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SUMMARY

This article describes a spatial prediction method that predicts the monthly sea surface temperature (SST)
anomaly field from the land only data. The land data are from the Global Historical Climatology Network
(GHCN). The prediction period is 1880–1999 and the prediction ocean domain extends from 60�S to 60�N with a
spatial resolution 5� � 5�. The prediction method is a regression over the basis of empirical orthogonal functions
(EOFs). The EOFs are computed from the following data sets: (a) the Climate Prediction Center’s optimally
interpolated sea surface temperature (OI/SST) data (1982–1999); (b) the National Climatic Data Center’s blended
product of land-surface air temperature (1992–1999) produced from combining the Special Satellite Microwave
Imager and GHCN; and (c) the National Centers for Environmental Prediction/National Center for Atmospheric
Research Reanalysis data (1982–1999). The optimal prediction method minimizes the first-M-mode mean square
error between the true and predicted anomalies over both land and ocean. In the optimization process, the data
errors of the GHCN boxes are used, and their contribution to the prediction error is taken into account. The area-
averaged root mean square error of prediction is calculated. Numerical experiments demonstrate that this EOF
prediction method can accurately recover the global SST anomalies during some circulation patterns and add
value to the SST bias correction in the early history of SST observations and the validation of general circulation
models. Our results show that (i) the land only data can accurately predict the SST anomaly in the El Nino months
when the temperature anomaly structure has very large correlation scales, and (ii) the predictions for La Nina,
neutral, or transient months require more EOF modes because of the presence of the small scale structures in the
anomaly field. Copyright # 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Historically, the surface air temperature observations with thermometers near the land surface were

more accurate than the SST observations, but provided limited coverage over the globe. In order to
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obtain global coverage of surface temperature, one has to spatially interpolate the historical in situ

observations from scattered sites to the places which were data-void. The past interpolations were

basically done in the way that uses the SST observations to interpolate a complete SST field and uses

the land surface air temperature (LSAT) to interpolate a LSAT field. This interpolation is usually called

reconstruction (Smith et al., 1998). However, the sparse coverage and large bias in the earlier historical

SST observations imply large errors in the traditional interpolation or reconstruction results (Rayner

et al., 1996). It is worthwhile, both mathematically and physically, to extrapolate the more accurate

LSAT observations to ocean domains to infer the SST field by using the fact that the monthly SST and

LSAT anomalies are inflexibly connected through general circulations of atmosphere, particularly

during the strong SST anomaly months. This extrapolation will help us with the SST bias correction

and validation of general circulation models before the World War II. The purpose of this article is to

provide a method that predicts the SST field using the monthly LSAT data from the Global Historical

Climatology Network (GHCN). Our predicted SST field will be of 5� � 5� resolution and our

prediction region will be limited to the latitude band of (60�S, 60�N).

The method of our spatial prediction is to use EOFs as basis functions over both land and ocean and

to calculate the EOF coefficients. Our method is similar to the interpolation scheme of Kim et al.

(1996), who used spherical harmonics as basis functions and computed the coefficients of the spherical

harmonics for surface temperature. In Kim et al. (1996), the observational data were considered

errorless. Folland et al. (2001) and Shen et al. (1998) showed that when an optimal method is used,

the observational error might be larger than the sampling error. Thus, the errors of the observational

data are considered in this article.

Our method minimizes the MSE between the true field and the predicted LSAT and SST over both

land and ocean and differs from the reconstruction of Smith et al. (1996, 1998), which minimizes the

error only over the area where observed data existed. The monthly SST reconstruction in the tropical

Pacific ocean made by Meyers et al. (1999) used a method similar to that of Smith et al. (1998). Both

studies paid attention to the number of EOF modes supported by data, and hence their number of modes

used for prediction varied from month to month. Rayner et al. (1996) also used a variable number of

modes to fill up data gaps and generated a complete Global Ice and Sea Surface Temperature field.

Kaplan et al. (1997) proposed an SST reconstruction method that minimizes a penalty function.

The function is the observational projection error variance inversely weighted by the observational

error covariance, plus the model error variance inversely weighted by the model error covariance. A

Kalman filter was used to solve the minimization problem. Since a Markov climate model was

introduced, the reconstructed field was supposed to be dynamically consistent. However, the Kalman

recursive scheme requires both the covariance matrices of the model errors and observational errors.

When assuming the spatial independence of the error fields, the covariance matrices become diagonal

and its elements are the error variances. Kaplan et al. (1997) assessed the observational error variances

using the �2/n approach, where n is the number of intrabox measurements for the monthly data. The

model error covariance matrix was determined by a string of simplified assumptions of the Markov

model. Our observational error estimate is also done in the �2/n way, but using the data of the Special

Sensor Microwave Imager (SSMI) satellite and the multiple-station observations in a grid box.

