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ABSTRACT This paper presents an optimal averaging scheme that yields the area average of
a climate field over a region. The scheme consists of two steps: fitting the observation data to
a priori covariance functions and computing the weights for each of the observation stations.
A surface air temperature dataset of 23 stations in Northeast China from 1961 to 1990 is used
to demonstrate the use of the scheme and its advantages. The results show that, compared to
the arithmetic averaging scheme, the optimal averaging scheme has a smaller sampling error
and less deviation from the mean value of the random sampling error, in particular, when
there are only a small number of stations.

RESUME  Cet article expose un schéme pour obtenir une moyenne optimale donnant, au-des-
sus d’une région, une moyenne spatiale d'un champ climatique. Le schéme comprend deux
étapes: I’agencement des données d’observation aux fonctions de covariance et le calcul des
coefficients de pondération & chacune des stations d’observation. Pour démontrer le fonc-
tionnement du schéme et de ses avantages, on a eu recourt a un ensemble de données de
températures de Iair en surface, comprenant 23 stations du nord-est de la Chine au cours de
la période de 1961 & 1990. Pour un petit nombre de stations en particulier, les résultats mon-
trent, lorsqu’on le compare au schéme de la moyenne arithmétique, que le schéme pour obte-
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nir une moyenne optimale présente une plus petite erreur d’échantillonnage et moins d’écart
que la valeur moyenne de Ierreur d’un échantillonnage pris au hasard.

1 Introduction

The purpose of this paper is to present an optimal averaging scheme and show that it
is worthwhile to consider using an optimization method for spatial averages, in par-
ticular when observation stations are sparse.

Properly weighting the data from each observation station in order to obtain the
best average of an observed climate field over a region of interest is an important
task in climatological statistics. It can happen that the poor result of averaging is due
to an improper weighting scheme rather than an insufficient number of samples,
especially when the field is highly inhomogeneous. Taking the global average
annual mean temperature as an example, it used to be thought that at least several
hundred stations were needed to get a reasonable result. Shortly after the famous
publications of Jones et al. (19864, b), Hansen and Lebedeff (1987) and Vinnikov et
al. (1990), there appeared a question regarding the accuracy of their analyses (Mad-
den et al., 1993; Weber and Madden, 1995). There were good reasons to ask this
question since each paper used a different number of stations (1783 in Jones et al.,
2685 in Hansen and Lebedeff and 566 in Vinnikov et al.) and a different weighting
scheme to calculate the global average. After the publication of Jones (1994) and
Shen et al. (1994), it became clear that the annual mean surface air temperature field
has relatively few degrees of freedom, most likely between 24 and 100, and the glo-
bal average can be computed rather accurately with 60 or so well-distributed sta-
tions on the globe if a proper weight is assigned to each station. (For the January
temperature, Madden et al. (1993) estimated 135 degrees of freedom using model
output.) Therefore, if there are many redundant stations, one can get a good average
without optimizing the weights. This explains why the results of Jones et al. (1986a,
b), Hansen and Lebedeff (1987) and Vinnikov et al. (1990) are highly correlated
since all of them have many redundant stations.

Despite the above statement, for the dataset considered in the present paper, we
will show that the sampling error is noticeably smaller when the optimal weight
scheme is used and when one has fewer stations. This makes the optimal averaging
scheme useful when a very high accuracy of a spatial average is required, such as
the case of ground truth validation of satellite images (North et al., 1994). We will
illustrate the significant differences by Monte Carlo experiments (Section 4).

The spectral method in Shen et al. (1994) is basically a double projection: the
temperature field was projected onto the Empirical Orthogonal Function (EOF)
basis and the EOFs were further projected onto spherical harmonics. The present
study tries to provide an optimal averaging scheme when an orthogonal basis, such
as the spherical harmonics, cannot easily be found. This is often the case when one
considers a regional average.

