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SUMMARY 
This paper describes a method that minimizes the mean squared error (MSE) in estimating the spherical har- 
monic components of the surface air temperature field. The ratio of the MSE to the variance of the spherical 
harmonic component is expressed in terms of the length scale Xo, and the positions and weights of the meas- 
urement stations. The weights are optimized by the condition of minimizing the sampling error. To present 
an analytical example, we assume the homogeneous statistics of the temperature anomaly field, and take the 
low frequency approximation (i.e. ignoring the time dependence). The spectra of the temperature anomaly 
are the coefficients of a Fourier-Legendre series of the covariance function, and they are analytically derived 
from a linear noise forced energy balance climate model. Consequently, the MSE, the percentage sampling 
error, and the signal-noise ratio are computed for a given network of stations. Our results show that: (i) the 
sampling errors computed from both optimal weights and uniform weights increase with respect to the order 
of the spherical harmonic component; (ii) the sampling errors computed from optimal weights are signifi- 
cantly smaller than those from uniform weights for sufficiently dense networks. With about 60 reasonably 
positioned stations for sampling the spherical harmonic components T , ,  Tlo and TII, one can get the sam- 
pling error below 10 per cent when the optimal weights are applied. An experiment with 210 stations pro- 
duces the sampling errors of less than 10 per cent for the spherical harmonic components from Too up to TS4. 

KEY WORDS mean square error; spherical harmonics; sampling; optimal weights; surface air temperature; 
noise forced EBM 

1 .  INTRODUCTION 

The field of surface air temperature anomalies is not distributed uniformly; rather, it has various 
spatial patterns. The global average of this field represents only one statistical description and 
explains only the lowest mode of climate variations (Shen et al. 1994). To explain hemispherical 
and regional spatial variations, it is necessary to describe the features of various length scales. A 
systematic way to delineate these spatial patterns is to use spherical harmonics, i.e. to express the 
temperature anomaly field in terms of the series sum of spherical harmonic functions. The zeroth- 
order spherical harmonic component corresponds to the global spatial average temperature while 
the higher order components consist of contributions from other spatial scale climate variations. 
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It is obvious that an accurate estimation of the higher spherical components is essential to 
evaluate spatial climate variations. To appraise the accuracy of a scheme computing regional 
averages and variances of temperature anomalies from observational data, one has to estimate 
the sampling error. The purpose of this paper is to provide a method of calculating such an error 
when estimating various orders of spherical harmonic components from measurement data. A 
distinguishing feature of the paper is its use of optimal weights, which can substantially reduce 
the sampling error computed using uniform weights. 

In order to clearly illustrate our methodology in a simple way, a few assumptions are imposed 
at this stage of investigation. First of all, we consider only the low temporal frequency part of the 
temperature anomaly field. Hence, the time variable is left out. In addition, we exclusively 
investigate the situation of data collected by surface stations. The sampling error of a spherical 
harmonic component is the accumulation of the numerical integration errors of empirical 
orthogonal functions of all orders weighted by the variances of the field at the corresponding 
modes (see our equation (18)). Obviously, a convenient way to illustrate our method math- 
ematically is to present our scheme with an analytic expression. This can be achieved by assuming 
the homogeneity of the anomaly field and a simple noise forced energy balance climate model. 
Then, we are able to derive analytic expressions for the sampling errors for a given network of 
fixed stations, or a network of a specified number of randomly positioned stations. 

Once again, we have to remember that the real temperature anomaly field is not homogeneous. 
The assumption of homogeneity is made only for the purpose of demonstrating our method more 
effectively, and it is not a necessary assumption for our methodology. The use of a simple climate 
model is also for the purpose of clear demonstration, and the massive EOF computations for the 
inhomogeneous statistics and the real observation data are reported in another paper (Kim el al. 
1995). 

We regard Earth as a perfect sphere of unit radius. Let the surface air temperature field be 
denoted by T(n), where n = (cos+cos0,cos+sin~,  sin+) is the unit vector pointing from the 
sphere’s centre to the point in question, and (p and 19 are latitude and longitude, respectively. The 
function T(n) can be expanded into spherical harmonics Yt,: 

The spherical harmonic components T/tn are determined by 

T i m  = l T d f l  ~ ( n ) y ~ ( n )  

where Y L  is the complex conjugate of YIm. For the basics of the spherical harmonics, please refer 
to Arfken (1985) or other books on mathematical physics or electrodynamics. 