When the modeling part of Kaplan et al. (1997) is dropped, their method becomes the weighted,

linear multivariate regression. The weight matrix can be different. For example, Shriver and

O’Brien (1995) adopted a diagonal matrix whose elements are the squares of the numbers of

observations in the SST grid boxes. Further, when the observational error variance becomes uniform,

the method becomes a projection. Our method is essentially a projection, but observational error

variances are considered.
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However, our method is limited by the stationarity assumption like most other EOF approaches.

The assumption is that the majority of the variability and teleconnections in the climate circulation

reflected in the EOFs can be effectively identified from the data record of the recent period. Clearly,

this assumption ought to be scrutinized in every EOF application. This paper has checked the

compatibility of the data for computing EOFs. In the conclusion section, we will also discuss how

additional data can further improve prediction accuracy. Despite this limitation, due to the considera-

tion of observational errors, our method of using land stations to infer the temperature field over the

ocean is a step toward the ultimate prediction of the global temperature field from limited high quality

data sources over the last 120 years. These high quality data may include both LSAT observations and

some accurately observed SST.

The data and procedures for computing EOFs with area-factor are described in Section 2. The EOF

prediction method and the error estimation are presented in Section 3. Examples of the prediction are

given in Section 4. Conclusions and discussion are contained in Section 5.

2. DATA AND PROCEDURES FOR COMPUTING EOFs WITH AREA-FACTOR

Let Tðr̂r; tÞ be the true, hence error-free, temperature anomaly field over the working domain �, i.e. the

(60�S, 60�N) latitude band, where r̂r is the position vector and t indicates time. Its corresponding

observed temperature is ~TTðr̂rj; tÞ, which is equal to the error-free Tðr̂rj; tÞ plus the random observational

error Ej for a given location r̂rj and a time t. Our reconstruction uses the GHCN data and thus our data

are described using the GHCN grid boxes (Peterson and Vose, 1997). Let G denote the GHCN

observation network. Then

~TTðr̂rj; tÞ ¼ Tðr̂rj; tÞ þ Ej ð1Þ

is the observed temperature anomaly data at the grid box r̂rj 2 G, where the position vector r̂rj is

the center of the grid box r̂rj. Hereafter, r̂rj is used to denote either the grid box or its centroid. The

random measurement error over a grid box is Ej, which includes sampling error, instrumental error,

reading error, and other random erroneous influences, and Tðr̂rj; tÞ is the true value of the temperature

anomaly field at the box r̂rj. The position vector r̂rj runs through the centers of all the 5� � 5� GHCN

data boxes for different values of index j. It is impossible to compute the exact error Ej, but some

error statistics, such as the error variance, can be estimated. Fortunately, our reconstruction needs

only these statistics.

The systematic errors are assumed to have been removed from the raw data after the NCDC’s

homogenization procedure, and hence the remaining random error is uncorrelated with either the

anomaly field or the errors at other locations:

hEiTi ¼ 0; hEiEji ¼ 0 when i 6¼ j ð2Þ

where h�i denotes the ensemble average.

The covariance function is defined by

�ðr̂r; r̂r0Þ ¼ hTðr̂r; tÞTðr̂r0; tÞi ð3Þ

The continuous EOFs  nðr̂rÞ are the eigenfunctions of the kernel �ðr̂r; r̂r0Þ over the domain �.

PREDICTION OF SST FROM GHCN DATA 235

Copyright # 2004 John Wiley & Sons, Ltd. Environmetrics 2004; 15: 233–249



The working domain � is divided into regular J grid boxes of 5� � 5� resolution, where J¼ 1728.

The symmetric, discrete eigenvalue problem with area-factor can be formed following the method

described in North et al. (1982) and Shen et al. (1998):

XJ
j¼1

h ffiffiffiffiffi
Ai

p
�ðr̂ri; r̂rjÞ

ffiffiffiffiffi
Aj

p in
 nðr̂rjÞ

ffiffiffiffiffi
Aj

p o
¼ �n

n
 nðr̂riÞ

ffiffiffiffiffi
Ai

p o
; i ¼ 1; 2; . . . ; J ð4Þ

Here

Aj ¼ R2 � 5

180
�

� �
� 5

180
�

� �
cos �j ð5Þ

is the area of the grid box r̂rj, where �j is the latitude of the center of the box j and R is the radius of

Earth, which is approximately 6376 km. The discrete EOFs are the eigenvectors of the eigenvalue

problem

½vj�Jj¼1 ¼
h
 nðr̂rjÞ

ffiffiffi
A

p
j

iJ
j¼1

ð6Þ

The magnitude of each eigenvector is always normalized to one. The variance of the nth mode is given

by the eigenvalue �n; n ¼ 1; 2; . . . .