The context of this paper is still in the category of classical objective analysis
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(Gandin, 1965; Daley, 1991) and does not intend to give an overall picture of all the
averaging methods available and their results. Hence, we have made selective cita-
tions of the past work on averaging the surface temperature field, no matter regional
or global, just to demonstrate the motivation for our current work. As far as the
methodology is concerned, our method is similar to that of kriging averaging
(Rendu, 1981). The minor difference is that we have included a least square data fit-
ting step to obtain the parameters in the assumed covariance functions. This step is
similar to that used in Reynolds and Smith (1994) for optimal interpolation. Our fit-
ted covariance functions are isotropic around each point but not homogeneous over
the region in question (see Section 3). Hence our method is also different from the
optimization method of Vinnikov et al. (1990) in which a zonally homogeneous and
isotropic covariance structure is assumed (also see Section 3).

In contrast to a brief mathematical analysis described elsewhere (Shen et al.,
1995), the present research is focused more on the sampling error analysis and the
comparison between the optimal and arithmetic averaging schemes with respect to
the sampling error. We attempt to present our method in such a way that readers can
easily code their own program and perform computations. The purpose of present-
ing our results in such a way is to let researchers who work on regional climate
change consider the optimal averaging scheme as an option for computation in the
situation of sparse observation stations.

In Section 2, the optimal averaging scheme is derived. Section 3 describes the
dataset, the averaging of a covariance function around a station, and the result of the
average temperature in Northeast China using 23 stations. The Monte Carlo experi-
ments designed to compare the sampling errors from the optimal averaging scheme
and the arithmetic averaging scheme are presented in Section 4. Section 5 contains
conclusions and discussions.

2 Theory of optimal averaging scheme

The theory of the optimal averaging scheme is presented in terms of monthly aver-
age temperature anomaly after the removal of the seasonal cycle and standardization
(details in Section 3). Let r be the position of a point in the region £} and O(r, 1) the
monthly average temperature at point r and month ¢. The true regional average of
the temperature anomaly over §) is

o@) = :_‘ L dQ e(r, 1 (1)

where A is the area of the region Q, and dQ is the integration element.
The estimate ©(f) using observation data from N stations is

N
o =Y wio(x, 1, 0]

i=1

where w; is the weight for the ith station (i = 1,2,---,N). If w = wy =
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- = wy = 1/N, then O is the arithmetic average. If we choose the weights
wi, wa, - -+, wy such that they minimize the mean square error (MSE) of the esti-

mator O(¢) for © defined by
&> = (O0) - 6())), 3)

then wy,w,,---,wy are called the optimal weights and the corresponding 0 is
called the optimal average. In the above, (---) stands for the ensemble average.

We regard the time-series of ©() and ©(r) as approximately stationary. Then € is
independent of time. Here we have a dilemma: there are spme trends in the time-
series O(r) and O(r), (hence the time-series of ©(z) and ©(f) are not stationary),
but at this stage of research development we do not have another method which
abandons the stationarity assumption. The compromise is that the amplitude of the
trend is small compared with the standard deviation of the same time-series in a
time interval of five or ten years. In the present study, the ratio of the former to
the latter is less than 1/7 (see the bottom panel of Fig. 3) and the trend is regarded
as being small. If the trend is too large to be regarded as a “small” trend, one
can carry out a detrending procedure as follows: use the stationarity assumption
to process the average to get the trend and subtract this trend from the original
time-series. The resulting time-series should be closer to a stationary one.

However, we need to detect the trend correctly even if it may be small. We should
choose our weights so as not to deform the shape of the trend. Therefore, a normal-
ization condition on the weights is imposed:

N
Swi=1. &
i=1

The expansion of the MSE formula leads to

1
2 ! /
€ =1 [)dQLdQ p(r, )

P N
-2 Tow [t Y wm et )
i=1 i,j=1
where
P(rj7 l'i) = <®(ri7 t)@(l'j, t)) (6)

is the covariance matrix. Here again since it is assumed that ®(r;, 1) is a stationary
time-series, p(r;, ry) is independent of 7.

We try to find the weight for every station by minimizing €2 with (4) as a con-
straint. The weights obtained by this procedure are optimal. The method of
Lagrange multiplier is used for the minimization. The Lagrange functional is
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N
J[Wla"'7WN]=€2[W17"‘7WN]_2A(ZWI'_1) )

i=1

where —2A is the Lagrange multiplier. At the critical point of the Lagrange func-
tional, we have

oJ aJ
- = f=1..-- = —0. 8
S, 0, i=1,---,N and A 0 8)
The above yields
N
> owplr, i) —A=pE),  i=1-,N, ©)
j=1

> owi=1, (10)

where
1
B = f dQ p(r, 1), (1)
Q

The solution of (9)-(10) yields the optimal weights wy, -+, wy. The above equations
look similar to a kriging system (Rendu, 1981). But we will compute p(r;) in a rather
different way from the conventional kriging method.