The global average temperature is reflected in the zero-order spherical harmonic component. 
The relationship between the zero-order spherical harmonic component Too and the global 
average T is 

where the global average is given by 

dfl T(n). (4) 
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The next scale involves hemispherical variation. The north and south hemispherical averages 
of the surface air temperature field behave quite differently. Among many different features 
revealed by the data from 1860 to 1990, a distinguishing one is that there was a sudden 0.3”C 
hemispheric average temperature increase in the northern hemisphere in the early 1920s. 
However, this sudden jump, perhaps considered as a discontinuity, did not appear in the 
southern hemisphere (Folland et al. 1992). The differences in the temperature anomaly patterns 
of the two hemispheres make the first-order spherical component, Tlo,  non-negligible. 

The sampling error due to the sparseness of stations is here assessed by the mean squared error 
(MSE), which is formulated in Section 2. The formula is simplified to an easy-to-use form for a 
given network of measurement surface stations. In Section 3, we consider the case of a given 
number of randomly arranged stations. Section 4 describes a simple noise forced linear energy 
balance climate model, with which we can calculate the spatial spectra of climate anomalies. The 
spectra are necessary for computing numerical values of the sampling errors at the different 
orders of spherical harmonic components. The method for calculating the optimal weights, which 
minimizes the MSE, is described in Section 5. Some numerical examples are given in Section 6. 
The summary and major conclusions of the paper are presented in Section 7. 

2. MSE FOR SPHERICAL HARMONIC COMPONENTS 

2.1. The covariance function kernel 

The nature of the mean square error implies that only the first two moments of the measured field 
are relevant to the MSE. The temperature field under our consideration is its spatial anomaly. 
Hence, its first moment vanishes, i.e. 

(z-(ii)) = 0 

where ( . )  denotes the ensemble average. The second moment is described by its covariance 
function, which can be regarded as a symmetric kernel of an integral operator: 

K(ii,ii’) = (T(ii)T(ii’)). ( 5 )  

All its eigenvalues are real. The symmetric expansion (or the Karhunen-Loeve expansion) of this 
kernel is 

cm 

( ~ ( n ) ~ ( n ’ ) )  = C An$n(fi)$n(fi’). (6) 
n= I 

Here, (An, t,h,,(ii)) are the eigenpairs of the integral operator K :  

lTdOK(n,n’)$n(nr) = Ant,hn(n), n = 1 ,2 ,3 , .  . . . (7) 

If all the eigenvalues are different, the different eigenfunctions are orthogonal: 

where S,, is the Kronecker delta. There are some cases where one eigenvalue corresponds to 
several eigenfunctions. In these cases, one can still orthogonalize the eigenfunctions in this 
eigenspace so that different eigenfunctions are still orthogonal. A homogeneous field is such a 
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case. By definition, when we say that a field is homogeneous, we mean that 
q n ,  n’) = K (  In - n’l) 

(T(ii)T(i’)) = &(n * n’) = a2p(x) 

or 

(9) 
where a’ = (T’(n)) is the low frequency point-variance of the temperature field at point n. Note 
the x = (n n’) is the cosine of the opening angle between the directions (stations) n and n’. The 
correlation function p(x) is dimensionless and normalized by p(x = I )  = 1. 

An important consequence of the homogeneity assumption is that the spectra of the covariance 
field consist only of the coefficients of the Fourier-Legendre series of the function p ( x ) :  

1 f1 
pn = ‘ J  dxp(x)Pn(x), (n = 0 , 1 , 2 , 3 , .  . .). 

2 - 1  

Correspondingly, the correlation function p(x) is expressed in a series sum of Legendre 
polynomials: 

m 

n=O 

Now we apply the addition theorem for Legendre polynomials: 

PJn. a’) = - 47r f: Ynk(n) Y;k(n’) (Addition theorem). 
k=-n 2n + 1 

The covariance function of a homogeneous field can now be written as 

n=O k=-n 

Hence, the spherical harmonics Ynk(n) are now the eigenfunctions (EOFs), and one eigenvalue 
47r.02pn corresponds to 2n + 1 different eigenfunctions Ynk(n), (k  =: -n, . . . I n - 1, n). By the 
orthogonality theorem of spherical harmonics 

LT dR Ylm(i )  Y&(n) = S ~ ~ S , ,  (Orthogonality property) (14) 

we know that each pair of eigenfunctions are orthogonal. 