Three sources of monthly data are used for the EOF computing: (i) the blended SSMI/GHCN

product (1992–1999) (Basist et al., 1998; Peterson et al., 2000); (ii) the OI/SST data (1982–1999)

(Reynolds and Smith, 1994); and (iii) the Reanalysis 2-m temperature data (1982–1999). The

Reanalysis data in 1982–1999 are used only to fill in the missing data in the blended product over

the land in 1982–1999. Since the blended product was available in 1992–1999, the land data in 1982–

1991 are all from the Reanalysis. Because OI/SST covers all the ocean boxes, the Reanalysis data over

the ocean are not used. The Reanalysis data in 1949–1981 are not used over either ocean or land in our

EOF computing.

The anomalies of the three data sets are relevant to the Reanalysis 1961–1990 climatology

calculated in the following way. For the 1992–1999 blended SSMI/GHCN product, the climatology is

given by

Blendedclim¼Blended92–99 mean � [Reanalysis92–99 mean�Reanalysis61–90 clim]

The anomalies of the blended product are hence relative to this climatology.

The anomalies of the OI/SST are computed based upon the same scheme. Namely, the OI/SST

climatology is the 1982–1999 mean off-setting by the difference between the 1982–1999 Reanalysis

mean and the 1961–1990 Reanalysis mean. Rigorously speaking, the off-setting amount should be

calculated from the sea surface temperature rather than the 2-m air temperature over the ocean.

However, since the 1961–1990 Reanalysis 2-m data are used as the overall climatology on both land and

ocean, we thus employed the difference of 2-m temperature as a substitute for the corresponding SST.

The anomalies of the Reanalysis are relevant to its own 1961–1990 climatology. These anomalies

have too large variances in the high-latitude and too small variances over the tropics. For instance,

even after the temperature anomalies are averaged over 5-degree boxes, the anomaly value in a box

can still reach as high as 25�C. Although some large anomalies have been observed in the high-latitude
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areas, the observed values are several degrees lower and have never exceeded 18�C. The large variance

of the Reanalysis data in high latitude may be due to the fact that the Reanalysis model cannot handle

sea ice well. The model produces some unrealistically large fluctuations in high latitude, particularly

in the regions where land, water and sea ice intersect. Because of the problems of too large fluctuations

in high latitude and over-smoothness in the lower latitude, the Reanalysis data are not used as an

independent piece of information; rather, they are used only as the auxiliary data to the blended SSMI/

GHCN and OI/SST data. This decision was made after numerous numerical experiments with and

without the inclusion of the 1949–1981 Reanalysis data.

Finally, the compatibility of the three data sets needs to be checked since the blended data, OI/SST,

and Reanalysis were derived based upon different principles. We checked the compatibility by plotting

the completed data blended from three sources for EOF computing. That no unusually large gradients

appeared on the plots implies the desired compatibility.

3. PREDICTION FROM THE GHCN DATA WITH ERRORS AND PREDICTION MSE

The true temperature anomaly is expanded in terms of normalized, covariance-based, EOFs  mðr̂rÞ as

follows:

Tðr̂r; tÞ ¼
X1
m¼1

TmðtÞ mðr̂rÞ ð7Þ

The EOF coefficients Tm are given by the integral

TmðtÞ ¼
Z
�

Tðr̂r; tÞ mðr̂rÞd� ð8Þ

The spectral approach of prediction is to use the GHCN data to estimate these EOF coefficients.

The integration (8) is possible only when accurate observed data are available everywhere.

However, this is certainly not true. The observed data are only on scattered sites or are pre-processed

to the scattered 5� � 5� boxes, and the data are not perfectly accurate but have errors. Thus the above

integral has to be computed via a discretization with a weight assigned to every data box, at which the

observed data with errors are used to make the numerical integration. The discrete integration of the

expression (8) is

T̂TmðtÞ ¼
XN
j¼1

~TTðr̂rj; tÞ mðr̂rjÞwðmÞ
j ð9Þ

where N, less than the total number of boxes J in the working domain �, is the total number of GHCN

boxes with data, ~TTðr̂rj; tÞ are the observed values in GHCN boxes (averaged from the station

observations and including the observational errors as expressed in (1)), and w
ðmÞ
j ðtÞ are the weights

for the observed data, which vary according to mode number m and month t. The number of data boxes

N also varies according to time. T̂Tðr̂r; tÞ ¼
P

m T̂TmðtÞ mðr̂rÞ is called the ‘reconstructed’ field if r̂r is over

the entire �, but the ‘predicted’ field (or called extrapolation) if r̂r is over the ocean. When r̂r is over the
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land, T̂Tðr̂rj; tÞ is an interpolation. In general, the extrapolation and interpolation are all spatial

predictions. Thus, the ‘reconstructed field’ refers to the joint field of the predicted SST and the

interpolated LSAT over the land.