Let [b,-j] denote the inverse of the matrix [p,-j] = [p(r;, ryl. Then the solution of
(9)—(10) can be expressed by

N
wi= Y bylA+p@E)l, i=1,2,-,N, (12)
=1

1— Z%:l b;p(ry)
E{Yj:l bij

Now p(r;) is a new regional average. It signifies the importance of station
i when its observation data are used to compute the regional average, since
p(r)) = (O()O(r;, 7)) is the correlation between the data of station i and the re-
gional average temperature. What we originally wanted to compute is the regional
average temperature over Q. Now we have to compute p(rj) before we can solve
the equations (9)—(10) for the optimal weights. Therefore, the original averaging
problem has been converted into a new averaging problem. Fortunately, the latter
average can be estimated more accurately since the covariance often has a pattern.

A=

(13)
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3 Computational procedures and results

The different datasets support different covariance patterns. Vinnikov et al. (1990)
presumed an empirical correlation coefficient formula for every latitude band of 30°
degrees. For 30°-60°N, the presumed formula is

p(s) = exp(—0.215%893)1,(0.852s) (14)

where p(s) is the correlation coefficient, s is the distance between stations with
10 km as the unit, and J, is the zeroth order Bessel function. However, one may not
always want to start with a fancy pattern of this sort and often a simple normal dis-
tribution, with a couple of tuneable free parameters, can be a good candidate for the
first try. Our assumed covariance structure is isotropic around a station but different
from one station to the other (and hence nonhomogeneous). Around the ith station it
is assumed that

2
plr, ) = a; exp (—" hil ) (15)
d;

Then we use the observation data to fit this pattern to determine g; and d;. Hence we
have a covariance pattern for each station i and this pattern is fitted with N
covariance data p(r;, rj),j = 1,2,---,N. This is different from the conventional objec-
tive analysis that assumes a single covariance function which will be fitted by N x
(N — 1)/2 + N covariance data p(r;, rj), ij=12,-Nandj=i.

We wish to point out that since the data usually cannot fit the pattern (15) when
r — r; = 0, g; is thus not equal to unity even for standardized data. In this sense,
a@; is not the point variance of © at r; and d; is not the e-folding length scale of
the ® field. For the best fitting, we usually have a; < 1 and d; is larger than the
spatial length scale which is about 800 km for an inland area such as Northeast
China.

a Data

The data used in our computation experiment consist of monthly average surface air
temperatures from 23 stations in Northeast China (Fig. 1). The time period is from
1961 to 1990. Part of the data (16 stations) were compiled in Tao et al. (1991), in
which the station history, observation instruments and quality control procedures are
described. In order to have as many station observations as possible in this region,
we have included 7 stations from another dataset (Wang and Xiao, 1991). According
to Tao et al. (1991), before the 1950s there were different regulations among the sta-
tions with regard to the observation time, method and the way to calculate monthly
average (since the People’s Republic of China was established in October 1949).
After that time, the regulations for all stations became consistent. For example, the
daily temperature was calculated as the average of 4-time observations, The monthly
temperature is calculated as the average of daily temperatures. Figure 1 depicts the
location of the 23 stations and the 104 grid points on the 1° x 1° grid in the region.




Optimal Average of Regional Temperature / 153

55N 1 | B s S S B N L R S B S R R N B B 55N
- R .‘O V‘ * L] -
ussia : Russia
- * * - - - . O' - -
b E L * * * * * * ‘ * -
50N | P T R TI 150N
® - . Os PO © (5 s 2 O x w e s ‘Q,* * N
o :
= - P L S LI I * « 3 = * Ot LIRS .+ o
::l-:‘ — . L] * Q * * Q * * b * O -
< Mongolia o
‘_J - * @ C)‘ L] * .O‘ L] O L] * E -
45N [ a % % G o+ & & * w Qe _45N
i _ © Russia |
P. R. China
r (North-East) s T .
- e o Y‘o\""alvﬁ -
40N 1 [ 1 I I I bty g T |. L '1. O S 1 40N
110E 115E 120E 125E 130E 135E

Longitude

Fig. 1 The locations of 23 stations (circles) from Northeast China and the 104 grid points {stars) regu-
larly distributed (1° x 1°) in the region.

