculate the U.S. average. The data-void grid boxes

acquire their data from interpolation in the same way as

the correlation factor.

To find the standard error of the U.S. average SAT,

we use Eqs. (11) and (12) of Jones et al. (1997) on the

basis of the definition of degrees of freedom using the

S method (Wang and Shen 1999):

E
2

5

�
113

i51

E2
i cosui

�
�
113

i51

cosui

Neff

, (14)

where E2
i is the sampling error variance determined by

Eq. (10) for the ith grid box, ui is the latitude of the grid

box’s centroid, and Neff is the effective degrees of free-

dom of the SAT anomaly field over the United States. In

effect, the area-weighted average is calculated for the

sampling error variances over grid boxes. The average is

then divided by the effective degrees of freedom [see

Eq. (11) of Jones et al. (1997) and Eq. (7) of Smith et al.

(1994)], and the square root of this result is the standard

error of the U.S. average. Here, we have assumed that bT
is an unbiased estimate of T as indicated by Eqs. (11)

and (12). Thus, the expected value of T is equal to bT, and

hence the S-method definition of the degrees of freedom

applies (Wang and Shen 1999). The degrees of freedom

of the monthly SAT over the Northern Hemisphere

were estimated in Wang and Shen (1999) by using four

different methods and varied between 40 and 80. From

Eqs. (13) and (14) of Jones et al. (1997), the effective

degrees of freedom is the ratio of the investigation

area to the spatial characteristic area. The area of the

Northern Hemisphere divided by 40 is the upper bound

of the characteristic area, which is 5.6 3 106 km2. The

CONUS area divided by this characteristic area is equal

to 1.4. This is the lower bound of Neff. The upper bound
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is 2 times this value. We thus estimate the effective de-

grees of freedom Neff for the CONUS to be 2 for the

monthly SAT. The solid lines in the first column of Fig. 5

show the area-weighted average of the contiguous U.S.

SAT anomalies on the basis of the gridded USHCN data

for each month from January to June (Fig. 5a) and from

July to December (Fig. 5b). The shading indicates the

2-sigma error bound (i.e., the 95% confidence interval).

The red dashed straight lines are the linear trends whose

slopes and their error ranges are given in Table 1.

Figure 5 considers both sampling error E
2

and obser-

vational error. When taking the random observational

error into account, the actual confidence interval at the

95% confidence level is slightly larger than 62E. The

observational errors are approximately one-half of the

sampling error for the same grid box as we have postu-

lated; that is, E2 5 (1/4)E2
o and then �5 (E2 1 E2

o)1/2
5

1:12E. From this, the actual confidence interval is

62.24E, shown by the shaded region for the time series

in Fig. 5. This may be the worst-error scenario. Despite

these two errors and other uncertainties, the total errors

are not yet large enough to alter the conclusions about the

upward or downward trends of SAT in a given period

of time on the basis of the USHCN V2 TOB-adjusted

data or fully adjusted F52 data (Fig. 10 of Menne et al.

2009).

Figure 5 clearly demonstrates larger temperature trend,

variance, and error in the winter than in the summer. The

FIG. 5. (left) Time series with 2-sigma error margin, (center) histograms, and (right) spectral power of the U.S. average monthly Tmean

anomalies (relative to the 1961–90 climatology) for (a) January–June and (b) July–December. The red dashed line is the linear trend. The

shaded area is the 2-sigma error margin.
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histograms show that the February anomalies have the

largest variance. February SAT has a clear warming

trend from 1900 to the 1930s (the ‘‘Dust Bowl’’ drought

period). Both January and February SAT show warming

trends in the 1980s and 1990s. The warming trend is also

shown in December’s SAT in the 1990s. The power

spectra of January SAT anomalies indicate the existence

of a strong low-frequency oscillation, and a similar but

weaker oscillation appears in February’s and December’s

power spectra. The first peak at zero frequency is due to

the large positive mean, which is reflected in both the

time series and the histogram. This peak is statistically

significant at the 5% significance level (Wei 2006, section

13.1.3). The other two peaks at periods of approxi-

mately 6 yr (114/20) and 3 yr (114/40) may be the U.S.

SAT response to El Niño. The other two identical high

peaks at the higher frequencies are the mirror images

reflected at the frequency of 56/114 and seem to have no

physical meaning. The peaks of February, March, and

December also reflect the U.S. SAT variations at the

periods in the range of 2–7 yr. However, none of these

peaks is statistically significant even at the 10% signifi-

cance level according to an F test (Wei 2006, section

13.1.3). Therefore, it is likely that these low-frequency

oscillations shown in the power spectra of December,

January, February, and March are noisy but statistically

FIG. 5. (Continued)
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insignificant SAT responses to El Niño. In other months,

from April to November, the SATs have little warming

trends, small variances, and very weak power spectra.

