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Abstract. This paper describes the original discovery of soliton collisions governed by the
forced Korteweg-de Vries equation and forced nonlinear Schrodinger equation, respectively.
These two nonlinear dynamic systems do not have infinitely many conservation laws and
are grouply asymmetric due to external forcing. The forcing makes it possible to generate
a train of solitary waves of the same size. The traditional group-theoretical method is
no longer appropriate for describing these solitary waves. This paper numerically demon-
strates that the collision process of the solitary waves generated by the forcing in the two
asymmetric dynamic systems, hence confirms that the solitary waves are solitons.
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1 Introduction

In the milestone paper on modern nonlinear science, Zabusky and Kruskal
(1965) studied Fermi, Pasta and Ulam’s discovery of recurrence of energy
distribution and showed that certain traveling waves can pass each other and
retain their original shapes [8]. These waves are called “solitons” (i.e., lonely
particles) and they have produced a historically stronger than ever stimula-
tion of the research into the nonlinear-wave mathematics with symmetries.
These symmetries are equivalent to the existence of infinitely many conser-
vation laws. Various beautiful mathematics has been generated from these
symmetries, such as soliton-hierarchy in Lie algebra, shape transition in ge-
ometry, Backlund transform, and inverse-scattering method. Unfortunately,
when certain symmetries, such as the translation invariant property, are bro-
ken, or certain conservation laws, such as the conservation of momentum, are
not satisfied, the above mathematics is no longer working. In the practical
world, asymmetry is common and absolute symmetry is rare. An outstand-
ing question is that: are there still solitons, under the collision definition of
Zabusky and Kruskal, governed by asymmetric dynamic systems?

-
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The first evidence of the existence of such solitons was provided by the
celebrated discovery of upstream radiated waves by a Caltech fluid mechanics
group led by T. Y. Wu in 1982 [cf. [1] and [7] and references therein]. Wy
considered the following nonlinear water waves. The rest water in a two-
dimensional, long channel obtains mechanical energy from a moving bump
on the bottom of the channel. When the bump moves to the left at a speed
near the critical shallow water wave velocity, solitary surface waves are peri-
odically generated at the bow side of the bump and radiated away from the
bump to the upstream. They claimed that these solitary waves are solitons.
These waves have been successfully modeled by the forced Korteweg-de Vries
equation (fKdV) (Shen, 1993, 1996). The current paper demonstrates that
these waves can go through a collision test. It hence validates Wu's claim of
solitons under the definition of Zabusky and Kruskal.

The second model is the forced nonlinear Schrodinger equation (fNLS). In
19894 at the International Conference of Differential Equations and Control
Theory, the result of soliton radiation in two directions based upon the INLS
was announced (see Fig. 3 of [3]). The amplitude of the solution of the fNLS
oscillates at the forcing site and radiates a single soliton to the positive z-
direction and an identical one to the negative z-direction. Again it is still to
be demonstrated that the radiated solitons can pass the collision test, which
is another purpose of this purpose.

This paper is arranged as follows. Section 2 describes the approximate
solitary wave solutions of the fKDV. Section 3 presents the numerical simu-
lations of soliton collision process in both fKdV and fNLS. Conclusion and
discussion are given in Section 4.

2 Approximate solutions of fKdV

To gain some idea about the solution behavior of the fKdV, we first investi-
gate approximate solutions to the fKdV model:

3 1 P
=Mz — ZNzzz = E‘sz(z), —00 << o00o.

M —
(1) e+ Mz — 5 P

Here 1)(z,t) describes the free surface profile in the Wu model of water flows
over a bump, A measures the deviation of the bump speed from the shallow
water velocity,«P is computed from the cross section area of the bump, &(z)
is the Dirac delta function, z is the spatial coordinate along the channel, and
t is time. The control parameters in this model are the bump size parameter
P and the bump

gk,
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Figure 1: An illustration of the schematic solution 7(z,t) of fKdV for a fixed
time ¢.

speed parameter A. The initial condition for Equation (1) is always
n(z,0) = 0, i.e. the rest water. The solution consists of a soliton region
upstream, a depression region immediately on the lee side of the bump and
a lee wave further downstream. The schematic solution is shown in Figure
1. The kth upstream soliton is governed by

(2) n®) (z,t) = a.sech® {(v3a,/2)(z + st — zx)},

where z, is the specific phase shift for the kth soliton. Based upon the
mass balance postulate that the upstream soliton mass comes solely from
the downstream depression when time is sufficiently large, one can derive
approximate expressions of the depression depth hg4, soliton amplitude a,,
soliton propagation speed s, and soliton generation period T, in terms of the
control parameters P and X (cf. [3] and [5]):

3 N\ 2
3 —(2p2) -2
2(hq + i)\)(h,d-|~ l,\)
4 = 3 3
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5 _ G _
(5) 5= A,
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Since these are asymptotic approximations as time ¢ approaches infinity, they
deviate from numerical solutions by a small error for the cases in the present
work. When P and ) are constants, the upstream solitons are identical, form
a uniform soliton train and move at the same speed, thus, one cannot see
the collision process. To make soliton collision happen, an idea is to generate
and isolate two trains of uniform solitons of different amplitudes. The results
from [4] and [6] show that soliton isolation can be made. When studying
the instability of multiple fKdV solitary waves, it is shown in Figure 3 of [6]
that the higher unstable solitary wave, while shrinking to the lower stable
stationary solitary wave, radiates away a single soliton upstream and gener-
ates a lee wave far downstream. From this observation and the conservation
of mass, one may think that the number of solitons generated by the forcing
depends on the initial condition, bump speed and bump size. Ref. [2] consid-
ered the case of non-constant bump speed and observed the resonance of the
upstream solitons. In the present work, the case of the variable bump size
is investigated and the soliton collision process is clearly demonstrated: the
train of uniform solitons of the larger amplitude moves faster and overpasses
the smaller one, and all the solitons retain their original shapes after the
collision.