The seasonal cycle of the data of a station is the 30-year average of this station
data for each month and it thus has 12 values for each station. The temperature
anomaly data of a station is obtained by subtracting, from each monthly value at
the station, the seasonal cycle of the station for that month. Then the temperature
anomaly time-series of 360 months is standardized by being divided by its stan-
dard deviation. This is done for every station. To get an idea of the magnitude of
the anomalies in terms of °C, we need to include the average standard deviation
of the 23 stations’ monthly temperature for every month: 2.368°C for January,
2.363°C for February, 2.450°C for March, 1.770°C for April, 1.331°C for May,
1.337°C for June, 0.987°C for July, 1.091°C for August, 1.014°C for September,
1.367°C for October, 2.674°C for November, and 2.570°C for December. The
average standard deviation of the 23 stations’ annual mean temperature is
0.830°C.

b Fitting data to the covariance pattern
The minimization objective function for data fitting is

P(I'J, i )]2
E = E . 16

The ideal case is that p(rj, ;) = p(rj, 1;) for every j. Then E = 0 is the minimum,
otherwise E > 0.
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The minimization condition is

oE oE
a—ai =0 and @ =0. (17)

Let B; = Inp(ri,1j) and s; = |r; — rj|. From the above minimization condition, we
can have

d? = VY~ () ) (18)
l Z_] 1 By Ej 1sq_NE'=1 Bljsizj
a; = exp [( ZBU+Z q) J(Nd}) (19

For the Northeast China dataset, the averages of a; and d; are

23 23

% ;a,- =0.790 (dimensionless), 2i3 ;d,- = 1.648 x 10°> km
The standard deviations of a; and d; are 0.0847 and 507 km respectively. Hence the
estimations of a; and d; are reasonably robust. Figure 2 shows the robustness and
goodness of the fit of the covariance pattern (15) with the above averaged parame-
ters a and d. The vertical coordinates of the 23 x 22/2 + 23 points are the entries of
the covariance matrix. The horizontal coordinates are the distance between each pair
of points.

We point out again that g, are not the point variances and d; are not e-folding spa-
tial correlation length scales. (The average e-folding spatial length scale for the
same region is 739 km.)

¢ Computation of p(r;)
To compute p(r;) we put a dense uniform longitude-latitude grid network on the
region (L Then p(r;) can be computed by

_ Nerid _rl|2
pr) = Za.exp( - ) (20)

grzd g=1

in which N,,;, is the total number of grid points in region {} and r is the position for
gth grid point in (L Here we are designing a scheme to compute the regional average
and the area in each grid box is considered the same. Of course if the north-south
span of the region is very large, one has to include the area factor (i.e. the cosine of
the latitude) into the above numerical integration formula. In our computation, the
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Fig. 2 The isotropic covariance for monthly temperature is shown as a function of distance. The solid
curve shows the results of formula (15), with the parameters a; and d; averaged over 23 stations:
d= 2372 d=1648 kmand a = 5 "2 a; = 0.7904.

dense grid is a 1° X 1° network and there are 104 grid points which are in or near the

region (L

For comparison, the top panel of Fig. 3 shows the difference of the regional
average monthly temperature computed by the optimal and arithmetic averaging
schemes. The difference between the results yielded from the two methods is of
noticeable size. Please note that the units of the vertical scale are °C which resulted
from multiplying the dimensionless © by the standard deviation for each month.
The standard deviations for monthly data are roughly in the range of 1.0-2.7°C as
described in Section 3a.