The weights are determined by the condition of minimum mean square error between the true field

and the reconstructed field over the entire (60�S, 60�N) band. A normalization condition is imposed to

the weights, i.e. the sum of the weights should be equal to the area of the integration domain

XN
j¼1

w
ðmÞ
j ¼ A ð10Þ

This constraint makes the mean square error take a local minimum (i.e. a restricted minimum)

rather than the global minimum without constraint. Adoption of this constraint is based upon

computational reasons. When we find optimal weights by minimizing the mean square error, the

weights may not always be positive and their magnitudes can have a large variance. In this case,

leaving out one data box may have a great impact on the prediction result if this box has a very large

positive or negative weight. Exclusion or inclusion of this box can result in an enormously large

departure from the normal condition of climate, which is physically untrue. When this constraint is

imposed, an unbiased prediction is ensured and an unrealistic departure from normal will not happen.

One can also justify this normalization condition directly from the condition of unbiased estimation

of hTmi. This unbiased condition is

hTmi ¼
Z
�

hTðr̂r; tÞi mðr̂rÞd� � hT̂TmðtÞi ¼
XN
j¼1

h~TTðr̂rj; tÞi mðr̂rjÞwðmÞ
j ð11Þ

Equation (1) implies that h~TTðr̂rj; tÞi ¼ hTðr̂rj; tÞi. Apparently, the normalization constraint becomes a

necessary condition when both the mean temperature field and the EOFs have small spatial variations,

namely when hTðr̂r; tÞi and  mðr̂rÞ are close to contants. However, when the spatial variance of the

mean temperature field is large, the normalization constraint may not be necessary to ensure the

unbiased estimate of higher order EOF coefficients.

With the estimated EOF coefficients, the reconstructed field over the entire � is given by

T̂Tðr̂r; tÞ ¼
XM
m¼1

T̂TmðtÞ mðr̂rÞ ð12Þ

where M is the mode truncation number and is usually determined by the criterion of explaining a

certain percentage of variance with the first M modes. The more modes the data can support, the

smaller is the residual MSE E2
R defined in (17) below. However, including the modes which are not

supported by observations can only add noise to the results (Smith et al., 1998).

The field of the mean square error of the reconstruction over � is

E2ðr̂rÞ ¼ hðTðr̂r; tÞ � T̂Tðr̂r; tÞÞ2i ð13Þ
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This formula can be expressed in terms of EOFs as follows:

E2ðr̂rÞ ¼ E2
Mðr̂rÞ þ E2

Rðr̂rÞ ð14Þ

where

E2
M ¼

XM
m¼1

�2
ðmÞ 

2
mðr̂rÞ ð15Þ

is the MSE computed from the first M modes with

�2
ðmÞ ¼ hðTmðtÞ � T̂TmðtÞÞ2i ð16Þ

and the residual E2
Rðr̂rÞ is the higher modes contribution to E2,

E2
Rðr̂rÞ ¼

X1
m¼Mþ1

�m 
2
mðr̂rÞ ð17Þ

This term is the truncation error and is determined by the truncation order M and the properties of the

eigenvalues and eigenfunctions, and it is not directly related to the weights of the data boxes. However,

an indirect relation exists since the truncation order M is related to the density and distribution of the

GHCN data boxes. Usually, a large number of data boxes support a larger number of modes, which

means a larger M. The truncation order M, of course, also depends on properties of the anomaly field.

However, if a prediction is successful after a validation check or a comparison with a field close to

truth, then the truncation error should be reasonably small and independent of the sampling errors.

Namely, if

Tðr̂r; tÞ ¼
XM
m¼1

T̂TmðtÞ mðr̂rÞ þ TRðr̂r; tÞ ð18Þ

then

hðTmðtÞ � T̂TmðtÞÞTRðr̂r; tÞi ¼ 0 ð19Þ

If this ensemble mean is far away from zero, then the prediction is necessarily not a good

approximation to the original field.