2.2. The MSE formula 

We use the data from 
component Tim defined 

N stations at points nl, n2, . . . , nN to estimate the spherical harmonic 
by (2). The linear estimator is 

N 

TIm = c Wym)T(n/)Y&(nj). (15) 
j =  I 

This is the Riemann sum of the integral (2). The surface of the unit sphere is partitioned into N 
sub-regions and the weight wjrm) is the area of the j th sub-region ( j  = 1 I 2 , .  . . N ) .  Hence the 
weights w y )  ( j  = 1,2,  . . . , N )  are real-valued and satisfy the normalization condition 

N 
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The MSE for estimating Tlm is defined as 
2 

c( /m)  = (I T / m  - fltn?). 

This can be re-written into: 

dS2 diI'(T(n)T(n'))(l - w(lm)(n)][l - dm)(n')] Y&,(n)Ylm(n') =L L 
n= 1 

where 

and 

j=  I 

This last formula is a numerical integration of $n*lm. Because 

265 

(17) 

one can see that the sampling error given by equation (18) is the accumulation of the numerical 
integration errors of all orders of EOFs weighted by the variances of the corresponding modes. 
This clear physical meaning is quite interesting. 

If the field is homogeneous, then the spherical harmonics are the EOFs pointed out in the 
above sub-section: 

An * 4wa2Pn, $n(n) * Ynk(n)l k = -n,. . . ,n-,n- 
Then the MSE formula (18) becomes 

Using the addition theorem again, on can reduce the MSE formula (23) to an easy-to-compute 
form: 
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Thus, the sampling error is explicitly expressed in terms of a series sum of spectral components 
whose coefficients are functions of the positions and weights of the stations, and the spectra pn 
(n = 0, 1 ,2 ,  . . .) can be obtained from a homogeneous climate model. For the simple noise forced 
energy balance model, the detailed calculations of the spectra are given in Section 4. 

In the rest of this section, in order to quickly render certain sampling properties, we set the 
weights to be uniform: w y )  = 4.rr/N. The uniform weights, which yield an arithmetic average, in 
general are not the optimal ones, but if the correlation between the data from each pair of stations 
is small, it can be easily shown that the uniform weights are optimal. So, when using a sparse 
network of stations to measure the spherical harmonic components Tim, the uniform weights may 
be approximately the optimal ones. The computation for optimal weights in general cases is 
explained in Section 5. 

Now, let us consider some special cases. The first case is the global average long time mean of 
the temperature field. This case estimates the zero-order (m = I := 0) spherical harmonic 
coefficient for the temperature anomaly. The formula (24) is reduced lo 

This expression was obtained earlier by North et al. (1992). 
The second example is the estimation of Tlo. Note that 

where $I is the latitude. Hence Tlo(n) represents the weighted zonally average of T(n) and signifies 
the asymmetry of the largest scales between the two hemispheres. The MSE formula (24) is now 
reduced to 

2 03 

-- ‘(lo) - c ( 2 n  + l)p, 
4m? n=O 

If the network is chosen in such a way that 

e s i n 4 i  = 0 
i= 1 

then the zero-order spectrum po has no contribution to the sampling error. 
The third example is N = 1. Because of the homogeneity assumption, the MSE is independent 

of the location of the station. Let us put this station on the North Pole. Using the following 
formulas 

Pn(l)  = 1 (29) 
and 

21+ 1 
4A Yk(n = (O,O, 1 ) )  = - brno 

one can reduce the MSE formula (24) to 
2 m 

3!.!Yl= (22 + 1)Srn0 C ( 2 n  + l)p, + ( 1  - 2(21+ l)b,o)p,. 
4.rrd n=O 
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If we consider using one station to measure the global average temperature anomalies, the 
sampling error is 

Further, by formula (1 1) we have 
m 

p( 1) = C(2n + l)pn = 1 
n=O 

and the expression (32) can be reduced to that given by North et al. (1992): 

(33) 

It indicates that the sampling error is inversely proportional to the variance explained by the 
zero-order spectrum. 