The bottom panel of Fig. 3 shows the times-series of the optimally averaged
monthly temperature (solid line). The dashed line is the 13-point moving average.
The dotted line is the linear trend obtained by the least square fitting of the solid
line. The formula of the trend is

—0.51900 + 0.00287 x ¢

where the unit of 7 is month. The net increase of the temperature from 1960 to 1991
according to this trend is: 0.00287 x 360 = 1.0°C. This increase is larger than that of
the global or Northern Hemispheric average surface air temperature since our
dataset is for a middle latitude land region.
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Fig. 3 The top panel shows the difference between the optimal average (OA) and the arithmetic average
(AA) of the monthly temperature. In the bottom panel, the solid line is the optimally averaged
monthly temperature. The dashed line is the 13-point moving average. The dotted line is the lin-
ear trend obtained by the least square fitting of the solid line.

4 Monte Carlo experiments

A Monte Carlo method is used to compare the sampling errors resulting from the
optimal and arithmetic averaging schemes. We performed a sequence of experi-
ments with the number of stations included to compute the regional average
decreasing gradually, from 19, 17, -+, until 3. The sample size is 1000. For example,
when we experiment with 15 stations, we randomly draw 15 stations out of the 23
stations and compute the regional average using the optimal averaging scheme and
the arithmetic scheme respectively. We define a percentage sampling error (PSE) to
show the accuracy of a regional average method.

We first compute the regional average of the temperature anomaly using all the 23
stations by the optimal averaging scheme and the arithmetic averaging scheme
respectively. The average of the results from these two schemes is used as the stan-
dard value, denoted by STD,, for the mth month. Namely,

STD,, = [optimal average of 23 stations + arithmetic average of 23 stations]/2. (21)
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We will check how far the averages, using the data from fewer stations, deviate from
this standard value. This deviation is represented by a root mean square error:
L& 3
RMSE = | — Z:l(xm( p) —STD,)*| . (22)

Here M is the length of the data in months which is 12 x 30 = 360, X, (p) is the
regional average temperature for the mth month computed using p randomly drawn
stations (from the 23 stations) by cither the optimal averaging scheme or the arith-
metic averaging scheme.

Now we can define the percentage sampling error

PSE = RMSE/DEV x 100% (23)
in which DEV is the standard deviation of STD,,.
We would like to check the reliability of the sampling error formula (5). The PSE
computed by formula (5) is denoted by PSEand is given by
PSE;= €& X 100%. (24)

The three terms in (5) are computed in the following way

N N,
1 1 & g — 1
— Q Q' R ; - 25
2 [aa [ et oe, ) Nszp( = ). @

N P 2
2 1 Irg — rj
Z ’EZI w; /QdQ p(l’, )~ 2 X E w; ]vg E a;exp (—_gdZ—) . (26)

i=1

N r
D wiw; plrj, 1) &Y wawp(ri, Ty). 7

ij=1 ij=1

In the above, N is 23, N, is 104 (the total number of regularly distributed grid
points), p is the number of stations used, and p(r;, rj) is computed by

360
1
plri, 1) & 25 ;e(n, nO(r;, 1. (28)

We also carried out Monte Carlo experiments for PSE; by randomly selecting p
stations from the 23 stations. The PSE and PSE; results are listed in Table 1. This
table also lists the PSE results for the uniform weight. “Mean” in the table is the
average of the 1000 values (because 1000 random drawings are performed) of PSE,




158 / Samuel S. Shen and Xiachun Wang

TABLE 1. The percentage sampling error (PSE) for the optimal averaging scheme (OA), and the
arithmetic averaging scheme (AA). The PSE;is the PSE estimated by using the formula (5).

Scheme OA PSE; Scheme AA

Number of _—
Stations (p) Mean Dev Mean Dev Mean Dev
3 30.16 531 29.12 4.92 36.80 8.39

5 21.79 3.59 21.97 322 27.64 5.28

7 16.93 2.57 17.94 227 22.18 3.86

9 13.95 2.09 15.46 1.81 18.46 3.00

11 11.60 1.74 13.70 145 15.51 246

13 9.82 1.47 12.37 1.19 13.13 2.00

15 8.44 1.20 11.37 0.98 11.18 1.66

17 7.26 0.97 10.54 0.77 9.34 1.38

19 6.23 0.65 9.85 0.54 7.54 0.99

and “Dev” is the deviation of these 1000 values from their “Mean”. When the num-
ber of stations used in the computation increases, the accuracy of the regional aver-
age temperature also increases and hence PSE decreases. When the number of
stations used is more than 15, the PSE is less than 12%. Thus, the smaller the
“Mean” PSE is, the better the scheme. From Table 1, we can see that the optimal
averaging scheme is consistently better than the arithmetic averaging scheme. The
deviation of PSE for the optimal averaging scheme is consistently smaller than that
for the arithmetic averaging scheme and hence the optimal averaging scheme can
provide more robust results. We also see that PSE and PSEyare about the same when
we have fewer stations (less than 7). When we have more stations, the formula (5)
tends to overestimate the sampling error (i.e., PSE; > PSE).