3 Numerical simulations for soliton collision

The initial value problems of the fKdV and fNLS are solved by a semi-implicit
pseudo-spectral method. The Fourier transform is made for z from —L to
L, where L is taken sufficiently large to avoid boundary reflection. The
integration over t is by the leap-frog method. Special attention is paid to the
nonlinear and dispersion terms. The details of the method can be found in
Chapter 6 of Ref. [3].

The following parameters are adopted for the fKdV soliton collision pro-
cess

(7 A=0,
0.4, 0<t<265
0.0, 26.5<t< 38

(8) P=19 10 38<t<49
0.0, 49< ¢,
9) n(z,0) =0, n(xoo,t) = n.(+oo,t) =0.

The numerical solution of the differential equation (1) with the above data
is shown in Figure 2. The depth of the
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Figure 2: Numerical solution of the fKdV (1) with conditions (7), (8) and
(9).

depression hg, and the amplitude a,, speed s and generation period T, of
the mature solitons can be analytically estimated from (3), (4), (5) and (6)
for \=0and P=04:

hq = 04932, a, = 0.9865, s=0.4932, and T, = 12.57.

Since t = 26.5 > 2T, = 25.04, two solitons are generated. The numerical
solution shows that the first one has an amplitude 0.9767, which is very close
to the above analytic approximation 0.9865, and is considered completely
mature. The second one is almost mature at t = 26.5. A third soliton would
be generated if we wait for the second one to become completely mature.
Since we intend to include only two solitons in the collision test, the forcing
P = 0.4is thus cut off at t = 26.5. Because there is no further mass supply for
26.5 < t < 38, no more solitons are generated during this time period. The
near rectangular depression region on the immediate lee side of the bump,
when the forcing was in action, gradually becomes triangular (See Figures 1
and 3).
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Figure 3: The same solution as shown in Fig. 2 but at ¢ = 38.

The forcing is increased to P = 1.0 at ¢t = 38 and remains at this strength
during 38 < t < 49. The results from the formulas (3) -(6) for A = 0 and
P =1.0are

hy = 0.9086, a, = 1.8172, s=0.9086, and 7, = 5.0280.

Two more solitons are generated during this period because its length of 11
is a bit longer than twice of T, = 5.0280. The numerical solution shows
that the first soliton is completely mature with an amplitude of 1.8024, and
the second one is almost mature. The forcing is reduced to zero after ¢ =
49. The two larger solitons move faster, collide with and then overpass the
smaller ones generated earlier. All the solitons retain their original shapes
after the collision. The process clearly demonstrates that the solitary waves
generated by the fKdV are indeed the solitons under the definition of Zabusky
and Kruskal. The second part of this section is to communicate the soliton
collision results for the fNLS equation:

(10) s + YUz + plufu = Pé(z),

where v, 4 and P are control parameters, i = v/—1 is the imaginary unit, and
the function u(z,t) is, of course, complex valued. In Ref. [4], v =1, p =2
and P = 1.2 are fixed. It was observed that two identical solitary waves of
|u(z,t)| are moving in opposite directions. At the forcing site z = 0, the
function |u(0, t)| is periodically oscillatory and this osciliation is maintained
by the forcing. The amplitude and frequency of the |u(0,t)| oscillation are
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increasing functions of P, and so are the amplitude and the speed of the
radiated solitons. When the forcing is set to zero at a certain time, the
(0, t)| oscillation stops and the solitons keep moving at their original speed.
But the amplitudes of the solitons appear to oscillate slowly with respect to
time. This oscillation is much slower than that of |u(0,t)|. To show that
the radiated fNLS solitary waves are solitons, similar to the fKdV case, we
generate and isolate a larger soliton from a smaller one and let them go
through a collision process. To do so, P now varies as a function of {. The
following conditions are specified:

(11) y=1, p=2
044, 0<t<285
(12) P={ 12, 285<t<60
0, t > 60,
(13) u(z,0) =0, u(to0,t) = 0.

The amplitude |u(z, t)| of the numerical solution of the fNLS (10) with the
above conditions is shown in Figure 4.

Time,t

Figure 4: Numerical solution of u(z,t) for the fNLS (10) with conditions
(11), (12) and (13).

One can see that the solitary waves involved in the collision retain their
original shapes after collision. Thus we conclude that the radiated solitary
waves discovered in [4] are solitons.
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4 Conclusion and discussion

Numerical simulations demonstrate that the fKdV can generate solitary waveg
of the same size. Whether the solitary waves are solitons has been success-
fully examined by a collision process. However, the fNLS generates only two
solitons propagating in different directions. It remains to be investigated why
the equation cannot generate more than two solitons. It is well known that
the sine-Gordon equation can also generate solitons. We have attempted
to obtain soliton solutions for the forced sine-Gordon equation, but so far
we have not been successful. Therefore, whether fNLS can generate more
than two solitons and whether the forced sine-Gordon equation has a soliton
solution are still to be investigated.
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