The histograms of Fig. 5 clearly indicate that the sum-

mer SAT anomalies have much smaller variances than do

those of winter. For the purpose of convenient com-

parison, we have fixed the scales of both the horizontal

and vertical axes of the histogram. Thus, for the summer

months of small variance, the histogram bars are thin-

ner than those for the winter months of large variance.

The histograms also seem to indicate that the summer

months’ SATs are more symmetrically distributed than

the winter ones, perhaps because of smaller summer

climate variations. Although it may not be conclusive

whether the U.S. mean SAT anomalies are skewed left,

the histograms seem to suggest a longer tail toward the

left. This is most likely due to the fact that during the

1895–2008 period most years before 1960 were colder

than the 1961–90 mean. Other inferences-based non-

parametric methods, such as the Kolmogorov–Smirnov

test, can be made to confirm whether the probability

density functions (pdf) have shifted from one period to

another (Regele 2010). One can also assess temporal

variations of the variance, skewness, and other higher

statistical moments (Shen et al. 2011). A comprehensive

study of the inference that is based on the three USHCN

datasets will be included in future work.

Figure 6 shows the annual average of the monthly

SAT for the CONUS TOB-adjusted time series in Fig. 5.

The red bars indicate the positive anomalies of the U.S.

annual mean SAT with respect to the 1961–90 average,

and the blue bars indicate negative anomalies. The thin

and black error bars are the 2-s confidence interval at

the 95% confidence level. Here, we have accounted for

the errors from both sampling and measurement and

have used an upper-bound estimate that the measure-

ment error is one-half of the sampling error. We also

assume that the error variances from different months

are independent. The standard error E
Ann

of the annual

mean is thus estimated by the 12-month mean of the

monthly error variance, divided by 12. Namely,

«Ann 5
1

12
�
12

m51

«2
m/12

 !
1/2

5

�
1

12
�
12

m51

(E
2
m 1 E

2
o,m)/12

�1/2

5
5

48
E

2
Ann

� �1/2

,

(15)

where E
2

m and E
2

o,m are respectively the U.S. average

SAT’s sampling error and the random observational er-

ror for the month m and

E
2
Ann 5 �

12

m51

E
2
m/12

is the annual mean of the monthly U.S. spatially aver-

aged sampling errors. Thus, the 95% confidence error

bars (i.e., 2s) of our annual time series are calculated

by 62«Ann. The thick black solid line is the 10-yr moving

average of the annual SAT. The moving average shown

in Fig. 6 is from 1899 to 2003. Moving average is only one

of many types of low-pass filters that may be used to

smooth the annual time series. The results from differ-

ent filters may have little difference in the middle sec-

tion of a time series but can show different tendencies at

the end of a time series (Mann 2004). A more systematic

way of finding a nonlinear and nonstationary trend may

be the empirical model decomposition method (Huang

and Shen 2005). Still, the tendencies near the end points

should not be used as time series extrapolations.

Figure 6 shows the warm anomalies in the 1930s and

the last two decades and the cold anomalies in the first

two decades and the 1960s and 1970s. Although the U.S.

SAT’s long-term warming trend is synchronized with

that of the global SAT, the United States’s persistent

warm anomalies in the 1930s and the short-lived warm

anomalies in the early 1950s are different from the global

SAT (Fig. 3.6 of Solomon et al. 2007; Karl et al. 2009). For

the globe, the 1930s SAT was cooler than the 1961–90

climatology. The recent distinct warmth over the United

States in 1998 and 2006 and other warmth observed in the

TABLE 1. Linear trends of the monthly, seasonal, and annual

mean CONUS Tmean anomalies (relative to the 1961–90 clima-

tology) from 1895 to 2008 [8C (10 yr)21] using USHCN V2 TOB-

adjusted data. The boldface type indicates that a trend is statistically

significant at the 5% significance level. The plus/minus sign indicates

a 1-sigma confidence interval at the 68% confidence level.