For the Tlo component of the anomaly field, the sampling error is 

In general, po 2 0 and p1 2 0, which imply that 

€?lo) > (4/3)430). (36) 

~ f 2 0 )  > 3.2tfm). (37) 

Similarly, one can show that 

These simple comparisons are the manifestation of the fact that in order to achieve the same 
accuracy of measurement more stations are required for higher order spherical harmonic 
components than for lower order components as one would expect intuitively. Numerical 
examples in Section 6 further support this conclusion. 

3. RANDOM DISTRIBUTION OF THE STATIONS 

Historically, the positions of the measurement stations were not planned globally. Instead, they 
were irregularly distributed over the earth surface, mostly on land. Let us consider the case that 
stations are randomly distributed. The simplest possible case is the independent uniform 
distribution of the stations. Namely, the probability distribution function +(al, n2, . . . , nN) has 
the following properties: 

+(nl, n2,. . . ,nN) = +(nl)+(n2). . . +(nN) (Independence) (38) 

(39) 
1 

47T b(nj) = - ( j  = 1,2 , .  . . , N )  (Uniform distribution). 

Since n, , n2, . . . , nN are random variables, the MSE ~ $ ~ ~ ( n , ,  n2,. . . , nN) given by the formula 
for fixed station positions is a function of these variables. We are now interested in the 
expectation value E&) of ~ ; ~ ~ ) ( n , ,  n2, . . . , nN): 
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From (24) with uniform weighting, after some algebraic manipulations, one can obtain 

E?h, - 1 -PI  - _ _ _  
47ra’- N ‘ 

It is well known that when sampling a spatially white noise field, the mean squared sampling error 
is 1 /N.  Thus, the above formula explicitly shows how much the correlation spectrum can 
contribute to reduce the error of sampling white noise. A similar expression was obtained earlier 
for I = 0 by North et al. (1992) and Hardin et al. (1992). Comparing this expression with formula 
(32), we have 

The superscript [ N ]  signifies the number of stations. In N = 1, then the sampling error is 
independent of the location of the station. This is one of the consequences of the homogeneity 
assumption of the anomaly field. In addition, it manifests the fact that the sampling error 
incurred in using N stations is equivalent to that in using one station that measures N times 
independently, say one station for each of N independent planets, but for the real climatology 
problem, we know that the sampling error from N independent measurements is smaller than 
that from N simultaneous measurements when N is larger than a certain number, which is about 
25, because there is a redundancy in the network of stations that perform simultaneous 
measurements. This is due to the positive correlations among the neighbourhood stations 
since the correlation length for annual mean temperature field is about 2000 [km] (Hansen and 
Lebedeff 1987; Kim and North 1991; 1993). 

4. SPECTRA DERIVED FROM NOISE FORCED EBM 

In the above two sections, MSE formulas for both N fixed stations and N randomly and 
uniformly distributed stations are obtained. Yet, in order to get numerical output, one has to 
know the values of pn, which can be found by using either a climate model or real data. Here we 
consider the case of a simple climate model which is a white noise forced linear energy balance 
model given by 

(43) 
d 
at  

TO - T(i ,  t )  - Xiv2 T(n, t )  + T(n, t )  = F(i, t )  

where T(n, t )  is the local departure of the temperature from its climatology, T~ is an inherent 
time scale and Xo is an inherent length scale. As mentioned in the introduction, we are interested 
only in the low frequency limit of the climate process in this paper. With this limit the time 
dependent term in the above model drops out. Hence we simply consider the time independent 
model. The unit of the length scale Xo is the earth radius. The forcing function is a spatial white 
noise, i.e. 

(F(ii)F@’)) = a;qn - i’) (44) 

where S is the Dirac delta function. The time independent noise forced EBM (energy balance 
model) is 

-XiV2T(CI) + T(n) = F ( i ) .  (45) 
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The spherical harmonic expansions for T(n) and F(n) are 

X I  

Substituting these two expressions into the model equation (49,  we can obtain 

Substituting (46) into the left hand of (9) and using the Fourier-Legendre expansion (1 1) and 
the addition theorem for the spherical harmonic functions (12), we have 

This equality and equation (48) imply that 

( I ~ n r n I ~ } /  (4rc2) 
[ 1 + &(n + 1)12 

n = 0 ,1 ,2 , .  . Pn = 

Here (lFn,,,I2) can be found from the white noise assumption (44) and the expansion (47): 

This implies that 

This po can be determined by the normalization condition p(x = I )  = 1, i.e. 