Equation (15) is an approximation based upon the lack-of-correlation assumption that

hðTmðtÞ � T̂TmðtÞÞ ðTnðtÞ � T̂TnðtÞÞi ¼ 0

if m 6¼ n: Here T̂TmðtÞ is computed from the GHCN data and optimal weights. In order for this lack-of-

correlation assumption to hold, the GHCN sampling must be able to support sufficiently many EOF

modes that can reflect the teleconnections between land and ocean. Unfortunately, these assumptions

cannot be verified a priori with the short length of the data stream. They can only be tested by

examining the prediction results.
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The total MSE of the error field is the integral of E2ðr̂rÞ,

�2 ¼ 1

A

Z
�

E2ðr̂rÞd� ð20Þ

where A is the total area of the (60�S, 60�N) latitude band. The overall accuracy of the prediction is

measured by this total MSE. The optimization minimizes the error resulting from the first M modes by

finding the optimal weights for all the data boxes. This apparently is not the best optimization criterion

since only the minimum MSE over the ocean region is what one wants to know. However, an optimal

algorithm for minimizing the MSE over the ocean domain only has not yet been worked out.

With the EOF approach, the MSE formula above for the first M modes can be written as a sum of the

MSE at each mode,

�2 ¼
XM
m¼1

�2
ðmÞ ð21Þ

where the MSE for mode m is defined by (16). Since each term in the sum of (21) is non-negative, the

minimization of �2 becomes the minimization of each term, i.e. min �2
ðmÞ. In terms of EOFs, �2

ðmÞ can be

written as

�2
ðmÞ ¼

X1
n¼1

�n �mn �
XN
j¼1

 nðr̂rjÞ mðr̂rjÞwðmÞ
j

" #2

þ
XN
j¼1

hE2
j i
�
 mðr̂rjÞwðmÞ

j

�2

ð22Þ

where �mn is the Kroneker delta, which is equal to one if m ¼ n and 0 otherwise. This formula bears

some similarity with (16) and (22) of Kim et al. (1996) and (31) of Shen et al. (1994) without

accounting for observational errors, and (27) of Shen et al. (1998) taking observational errors into

account. The first term of the above formula is basically the numerical integration error of

Z
�

 mðr̂rÞ nðr̂rÞd� ð23Þ

The second term is the observational error weighted by EOFs and optimal weights.

To minimize the MSE �2
ðmÞ with constraint (10) for the weights, a Lagrange function is defined as

Jm½w� ¼ �2
ðmÞðwÞ þ 2�m

XN
j¼1

w
ðmÞ
j � A

 !
ð24Þ

where �m is the Lagrange multiplier, whose unit is the square of the temperature unit. The critical

point for the Lagrange function is determined by

@Jm

@w
ðmÞ
j

¼ 0 and
@Jm
@�m

¼ 0 ð25Þ
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which leads to a set of Nþ1 linear equations for w
ðmÞ
j ; j ¼ 1; 2; . . . ;N, and �m:

XN
j¼1

�ðr̂ri; r̂rjÞ mðr̂riÞ mðr̂rjÞwðmÞ
j þ hE2

i i 2
mðr̂riÞw

ðmÞ
i þ �m ¼ �m 

2
mðr̂riÞ ð26Þ

XN
j¼1

w
ðmÞ
j ¼ A ð27Þ

Here, ½�ðr̂ri; r̂rjÞ�; i; j ¼ 1; 2; . . . ;N, is a sub-matrix of the covariance matrix ½�ðr̂ri; r̂rjÞ�; i; j ¼ 1; 2; . . . ; J,

without area-factor and is computed from the OI/SST data, blended SSMI/GHCN data and Reanalysis

data. Please note that these data are not the observed GHCN box data ð~TTðr̂rj; tÞ; i ¼ 1; 2; . . . ;NÞ, where

N<< J. Thus, the above equation implies that the weights are determined by the covariance structure

and the errors of the observed data, not the observed data themselves.

With �2
ðmÞðtÞ;m ¼ 1; 2; . . . ;M; and�n;  nðr̂rÞ; n ¼ 1; 2; . . . ; Y , one can compute E2ðr̂r; tÞ by using the

formulas (14)–(16). Finally, the field of the root mean square error (RMSE) for the first M-mode is

EMðr̂r; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
Mðr̂r; tÞ

q
ð28Þ

Since the residual error is not included, this result may be regarded as the lower bound of the

prediction error.