Month Trend

Jan 0.044 6 0.047

Feb 0.162 6 0.048

Mar 0.087 6 0.042

Apr 0.042 6 0.028

May 0.053 6 0.024

Jun 0.045 6 0.022

Jul 0.050 6 0.020

Aug 0.048 6 0.020

Sep 0.020 6 0.022

Oct 0.023 6 0.027

Nov 0.049 6 0.032

Dec 0.066 6 0.040

Annual 0.057 6 0.017

Winter (Dec–Feb) 0.086 6 0.030

Spring (Mar–May) 0.061 6 0.022

Summer (Jun–Aug) 0.048 6 0.017

Autumn (Sep–Nov) 0.031 6 0.020
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last two decades were well synchronized with the global

SAT.

c. U.S. SAT trend and its uncertainty

The linear trend from 1895 to 2008 for each month is

shown in Table 1. The trend is positive for every month.

The largest trend is 0.1628C (10 yr)21 for February, and

the smallest trend is 0.0208C (10 yr)21 for September.

The error of the linear trend assessment is calculated by

using the following linear statistical model:

Td 5 b0 1 b1t 1 « 1 «E. (16)

Here, Td is the monthly U.S. SAT data, b0 1 b1t 1 « is

the linear statistical model to represent the true monthly

U.S. SAT, « is the model error, and «E is the data error

we have just estimated, called the measurement error in

statistical literature (Carroll et al. 2006), relative to the

model and is assumed to be independent of «. The var-

iance of «E is the sum of the sampling error variance E
2

m

and the observational error variance E
2

o,m according to

Eq. (15). Equation (16) implies that

Var(T̂d) 5 Var(«) 1 Var(«E), (17)

where T̂d 5 b̂0 1 b̂1t is the estimated trend and b̂1 for

each month is shown in Table 1. For example, b̂1 5

0:0448C (10 yr)21 for January and b̂
1

5 0:1628C (10 yr)21

for February. The uncertainty for this slope is measured

by the standard deviation of b̂
1
, which is

SD(b̂1) 5 [Var(T̂d)/Sxx]1/2, (18)

where Sxx is the variance of the explanatory variable t

and Var(«) is estimated by sum of squared errors (SSE):

Sxx = SSE/(n 2 2), with n 5 113 being the total number

of data points (Carroll et al. 2006; Wackerly et al. 2002).

Standard statistical software packages can calculate

SD(b̂
1
) but do not include the data error. For the mth

month, Var(«E) 5 E
2

m 1 E
2

o,m 5 (5/4)E
2

m is the sum of the

sampling error variance and the random observational

error variance, which is assumed to be one-quarter of

the former; Var(«E) varies from year to year. When this

quantity is added to Var(«) [see Eq. (17)], a more re-

alistic uncertainty for the slope measured by 6SD(b̂
1
)

[see Eq. (18)] is calculated (shown in Table 1). This re-

gression error in winter months is much larger than that

in summer months, because the winter SAT has much

larger variances than does summer SAT.

FIG. 6. The annual mean SAT Tmean for the contiguous United States from the TOB-adjusted

data. The error bar represents the 95% confidence interval. The blue curve is the 10-yr moving

average.
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Despite some unknown data errors, according to the

error formulations in Eqs. (17) and (18), the positive

trend signals are significant at a 5% significance level

for February, March, May, June, July, August, winter,

spring, summer, and the full year (see Table 1 for the

boldface values). Although the trend of December is

0.0668C (10 yr)21 and is the second largest among the 12

months, it is obscured by the large noise of the month

and is not statistically significant. The same can be said

for January, April, and November.

There are still some unknown errors in the climate

data, however. The remaining errors after the TOB or

full adjustments of Menne et al. (2009) may still include

nonrandom errors associated with observational prac-

tices that are not fully accounted for, such as changes in

station location, changes in the station environment, and

changes in instrumentation through time. Thus, the re-

maining error in the USHCN V2 data may not be spatial

white noise. Before the errors of the sampling and ob-

servations are fully determined and before the spatial

numerical integration errors are accurately estimated,

the significance of the weaker trends cannot be assessed

with very high certainty. In the future, more effort needs

to be given to resolving these issues.

d. Comparison of three time series of the annual
mean U.S. average SAT

For the annual mean, Menne et al. (2009) calculated

the U.S. average SAT anomaly by using the area-weighted

average of the gridded data at a 0.258 3 0.258 resolution.