P (1) = 1. Po 
[l  + g n ( n  + 1)12 

2 ( 2 n  + 1) 
n=O 

Noting that Pn(l) = 1 (n = 0 , 1 , 2 , .  . .), we have 
1 

Po = 
Cn"=o(2n + l) /[ l  + X;n(n + 1)j2  ' 

(54) 

( 5 5 )  

Hence po is only 
explained by the 
which. of course 

a function of the length scale Xo. The larger the Xo is, the more variance is 
spectral component po. Figure 1 shows the relationship between po and Xo, 

, is a monotonically increasing function. The value of A0 is determined by the 
length scale of the anomaly field. For the annual mean field, EBM length scale is about 2000 km 
(Kim and North 1991). If we take the radius of the earth to be 6367 km, Xo takes the value 
2000/6367 = 0.3141. The corresponding po is 0.0954. Thus, the zero-order spectral component po 
explains about 10 per cent of the low frequency point variance of the surface air temperature. 
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LENGTH SCALE X, 

Figure 1. The relationship between the length scale Xo and the zero-order Fourier-Legendre coefficient po of the 
correlation function p ( x )  

To evaluate the effectiveness of a network, it is common to use either the signal-noise ratio or 
the percentage sampling error. They are defined respectively by 

The signal-noise ratio and the percentage sampling error for the randomly distributed stations 
are defined in the similar way: 

By (41), we have 

These results are further depicted in Figures 2 and 3, in which the spectra pI are determined by 
(50). Figure 2 shows that for the zero-order spherical harmonic component the percentage 
sampling error is less than 10 per cent when N > 100. The sampling error quickly rises as the 
spherical harmonic mode number 1 increases. From our experience of generating random 
numbers in an interval, we have found that many realizations can result in the points distributed 
in a highly non-uniform manner. Hence in practice, the arranged networks tend to have better 
uniformity than the average of the uniform random distributions. Thus, the sampling error for a 
given network of N stations tends to be smaller than the ensemble average Etl,,,), which, in 
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-----____ ......................... 

0 50 100 150 200 
NUbfBER OF SAMPLING STATIONS 

Figure 2. The percentage sampling error of randomly distributed stations RYFj) wh? the length scale A0 = 0.3141 [in 
units of radius of the earth]. The numerical results are based upon the formu a (61) The five curves correspond to the 

mode I = 0, I ,  2 , 3  and 4, respectively (in an ascending order) 

principle, should agree with the result of Monte Carlo simulations. In this sense, one may regard 
Efi/,,,] as an upper bound of the sampling error by N reasonably and uniformly positioned 
stations. 

For climatological reference, we would like to compare the MSE resulting from sampling T,,,, 
with the variance of the same component, which is 

Using the covariance relation (9) and formula (50), one can derive that 
O(rm) 2 = 4m2p,. 

This m-independence property of ~ f / ~ ,  is the consequence of the assumptions: (i) white noise 
forcing which has neither I nor m preference, and (ii) the linear homogeneous energy balance 
model which has no m preference either and transforms the forcing to response linearly and 
conformally. 

. - - - - - - 

. - - - - - - 

. - - - - -  

0 so 100 150 200 
NUbfBER OF SAMPLING STATIONS 

Figure 3. The signal-noise ratio resulted from sampling with randomly distributed stations RA!;!) where the length scale is 
the same as that of Figure 2. The numerical results are based upon the formula (60). The five lines correspond to the mode 

1 = 0 , 1 , 2 , 3  and 4, respectively (in a descending order) 
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With the above and the formula for p,, the MSE formulas (24) and (41) can be written as: 

N 

j =  1 

J$/nl) - - [1 + x ; w +  1)12 - Po 
.(Zw NPo 

These formulas will be used to get numerical results. 

5. COMPUTATION OF OPTIMAL WEIGHTS 

In the discussion of Section 2, we took all the weights to be equal. Obviously, we do not have to 
choose the weights in this way. For a given network of stations, it is clear that the best result is to 
choose the values of the weights in such a way that the sampling error becomes minimum. These 
weights are called the optimal weights. Therefore, we are going to minimize cflm) determined by 
(64) under the normalization condition (16). The Lagrange function is 

where A is the Lagrange multiplier. Then the conditions for a critical point 

= o  ( j =  1,2, ..., N )  
dJ 

dw,!'") 

and the normalization condition (16) result in the following linear equations: 

Here the spectra pn are determined by (50) in Section 4. Hence, for a given network of stations, 
one can solve the above N + 1 linear equations to find the optimal weights w y ) ,  w?), . . . , wp), 
and A. With these optimal weights, one can use formula (64) to find the minimal sampling error. 