The optimal weights w
ðmÞ
j are a function of time and are obtained by solving the optimal-

weight equations (26) and (27) for every month (since N changes from month to month),

and for every mode m until the truncation mode M. Having obtained w
ðmÞ
j ðtÞ; j ¼ 1; 2; . . . ;NðtÞ;

m ¼ 1; 2; . . . ;M; and t ¼ 1; 2; . . . ; Y , one can finally produce the prediction using (9) and (12).

However, (26) requires the error variance hE2
j i for all the GHCN data used in the prediction; yet, the

error variance for the monthly data on grid boxes has never been determined, although Jones et al.

(1997) estimated the grid box error for decadal data. Fortunately, the optimal weights are insensitive to

the exact size of the error variance as tested in Shen et al. (1998) for optimal averaging of the tropical

Pacific SST. That paper used the approximate error ðhE2
j i ¼ 0:09½�C�2Þ estimated by Parker et al.

(1994) and Reynolds and Smith (1994). Our objective is to predict the SST from the GHCN land data

and hence the errors required should be for the GHCN data, and we cannot use the oceanic value from

Parker et al. (1994). A method similar to that of Williams et al. (2000) and Kaplan et al. (1997) is used

to assess the error variance of the GHCN data, i.e. to compare the differences between the SSMI

satellite and in situ observations. Assume that the error field over a grid box is white noise. Suppose

that a grid box has n stations and SSMI data are also available. The mean square difference can be

found between the data from the satellite and each station. The average of the mean square difference

among the n stations is taken as an approximation of the MSE of one-station observation. The MSE of

the n-station observation may be approximated by the one-station MSE scaled down by n. The one-

station MSE may be approximated in many different ways, such as using the station nearest to the

centroid of the grid box as the most representative station, or averaging the mean square differences of

all individual stations. Since the absolute truth of the temperature over a box is unknown, one can only

use a reference to assess the mean square difference. SSMI satellite data may be used as the reference

to the GHCN data, or one can use the blended product as the reference. The latter under-estimates the

GHCN error since the blended product has already used the GHCN data. However, this under-estimate
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has some advantage in computing during the North Hemisphere winter. In the winter, much of the

middle and high latitude areas are snow-covered and SSMI data are not available. Hence SSMI cannot

be used as a reference. The blended product, using only the in situ observations now, can still give a

relative value of the temperature variance over a grid box. Of course, this estimate must be limited to

the boxes with two or more stations. For the grid box with only one station, its error has to be

approximated by the error from the nearest grid box on the same latitude. With this consideration, we

estimate the error variance for the grid box r̂ri by the following formula:

hE2
i i ¼

1

n

1

�

X�
t¼1

½BlendedðtÞ � StnicðtÞ�2
 !

ð29Þ

where � is the number of months of data (January 1992–June 1999), StnicðtÞ is the station nearest to

the centroid in the grid box r̂ri, at time t, Blended(t) is the blended data for the grid box at time t, and n is

the total number of stations in the grid box. The above formula is applied to every grid box with n� 2.

This is certainly not the ideal way to compute the error variance of the GHCN data, yet it can

provide a reasonable error approximation for (26) to calculate our optimal weights. Further discussion

on the error calculation is given at the end of Section 5.

The above approximation formula and resulting error variances are applied to the GHCN data to

predict the SST anomaly field in the latitude band (60�S, 60�N) in the data period of 1880-current. The

prediction credibility is assessed using both temporal and spatial correlations, and prediction examples

are discussed for El Nino, La Nina, neutral, data-dense and data-sparse months. These results are

compared with two reference data sets: the prediction using Jones’ land data and the OI/SST.

4. NUMERICAL RESULTS OF PREDICTION

The (60�S, 60�N) latitude band includes J¼ 1728 five-degree grid boxes. The number of GHCN data

boxes over land, including islands, varies from the N¼ 120 in 1880 to 288 in 1930, to the maximum

(close to 500) in the period from the 1950s to the mid-1980s. Due to the time lag (around 10 years) of

data reporting from various countries, the number of the GHCN data boxes dropped to around 300 in

the 1990s. Of course, this number will be back to nearly 500 in the future. These land GHCN data are

used to predict the SST. To establish an impression of the spatial distribution of the GHCN data, the

coverage of the GHCN data for three different months is displayed in Figure 1.