They interpolated the TOB- and pairwise-adjusted sta-

tion data—that is, the F52 data—onto the 0.258 3 0.258

grid first by using an improved inverse-distance weighting

method (Willmott et al. 1985). We consider the difference

between the Menne et al. (2009) Tmean results (i.e., their

Fig. 12) and our TOB Tmean results (Figs. 6, 7a) that are

based on the area-weighted average of the 2.58 3 3.58

gridbox data. To examine the pairwise adjustment and

FILNET effect, we have also included our results that

are based on the F52 data over the 2.58 3 3.58 grid in the

comparison in Fig. 7. The three time series in Fig. 7(a)

follow a similar upward trend, with trends of 0.059, 0.075,

and 0.0648C (10 yr)21 for Shen TOB, Shen F52, and

Menne. The increase of the trend from TOB to F52 is

expected because the full adjustment procedure included

corrections for siting and instrument changes, such as

the transition to the maximum-minimum temperature

system that took place in the 1980s (Menne et al. 2009).

Menne et al. (2009) used a finer-resolution grid that has

smoothed both the spatial and temporal variances; hence,

Menne’s trend is less than that of Shen F52 as discussed

below in the description of Fig. 7d. The correlation co-

efficients between each pair of the time series in Fig. 7a

are 0.94 between Shen TOB and Menne, 0.93 between

Shen F52 and Menne, and 0.99 between Shen TOB and

Shen F52. Thus, Shen TOB and Shen F52 are synchro-

nized almost perfectly in phase, achieving extremes at

the same time but with different magnitudes, as dem-

onstrated by the red and blue lines of Fig. 7a. The phase

synchronization between Menne and Shen TOB or be-

tween Menne and Shen F52 is not as good, particularly

in the early 1940s and late 1950s. This implies that in-

terpolation method and grid resolution may play a very

important role in determining the warming trend and

identifying temperature extremes.

Figures 7b–e show the statistics of differences be-

tween Shen TOB and Menne, as well as Shen F52 and

Menne, with box plots and power spectra plots. Figure

7b shows the statistical properties of the difference re-

sulting from the Shen TOB result minus Menne et al.

(2009)’s time series. The mean and standard deviation

of the differences of the Shen TOB time series minus

Menne’s are 0.018 and 0.198C, respectively. The positive

mean 0.018C reflects Shen TOB’s slightly higher esti-

mate of the U.S. SAT. The nontrivial standard deviation

of the differences 0.198C might be caused by using grids

of different resolutions, as well as the pairwise adjust-

ment. The maximum absolute difference is 0.478C, which

occurred for 1934 for which our current estimate of the

U.S. SAT anomaly is 1.088C while Menne’s is 1.558C. The

second-largest absolute difference is 0.438C, which oc-

curred for 1983 with ours equal to 20.048C and Menne’s

equal to 20.478C. All together there are 16 yr with ab-

solute differences that are larger than 0.38C.

Figure 7c shows the power spectra of the differences

between Shen TOB and Menne, which are similar to

those for random noise and show no particular dominant

cycles, an indication that no systematic cyclic bias has

been introduced to the system of Menne’s or our current

work.

Figure 7d shows the box plot of the differences of

Shen F52 and Menne, both of which are based on the

fully adjusted F52 data. The mean is 20.028C, and the

standard deviation is 0.208C. Thus, Shen F52 yields

a slightly lower U.S. SAT because of the coarser grid

and the different spatial interpolation and averaging

methods relative to Menne. The largest positive differ-

ence is 0.468C in 1983, and the largest negative differ-

ence is 20.578C, which occurred in 1934. These two

extreme values contribute to the larger trend of Shen

F52 relative to Menne. The 0.208C standard deviation is

similar to the standard deviation 0.198C of the difference

between Shen TOB and Menne, which implies a similar

magnitude of variations of the two differences. In con-

trast, the standard deviation of the difference between

Shen TOB and Shen F52 is only 0.078C.
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FIG. 7. Comparison between the CONUS average annual Tmean anomaly (relative to the 1961–90 climatology) of

this paper and that of Menne et al. (2009): (a) time series of Menne (black) and this paper: Shen F52 (blue) and Shen

TOB (red); (b) box plot of the differences of Shen TOB and Menne: the mean is 0.018C, the standard deviation is

0.198C, the maximum is 0.438C, and the minimum is 20.478C; (c) power spectra of the difference in (b); (d) box plot of

the differences of Shen F52 and Menne: the mean is 20.028C, the standard deviation is 0.208C, the maximum is

0.468C, and the minimum is 20.578C; and (e) power spectra of the difference in (d).
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Figure 7e shows the power spectra of the difference of