If all the stations are independent, we have 
M 

C ( 2 n  + l)pnPn($ ' 4) = p(ni - nj) = 6,. 
n=O 

This results in the uniform weights w:lm) = 47r/N, i = 1,2,  . . . , N ,  as the unique solution to the 
equations (68) and (69). Therefore, if there is a non-zero cross-correlation between a pair of 
stations, the optimal weights are definitely not uniform. 
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Table I .  Percentage sampling error ( V )  and signal-to-noise 
ratio (A) in estimating the first ten spherical harmonic com- 
ponents using four different networks. Listed are two sets of 
experiments with optimal weighting scheme and uniform 

weighting scheme (in parenthesis), respectively 

Net I Net I1 AK net Net IV 
N = 2 4  N = 6 4  N = 6 2  N=210 

10 (10) 
8.7 (8.7) 

13 (15) 
6.5 (5.9) 

15 (15) 
5.7 (5.5) 

27 (27) 
2.7 (2.7) 

18 (24) 
4.5 (3.2) 

25 (30) 
2.9 (2.4) 

43 (45) 
1.3 (1.2) 

36 (42) 
1.8 (1.4) 

31 (39) 
1.7 (1.6) 

40 (55) 
1.5 (0.8) 

3.0 (15) 
32 (5.9) 
2.3 (36) 

43 (1.8) 
5.2 (9.3) 

18 (9.7) 
5.0 (64) 

19 (0.6) 
5.6 (7.1) 

17 (13) 
11 (14) 
8.2 (6.3) 
9.1 (79) 
9.9 (0.3) 
9.4 (20) 
9.6 (4.0) 

12 (13) 
7.0 (6.8) 

22 (22) 
3.6 (3.5) 

4.0 (1 1) 
24 (8.1) 
5.0 (23) 

19 (3.4) 
5.8 (10) 

16 (8.7) 
7.7 (39) 

12 (1.5) 
9.8 (1 8) 
9.2 (4.5) 

10 (17) 
8.8 (5.0) 

11 (53) 
8.4 (0.9) 

17 (37) 
4.9 (1.7) 

16 (24) 
5.3 (3.1) 

18 (29) 
4.6 (2.4) 

0.3 (1 3) 
347 (6.6) 

439 (1.9) 
0.5 (7.0) 

185 (13) 
0.6 (63) 

172 (0.6) 
0.6 (3.4) 

160 (29) 
1.1 (8.8) 

88 (10) 
1 .o (79) 

96 (0.3) 
1.1 (14) 

92 (6.1) 
1.4 (4.8) 

68 (20) 
2.5 (10) 

39 (8.8) 

0.2 (35) 

Of course, we expect the sampling error to be smaller when the optimal weights are applied. 
Numerical examples in the next section show that the optimal weights can significantly reduce the 
sampling errors. 

6. NUMERICAL EXAMPLES 

With the development of physical intuition and mathematical formulation, we proceed to 
networks of many stations. It appears that it is impossible to find an analytic expression for 
the sum of the infinite series (M), when there are many stations, even for uniform weighting. 
Therefore, we carried out numerical computations. The numerical results for both the optimal 
weights and the uniform weights are included in Table I.  In this numerical test, we considered 
four different networks. 

Net I consists of four rings of six stations at latitudes 5 0 5 ,  15"S, 15"N and 5WN, and 
longitudes 15o"W, 90°W, 30"W, 30"E, 90"E and 150"E. Net I1 consists of eight rings of eight 
stations and it equally partitions the latitude-longitude map. The stations in the first column are 
on the 157.5"W longitude line. Net I11 has 62 stations. It is the commonly referred Angell- 
Korshover network determined by WMO in 1958 (Trenberth and Olson 1992), with the station 
on the south pole excluded. Net IV is a 24" x 12" network. The stations in the first column are on 
the 168"W longitude line. This dense network is designed to estimate the higher order spherical 
harmonic components. It even samples T,, with less than 10 per cent error when the optimal 
weights are applied. 