To examine the prediction accuracy, we used the January 1982–December 1998 OI/SST as the truth

and calculated the temporal correlation between the prediction and OI/SST for each grid box. The

distribution of the correlation is shown in Figures 2(a) and (b) for January and July monthly SST

anomalies, respectively. In this prediction, 12 EOF modes are used. For both January and July, the

correlation is positive everywhere. In many areas the correlations have reached 0.8. For January, the

maximum correlation areas are Tropical and Northern Atlantic, Northern Pacific, Southern Pacific and

Indian Ocean. The correlation over the eastern Tropical Pacific is low. This may be due to the large

variance of the SST in this region and the prediction may not be accurate during the transient months

between El Nino and La Nina. The July prediction has consistently higher correlation than the January

prediction, particularly in the Southern Hemisphere. Again, the Atlantic prediction appears more

reliable than the Pacific prediction. Different from the January prediction, July’s Tropical Pacific

prediction yields a remarkably high correlation around 0.8. In general, it may be concluded that the
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Figure 1. Representation of the global coverage of the GHCN data boxes: (a) January 1880, (b) January 1930 and (c) January

1983. The boxes with ‘1’ indicate the existence of observed data for the month
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July prediction is more accurate than January from the correlation point of view. The correlation

reflects mainly the phase, and the prediction and the ‘truth’ are likely to have the same sign but they

may differ greatly in magnitude.

To examine the success of the prediction of a large spatial signal, such as ENSO, one still needs to

investigate some individual predictions and validate with the OI ‘truth’ or get some confidence of the

results from predictions using different data sets. In this article, the different data set is the monthly

land data of Jones (Jones et al., 1997). Let us examine January 1992. This month had moderate El Nino

conditions. Two analyses are compared: the prediction and the OI/SST. The pattern correlation

between the two fields is 0.82. The prediction explains 65% of the variance of the ‘truth’. This is

considered very good since 12 modes explain only 86% of the total variance in the EOF computing.

The next example is January of 1983, which had a major El Nino. Again, the OI/SST (Figure 3(a))

is used to validate the prediction. The largest SST anomaly occurred in the east equatorial Pacific,

where a value exceeded 4�C. The prediction from the GHCN data correctly captured the location,

magnitude and structure of this anomaly over the ocean (Figure 3(b)). Figure 3(c) shows a prediction,

based on Jones’ data set and the same EOFs, and it demonstrates slightly smaller values. All three

fields correctly place a large area of negative anomalies in the southeastern Pacific, and the amplitude

Figure 2. Temporal correlation from 1982 to 1998 between the GHCN predicted SST and the OI/SST for every grid box: (a)

January and (b) July
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Figure 3. Prediction of the surface temperature anomalies of January 1983 (a strong El Nino month): (a) the OI/SST, (b) the

prediction from GHCN data and (c) the prediction from Jones data
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is similar for all of them. The mutual correlations among the three fields are high: between GHCH

prediction and OI is 0.86, between Jones prediction and OI is 0.84, and between GHCN and Jones

predictions is 0.96. The extremely high correlation between the predictions of GHCN and Jones data is

due to the fact that the two data sets used basically the same raw station data with some different

aggregation procedures. This high correlation also indicates the insensitivity of the prediction result to

the data error. Thus, although it is difficult to obtain an accurate estimate of the error variance for data,

a reasonable approximation of the data error can still generate the results of the same quality.

The predictions for moderate La Nina conditions like June 1988 are not as good as those for strong

El Nino conditions, but can still be reliable and get the positive and negative phases right in most areas

(figures are not shown). In the case of June 1988, the pattern correlations are 0.77 for GHCN prediction

and OI/SST, 0.76 for Jones prediction and OI/SST and 0.96 for GHCN and Jones predictions.

The predictions for neutral conditions (i.e. the transient conditions between El Nino and La Nina)

are less satisfactory. June 1995 was in such a condition. The agreement among the three data sets (OI/

SST, GHCN prediction and Jones prediction) is not good (Figures are not shown), because of many

short-scale spatial structures presented in the transient months. The pattern correlations are 0.70

between GHCN prediction and OI/SSI, 0.79 between Jones prediction and OI/SST, and 0.87 between

GHCN and Jones predictions. To resolve the small-scale structure, one has to use high order EOFs.

However, because the observations are over land and few islands, neither GHCN nor Jones’ data can

support many modes. In addition, because of the limited number of years of data used in the EOF

computing, the higher order modes contain much noise. Bringing higher modes into prediction can

introduce more noise. The prediction using only the lower modes is generally smoother and has less

amplitude than that of the observations in neutral months.