Shen F52 and Menne. The distinct peak of low fre-

quency implies a nonrandom bias between Shen F52 and

Menne, which is again caused by different grid resolution

and data gridding methods. Therefore, Figs. 7d and 7e

imply that gridding and averaging methods may cause

nontrivial biases, the sizes of which can be comparable

to or larger than the adjusted bias for station data. It is

hence important to quantify the uncertainties of each

gridding or averaging method (Shen et al. 1998, 2007).

e. Ranking of the hottest and coldest years
according to the U.S. average SAT

Table 2 displays the results of the top 10 extreme

winters and summers. The first two columns of Table 2

display the 10 hottest and coolest summers [June–August

(JJA) average], respectively, between 1895 and 2008 ac-

cording to Tmax. The third and fourth columns display

the 10 warmest and coldest winters [December–February

(DJF) average], respectively, between 1895 and 2008

according to Tmin. The values in parentheses are the U.S.

average seasonal mean Tmax or Tmin anomalies with

respect to the 1961–90 normal. The years are sorted in

descending order of the absolute values of the anoma-

lies. In the 114 yr from 1895 to 2008, 5 of the 10 warmest

winters according to the DJF Tmin occurred after 1987.

Among the other five, two occurred during the Dust Bowl

period of the 1930s, one occurred in 1897/98, one oc-

curred in 1954/55 (in the 1950s warming period), and one

occurred in 1972/73. The top three warmest winters all

occurred after 1987, and the warmest winter was 1990/

91. Eight of the 10 coldest winters, also according to the

DJF Tmin, occurred before 1952, with the coldest winter

being 1939/40. The U.S. annual warming trend is mainly

attributed to this winter warming: frequent cold winters

in the earlier years and frequent warm winters in the

recent period. This is consistent with Gleason et al. (2008)’s

finding that the amount of U.S. area that experiences

hot extremes has increased in recent years. Other no-

ticeable warm events occurred during the long Dust

Bowl drought of the 1930s and a short warm period

during the 1950s. The hottest summer on record occurred

in 1934, with the JJA Tmax anomaly being 2.128C. The

second hottest summer was 1955, with the JJA Tmax

anomaly being 2.118C. These two anomalies are well

within the range of uncertainty, making it impossible

to definitely say which year was warmest. The 1954/55

winter was warm too: the fifth-warmest winter in 1895–

2008, with a DJF Tmin anomaly of 1.468C.

Tmin also provides a good measure of the severity of

summer heat since, for example, high minimum temper-

atures during a summer heat wave can result in significant

heat stress on people, animals, and plants (D’Ippoliti

2010; Gaffen and Ross 1998). Similarly, Tmax also pro-

vides a measure of the severity of winter coldness since

maximum temperature during a winter cold spell can

indicate the severity of the cold.

Table 3 shows the top 10 hottest and coolest summers

according to Tmin and the top 10 warmest and coldest

winters according to Tmax between 1895 and 2008. Ac-

cording to Tmin, the top two hottest summers were 1955

(during the short period of the 1950s warming) and 1934

(during the U.S. Dust Bowl period). The top two coolest

summers were 1963 and 1919, both of which were among

the two CONUS cool periods: 1895–1930 and 1961–85

(Weithmann 2011). On the basis of Tmax, the warmest

winter was 1987/88, which occurred during a strong El-

Niño episode. The coldest winter was 1906/07, which

occurred during a La Niña episode. Another noticeable

feature is that the top 10 coldest winters occurred before

1961, much earlier than when the U.S. SAT entered its

ascending mode in the 1980s.

Table 4 shows the SAT rankings of annual means. Six

of the 10 hottest years occurred after 1990 according to

the annual average Tmean, and two occurred during the

Dust Bowl drought period in the 1930s. Also, according

TABLE 2. The 10 hottest and coolest summers between 1895 and 2008 from Tmax, and the 10 warmest and coldest winters from Tmin from

the TOB-adjusted data. The numbers in the parentheses are the corresponding anomalies relative to the 1961–90 climatology (8C).