Table I includes the results of the percentage sampling errors and the signal-noise ratios of the 
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(4 Net I: 24 stations 
10 ' . ' I . . .  . . . . . . . . . . . . . . . . . . . . .  100 

5 10 15 20 25 30 
MODE NUMBER 

(a)  

(b) Net 11: 64 stations 

0 
40 2 

0 

- 
40 g 

p: 
p: 

30 
U 
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20 g 
- I3 

u 

10 a 
1 

- J O  
5 10 15 20 25 30 

MODE NUMBER 

( b )  

Figure 4. The dependence of the percentage sampling error and the signal-noise ratio on the spherical harmonic mode 
number for Net 11. Here, the optimal weights are used and the mode numbers are rearranged in the way that (00) = I ,  
(10) = 2. (1  1) = 3. (20) = 4, (21) = 5, (22) = 6 ,  (30) = 7 , .  . . , (66 )  = 28. Panel (a) is for Net I, (h) for Net 11. (c )  for the 

AK Net, and ( d )  for the dense network, Net IV, of 210 stations 

first 10 modes for the above four networks. In order to expose the advantage of the optimal 
weighting scheme, we list the uniform weighting results in parenthesis for comparison. Net I is 
sparse. The correlation between each pair of stations is small. Hence the optimal weights are 
approximately the same as the optimal weights, and the optimal weighting results are close to the 
uniform weighting results as shown in the first column of the table. Net I1 and AK Net are dense 
enough to show the effectiveness of the optimal weights for reducing the sampling error. The 
effect of the optimal weighting is more drastic for a more dense network, Net IV, which can 
sample the first ten modes with almost no error if the measured data are processed by the optimal 
weighting scheme. 

Figure 4 shows the dependence of the percentage sampling error and the signal-noise ratios on 
the spherical harmonic mode number up to the component as high as T66. Figures 4(a), (b),  (c) 
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(C) Net 111: A-K stations 
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Figure 4. continued. 

and ( d )  are for Net I, Net 11, AK Net and Net IV, respectively. The mode numbers are rearranged 
in the way that (00) = 1 (10) = 2, ( 1  1) = 3, (20) = 4, (21) = 5, (22) = 6, (30) = 7 ,  etc. In this 
figure, we show the results up to (66) = 28. Only the modes with a positive rank are considered 
because the MSE formula (24) is symmetric with respect to m. Both Figure 4 and Table I seem to 
suggest that: (a) the percentage sampling error increases linearly with respect to the mode number 
arranged as above; and (b) the sampling error reduction versus the increment of the number of 
measurement stations is a highly non-linear relationship. 

7 .  CONCLUSIONS 

We have estimated the mean square errors (MSE) for sampling various orders of spherical 
harmonics of the surface temperature anomalies. The assumptions taken are as follows: (i) the 
statistics is homogeneous; (ii) the only low frequency limit is considered; and (iii) the spectra of 
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the covariance field can be computed from a noise forced energy balance model. Both the analytic 
and numerical results indicate that: (a) the percentage sampling error increases with respect to 
the order of the spherical harmonic function; (b) the optimal weights are effective in reducing the 
sampling error and the optimal weighting scheme is strongly recommended for estimating the 
spherical harmonic components; and (c) there are sampling networks that result in zero sampling 
errors from the lower order spectra. With about 60 reasonably positioned stations for sampling 
the spherical harmonic components Too, Tlo and TI one can get the sampling error below 10 per 
cent when the optimal weights are applied. An experiment with 210 stations leads to sampling 
error less than 10 per cent for the spherical harmonic components from Too up to TS4. 

The major advantage in assuming the homogeneous statistics and an energy balance model 
with constant coefficients is that the mathematical formulation becomes simple while some 
important physical properties still remain, and hence some relevant physical properties become 
transparent. However, of course, the simple energy balance model leaves out lots of fine 
structures, such as the dynamical ENS0 (El Niiio Southern Oscillation) pattern. The spectra 
computed from the simple model certainly are much distorted from the real climate particularly 
for high-order spherical harmonics. Notwithstanding this point, the methodology we provide 
here is still valued for exploring the sampling error for both homogeneous and inhomogeneous 
fields as long as EOFs and their corresponding variances can be obtained from data or a model. 
Therefore, the computation of the spectrum itself stands out as a very significant problem for 
detection and prediction (Kim and North 1993). 
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