We stress that the parameters @; and d; (needed for the optimal averaging scheme)
are still those computed from the 23 stations even though we draw only p stations in
the Monte Carlo experiments. One needs reasonable covariance patterns in order to
use the optimal averaging scheme correctly, and these covariance patterns can only
be reasonably estimated by using sufficiently dense data. Please also see the discus-
sion in the next section.

5 Conclusion and discussion

The percentage sampling error in Table 1 shows the advantage of the optimal aver-
aging scheme over the arithmetic averaging scheme. It follows that the optimal aver-
aging scheme can achieve a more accurate regional average temperature. The
deviation of the sampling error of the optimal averaging scheme is also less than that
of the arithmetic averaging scheme. If the covariance pattern can be simulated more
accurately, there is still room for the enhancement of the accuracy of the regional
average by using the optimal averaging scheme. This is the rationale for using the
EOF expression of a covariance function:

p(r, 1) =D AWa(DWlr),

n=1
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where A, and s, are respectively the eigenvalues and eigenfunctions (EOFs) of the
covariance function p(r, r’). One can make use of the more recent observation data or
GCM output to generate A, and ¥s,, which are supposed to be robust over a period of
decades to a century. This philosophy was proposed in Shen et al. (1994) where EOFs
were computed from 40 recent years (1951-1990) of data (when data are dense and
more reliable) and the average was computed for 100 years (1890-1990) (when data
were sparse and not very reliable). It has attracted some attention for designing detec-
tion strategy. The combination of this philosophy and the idea of optimal regional
averaging is an interesting research topic and will be deferred to subsequent studies.

Non-stationarity is always a problem in the studies of climate time-series. So far,
there are no systematic statistical tools to deal with general non-stationary time-
series. The common practice is to regard the anomaly time-series as being approxi-
mately stationary after: (a) the removal of the seasonal cycle and the trend, and (b)
standardization. Since the trend in our data is small compared with the standard
deviation in a time interval of five or ten years, the presence of the trend does not
affect our computations based upon the stationarity property of the data and hence
we choose not to go through the detrending procedure described earlier in Section 2.

Another question arises regarding the difference between the present method and
the conventional objective analysis. As pointed out earlier in Section 3, the conven-
tional objective analysis assumes a single covariance function like that of Vinnikov
et al. (1990). It seems that the restriction of a single covariance function for the
entire region makes it impossible to include any inhomogeneity property and hence
forces the homogeneity assumption (Daley, 1991, pp. 109). If, assuming a single
covariance function for the entire region, it is possible to use the fitted covariance
function to interpolate the data onto some dense regular grid points and finally to
compute the average of the interpolated field (Daley, 1991, Section 4.2). It might be
an interesting project to develop a similar scheme when assuming N covariance
functions. While it is natural to believe that there should be more applications of the
present scheme of N covariance functions than that of a single covariance function
because the former accounts for certain inhomogeneity properties, it is hard to say
that the average obtained by the current method is necessarily better since for each
analysis one can assume different covariance patterns and come out with different
optimal averages even using the same scheme.

As for the computation, the algorithm for the optimal averaging scheme is more
complicated than that of the arithmetic averaging scheme. But considering the gain
from the optimal averaging scheme, this complication in computation, executed by
computers anyway, is certainly worthwhile.

After we completed the revision, Gandin pointed out that the MSE formula (5)
can be written in a simpler form (Gandin, 1993). Using Eqs (9) and (10), Eq. (5) can
be written as

1 . Yo
2 — o /Q dQ /Q a<y p(r, r’)—[zzlw,p(ri)+A. (29)




160 / Samuel S. Shen and Xiachun Wang

One can then compute the MSE €2 following the above formula instead of the pro-

cedure given by Eqs (25)-(27).
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