10 hottest summers

(JJA avg Tmax)

10 coolest summers

(JJA avg Tmax)

10 warmest winters

(DJF avg Tmin)

10 coldest winters

(DJF avg Tmin)

1934 (2.12) 1939 (22.14) 1990/91 (1.66) 1939/40 (21.94)

1955 (2.11) 1919 (21.81) 1987/88 (1.62) 1906/07 (21.47)

1910 (1.71) 1970 (21.71) 2002/03 (1.55) 1951/52 (21.40)

2000 (1.32) 1937 (21.45) 1897/98 (1.54) 1931/32 (21.32)

1985 (1.06) 1991 (21.45) 1954/55 (1.46) 1915/16 (21.02)

1979 (0.97) 2003 (21.35) 2004/05 (1.15) 1984/85 (21.01)

1945 (0.95) 1961 (21.35) 1936/37 (1.11) 1924/25 (20.94)

1957 (0.90) 1916 (21.34) 1930/31 (1.09) 1933/34 (20.67)

2005 (0.89) 1949 (21.30) 1999/2000 (0.89) 1948/49 (20.60)

1905 (0.86) 1963 (21.12) 1972/73 (0.72) 1997/98 (20.59)
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to the annual average Tmean, 8 of the 10 coldest years

occurred before 1924. This upward trend is more dra-

matic for the annual average Tmin. Among the top 10

hottest years, 9 occurred after 1986. Among the 10 coldest

years, 9 occurred before 1929. This Tmin warming is not

only the primary contributor to the U.S. warming climate

but also the main contributor to the decrease of the di-

urnal range of temperature (Karl et al. 2009). The Dust

Bowl of the 1930s and the short-lived early-1950s drought

are well reflected in the annual mean Tmax. According to

Tmax, 5 of the 10 hottest years were in these two periods

and 1934 was the hottest year. These high Tmax values

make primary contributions to the 1930s warmth, whereas

the high Tmin values explain the recent warming.

The recent warming in CONUS temperature appears

to be synchronized with the global Tmean, but the U.S.

1930s Dust Bowl warming was not. The hottest three of

the U.S. average annual Tmean from 1895 to 2008 were

1998 (1.208C), 2006 (1.168C), and 1934 (1.088C). According

to Hansen et al. (2010), on the basis of a 1951–80 mean, the

hottest three of the global annual Tmean from 1895 to

2008 were 2005 (0.638C), 2007 (0.588C), and 1998 (0.568C).

According to results of Jones et al. (2011) and Brohan et al.

(2006) that are based on a 1961–90 mean, the hottest

three of the global annual Tmean from 1895 to 2008

were 1998 (0.5298C), 2005 (0.4748C), and 2003 (0.4678C).

The warmest three years globally as calculated at NCDC

from departures from the twentieth-century mean are

2005 (0.638C), 1998 (0.628C), and 2003 (0.608C). In these

datasets, the strong El Niño influence for 1998 stands

out, but the hot year 1934 is only reflected in the U.S.

Tmean.

The absolute values of the Tmax anomalies (columns

2 and 5) and Tmin anomalies (columns 3 and 6) in Table

4 are in general much larger than those for the Tmean

anomalies (columns 1 and 4), since Tmean is a smoother

variable than Tmax and Tmin. Mathematically, this is

related to the following formula:

Var
Tmax 1 Tmin

2

� �
#

Var(Tmax) 1 Var(Tmin)

2
. (19)

Table 4 does not imply a temporal increase of SAT

variations. As a matter of fact, the SAT variances dem-

onstrate a decreasing trend in the twentieth century

(Shen et al. 2011), which is due to the fact that the pdf has

TABLE 3. The 10 hottest and coolest summers between 1895 and 2008 from Tmin, and the 10 warmest and coldest winters from Tmax from

the TOB-adjusted data. The numbers in the parentheses are the corresponding anomalies relative to the 1961–90 climatology (8C).

10 hottest summers

(JJA avg Tmin)

10 coolest summers

(JJA avg Tmin)

10 warmest winters

(DJF avg Tmax)

10 coldest winters

(DJF avg Tmax)

1955 (1.81) 1963 (21.53) 1987/88 (1.76) 1906/07 (21.92)

1934 (1.68) 1919 (21.49) 1897/98 (1.52) 1931/32 (21.77)

1910 (1.62) 1906 (21.39) 1943/44 (1.37) 1915/16 (21.42)

1979 (1.25) 2003 (21.31) 1990/91 (1.31) 1901/02 (21.39)

2005 (1.11) 1937 (21.28) 1954/55 (1.31) 1939/40 (21.37)

1997 (1.11) 1949 (21.22) 1956/57 (1.24) 1933/34 (21.21)

1900 (0.92) 1954 (21.17) 1913/14 (1.19) 1951/52 (20.95)

1985 (0.85) 1964 (21.07) 1898/99 (1.18) 1934/35 (20.90)

1931 (0.85) 1961 (21.06) 2002/03 (1.13) 1960/61 (20.89)

1996 (0.75) 1939 (21.01) 1936/37 (1.09) 1918/19 (20.80)

TABLE 4. The 10 hottest and coldest years between 1895 and 2008 from annual Tmean, Tmax, and Tmin (TOB-adjusted data). The

numbers in the parentheses are the corresponding anomalies relative to the 1961–90 climatology (8C).