The above predictions, although validated by the OI/SST data, were built upon the EOF framework

that was partly made of the OI/SST. Thus, it is necessary to validate the prediction for the months not

within the OI/SST period. We chose a month in the earlier period of the 120 years of GHCN data for

another validation of prediction: July 1884, a summer month following the volcanic explosion of

Krakatoa in Indonesia on 27 August 1883 (Press and Siever, 1982, p. 365). The volcanic plume caused

much cooler than average global temperatures. Figures 4(a) and (b) show the predictions using the

GHCN and Jones’ data, respectively. Figure 4(a) shows that negative anomalies occur over the Indian

Ocean, the Western Pacific and most of the Atlantic. The negative anomalies were most likely caused

by the cold air, which in turn was caused by the high reflexibility of volcanic dust. Consequently, the

atmosphere and ocean surface absorbed less than normal solar radiation. The Jones’ data prediction

(Figure 4b) yields similar results. The similarities between the two predicted fields increase our

confidence about the SST prediction, although no validation data are available for confirmation.

Figure 5 shows the variation of the area-averaged error with respect to time and season. The error is

computed by

EaveðtÞ ¼
1

4� sin 60�

X1728

i¼1

EMðr̂ri; tÞ
5

180

� �2

sin �i ð30Þ

where 1728 is the total number of boxes in the (60�S, 60�N) band, EMðr̂ri; tÞ is computed by (28), and

�i is the latitude of the centroid of the box r̂ri. In the calculation, the mode truncation number is M¼ 12.

The error decreases with respect to time until 1990 when the reported GHCN observations were

dramatically reduced. The reduction was due to a time lag of international data aggregation. The four

curves in the figure show the seasonality of the averaged errors: larger in northern hemisphere winters

and smaller in summers.
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5. CONCLUSIONS AND DISCUSSION

We have extended the spectral method of Kim et al. (1996) from the spherical harmonics basis to the

EOF basis and provided a method to predict the monthly SST anomaly field from the land GHCN data.

The study period is 1880–1999 and the study domain is the latitude band (60�S, 60�N) with 5� � 5�

spatial resolution. The OI/SST data (1982–1999), blended product (1992–1999) and Reanalysis data

(1982–1999) have been used to calculate the spatial structure, i.e. EOFs. The optimization minimizes

the first-M-mode mean square error between the true and predicted anomalies. In the optimization

process, the data errors of the GHCN boxes have been used, and their contribution to the prediction

error has been taken into account. Numerical experiments have shown that this EOF prediction method

can recover the SST anomalies of the El Nino events with a remarkable accuracy considering that the

prediction is anchored on land data only. We conclude that (i) the land only data can accurately predict

the SST anomaly in the El Nino months when the temperature anomaly structure has very large

correlation scales, and (ii) the predictions for La Nina, neutral, or transient months require more EOFs

Figure 4. Prediction of the surface temperature anomalies of July 1884 (a data sparse month and the ‘year without summer’):

(a) the prediction from GHCN data and (b) the prediction from Jones data
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modes because of the presence of the small scale structures in the anomaly field. The success of our

prediction is mainly the consequence of the strong tele-connection reflected in EOFs.

The prediction is less satisfactory or unreliable during the transition periods between El Nino and

La Nina, when the teleconnections between the land and ocean surface are weak or out of phase.

Learning from these results, we will attempt to improve the prediction by introducing some critical

SST observations, but only a small subset of high quality SST observations will be used. Another data

set is the Microwave Sounding Unit (MSU) satellite data for atmosphere temperature that will be

calibrated by the in situ land-surface air temperature data to provide the coverage of the snow-covered

areas in high latitudes. This data source will reduce the usage of the Reanalysis data in the EOF

computing and make the EOF patterns closer to truth, since the Reanalysis data have too large

variances in high latitudes and too small variances in equatorial areas.

The error estimate for the GHCN data can be improved when the satellite data coverage can be

extended to a longer period. One improvement is to use the average MSE for all the stations and the

improved satellite data as the reference, i.e.

hE2
i i ¼

1

n2

Xn
j¼1

1

�

X�
t¼1

½StnjðtÞ � SatðtÞ�2 ð31Þ

where � is the number of months of data available, StnjðtÞ is the jth station in the grid box r̂ri at time t,

Sat(t) is the satellite data for the grid box at time t, and n is the total number of stations in the grid box.

This can be an important improvement when the coverage of the satellite data is extended to higher

latitude areas.

Figure 5. The area-averaged RMSE Eave(t) (see (24)) varies as a function of time for January, April, July and October
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The residual error E2
Rðr̂rÞ defined in (14) is never estimated in our article. This error is likely large

enough to be not negligible. If the data streams for computing EOFs are sufficiently long, say over 50

years, one might approximate this error directly by (17), in which the upper limit of the summation 1
is replaced by 50. However, the mixture of higher modes may produce much computational noise and

hence lead to an over-estimate of the residual error. This interesting problem is worth further

investigation.
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