10 hottest years 10 coldest years

Tmean Tmax Tmin Tmean Tmax Tmin

1998 (1.20) 1934 (1.39) 1998 (1.58) 1917 (20.97) 1912 (20.87) 1917 (21.25)

2006 (1.16) 2006 (1.09) 2006 (1.20) 1895 (20.83) 1993 (20.71) 1895 (20.96)

1934 (1.08) 1921 (1.09) 2005 (1.01) 1912 (20.82) 1895 (20.68) 1924 (20.87)

1921 (0.97) 1953 (1.05) 2001 (0.92) 1924 (20.67) 1917 (20.68) 1912 (20.76)

1999 (0.95) 1939 (1.04) 2007 (0.89) 1903 (20.63) 1920 (20.60) 1916 (20.74)

1931 (0.89) 1999 (1.01) 2004 (0.89) 1916 (20.53) 1903 (20.59) 1903 (20.67)

1990 (0.82) 1931 (0.98) 1986 (0.88) 1899 (20.50) 1905 (20.55) 1904 (20.67)

1953 (0.82) 1954 (0.95) 1999 (0.87) 1979 (20.50) 1982 (20.54) 1976 (20.67)

2001 (0.80) 1990 (0.86) 1921 (0.83) 1920 (20.48) 1978 (20.54) 1929 (20.52)

2005 (0.79) 1998 (0.81) 1991 (0.82) 1978 (20.47) 1979 (20.52) 1899 (20.50)
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become taller and slimmer in the late warming period

(1976–2000) than the earlier cooling time (1946–75).

Figure 8 shows the spatial distribution of the SAT

anomalies of the U.S. hottest year (1998) and the coldest

year (1917). For the hottest year 1998, according to the

annual average temperature Tmean, the entire CONUS

except the southwestern region had positive anomalies.

The largest anomalies are distributed over the Great

Lakes region, where the anomalies exceeded 38C in many

places. These strong warm anomalies may be a result of

FIG. 8. The spatial distributions of the temperature anomalies (relative to the 1961–90 cli-

matology; 8C) of the hottest and coldest years in the United States: (a) 1998, the hottest year,

and (b) 1917, the coldest year.
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the superposition of the warming SAT trend, the strong

1997–98 El Niño, and a weak Arctic Oscillation (AO)

(Karl et al. 2009). The temporal mean of the U.S. SAT

during the El Niño winters (DJF) demonstrates a clear

warm anomaly over the entire northern CONUS, with

the largest anomalies over the Great Lakes. The weak

AO in the 1997/98 winter made the northern United

States dry, and the associated pressure and geopotential

height patterns (Thompson and Wallace 1998) extended

the warm anomalies farther south. Cold anomalies still

occurred over California and its vicinity. Thus, the 1998

U.S. SAT demonstrated strong spatial inhomogeneities.

Figure 8b displays the SAT distribution of the coldest

SAT: 1917. The strongest cold anomalies were over the

northern Great Plains, Midwest, and Great Lakes, with

some regions showing a negative anomaly exceeding

238C. The southeastern United States, including Georgia,

however, still showed weak positive anomalies. Between

1895 and 1998, 1917 had the strongest La Niña episode

with a duration of 21 months from 1916 to 1918 (Giese

and Ray 2011). The persistent cold tropical Pacific SST

induced midlatitude atmospheric circulation changes

and might have caused the cooling of the 1917 SAT over

the entire western United States and other CONUS re-

gions that are normally affected by the easterly moving

weather patterns (Fig. 8b). The AO of 1917 was not

strong (Thompson and Wallace 1998). Hence, the 1917

SAT over Minnesota and other northern states east of the

Great Plains and west of the Great Lakes was not heavily

influenced by the dominant La Niña and was warmer

than average.

4. Discussion and possible future work

Most often a linear trend assessment in climate re-

search performed using standard statistical software

does not consider the data error. However, a full assess-

ment of trends requires that data error be considered,

particularly if the trend is weak and data errors are not

small (section 3c). Our method of regression includ-

ing explanatory data errors can be useful for future

studies when considering other errors and biases, such

as urban warming. We concluded in section 3d that the

full-adjustment F52 leads to a warmer trend than does

TOB. Another contribution to warming is the heat island

effect, quantified by Hansen et al. (2010) for the Global

Historical Climatology Network–Monthly data and the

USHCN data. They concluded that the urban warming

effect for the CONUS is less than 0.18C for the entire

period of 1900–2009 according to the annual Tmean lin-

ear trend. This is consistent with their urban warming

conclusion for the entire globe, which is less than 0.18C

(100 yr)21. This is also consistent with other studies that

show the urbanization influence on global average tem-

perature trend is insignificant (Jones et al. 1990; Parker

2006; Peterson et al. 1999). Although these errors or bi-

ases do not alter the overall warming conclusion quali-

tatively, their influence on the uncertainty of the warming

trend should be comprehensively quantified in the future.

Future studies will also need to attribute the uncertainties

of other types of errors and biases for Tmax and Tmin

(Parker and Horton 2005; Weithmann 2011).

While our data aggregation from stations to a grid box

is through simple averaging, to further reduce the er-

rors and uncertainties in the product of both gridded

USHCN and the spatial average SAT for the United

States, future work could include the use of optimal

averaging (OA) theory (Shen et al. 1998). When ap-

plying OA to develop the 2.58 3 3.58 gridded data, fine-

resolution climate model data are needed, for example,

a 0.58 3 0.58 reanalysis dataset for 50 yr or more. The high

resolution is necessary to resolve the station locations

in the model data and to demonstrate the spatial in-

homogeneity within a grid box. Before this dataset be-

comes available, one can still explore the OA for

calculating the large-scale contiguous U.S. average for the

monthly or annual Tmean by using gridded USHCN V2

data and following the method of Folland et al. (2001) and

Shen et al. (1998). The method can incorporate the ob-

servational errors and the sampling errors. Bias correc-

tion (Menne et al. 2009) and optimal averaging (Shen et al.

1998) are essential procedures to reduce uncertainties in

a climate change assessment. The optimal average has an

advantage of using fewer stations. One can choose non-

urban long-term stations to reduce the uncertainty of the

heat island effect. Various kinds of accurate calculation of

spatial averages of observed data and rigorous statistical

inference are helpful in climate model validations for

not only SAT but also other parameters, including pre-

cipitation and radiation. An example of this model vali-

dation is a critical assessment of why there is a discrepancy

between the radiosonde data and general circulation

model simulations of the tropical tropospheric temper-

ature trend since 1979 (Titchner et al. 2009).

Tables 2 and 3 show very small differences in SAT

anomalies for some years. Some differences are discerned

at the third decimal place of a Celsius degree. As shown

in Fig. 7 and section 3d, these differences can be much

smaller than differences that result from the selection of

data aggregation methods and spatial averaging methods.

Therefore, it is desirable to accurately calculate the U.S.

average and to establish a rigorous statistical inference

and understanding of uncertainty when determining rank-

ings of the hottest and coldest years. Although these two

processes will help to quantify the uncertainties in

ranking the CONUS hottest and coldest years and in
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ranking the hot and cold temporal regimes, dynamical

explanations will still need to be developed using rean-

alysis and other model data in conjunction with the

improved temperature statistics (Compo et al. 2011).

5. Conclusions

We have aggregated the USHCN V2 monthly daily-

mean SAT data onto 113 2.58 3 3.58 grid boxes over

the contiguous United States from January 1895 to

December 2008 and estimated the sampling error vari-

ances for each grid box and each month when station

data are available in the box. The data were used to

assess the trends as well as the hottest and coldest years

for the CONUS since 1895. The sampling error variances

are smaller over the eastern United States than those over

the western mountain regions and the southern coastal

areas, mainly because of the station density differences.

The spatial correlation length-scale difference between

the eastern and western United States that results from

different land cover may play a role also. The SAT in-

crease has mainly been attributed to winter warming,

particularly in February, which has a warming trend of

0.1628C (10 yr)21. Two major warm periods in 1895–

2008 were identified: 1) the 1930s Dust Bowl drought

until 1955 and 2) the recent persistent and strong warmth

since the 1980s. Eight of the 10 warmest winters accord-

ing to the seasonal Tmin and 9 of the 10 hottest years

from annual Tmean were in these two periods. The sam-

pling error analysis, the previous studies on observational

errors, and the comparison between our current work and

Menne et al. (2009) reveal the impact of station errors,

sampling errors, and consequences resulting from differ-

ent grid sizes and data aggregation methods. Although

these errors may be of nontrivial magnitude and may in-

fluence the rank of the hottest or coldest years, they are

not large enough to alter the trend of the CONUS SAT.
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