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On the limit of subcritical free-surface flow
over an obstruction
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Summary. In this note, through studying an asymptotically reduced equation which is a forced Korte-
weg-de Vries equation, an analytical expression of Forbes’ hydraulic fall solution is obtained. It is
pointed out that Forbes’ solution of a hydraulic fall over an obstruction is the limit of cnoidal wave
solutions as the upstream Froude number approaches a certain value less than one from below.

1 Introduection

Recently, Forbes [1] used the boundary integral method to solve an exact problem of the
Laplace equation with nonlinear boundary conditions, and found a hydraulic fall solution
over a semi-circle ohstruction for a subcritical upstream flow of a certain Froude number.
The solution indicates that the Froude number changes from subecritical upstream to
supercritical downstream. Hence, Forbes took the upstream Froude number as a part of
the solution.

Forbes and Schwartz [2] computed subcritical flows for the same model and found that
the free surface of the downstream flow consists of cnoidal waves. According to linear
theory (Lamb [3]), the downstream free surface is made of sinusoidal waves if the up-
stream subcritical Froude number is less than one, and such a model does not have a steady
state solution if the Froude number is equal to one. That cnoidal waves approach a solitary
wave (sinusoidal waves) in the limit as the period goes to infinity (zero respectively), is
wellknwon. However, the limit of the downstream cnoidal waves of Forbes and Schwartz is
not known yet.

Based upon the above facts, one must ask what the limiting case of suberitical fluid
flow over an obstruction as the Froude number increases is. Tt is this point that stimulates us
to write this note. Qur answer to this question, as the main result of this note, is: For a
given obstruction, there exists a limit of the subcritical upstream Froude number F; such
that the downstream flow consists of cnoidal waves, if —co < F < F;. For F = Fy, the
downstream flow is wave free and supercritical. Hence a hydraulic fall over the obstruc-
tion occurs as F = Fy.

Therefore, Forbes’ result [1] is the limit of the subcritical flows of Forbes and Schwartz
[2]. In the following, we will Justify this coneclusion.
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2 Perivation of the main results

Consider an ideal fluid flow passing an obstruction in a two-dimensional open channel
(Fig. 1). The governing equations are as follows:

u:.+v:* =0, (1)
g(u*u:, - v*u:\.) = —p:., (2)
. I * . .
oWy + v¥u,) = —Py — 0F; (3)

at the free surface y* = H -+ »*,

W, — v =0,  p*=0; (4)
at the bottom y* = h*(x*),

u*h:* —v* =0, (5)

where (u*, v*) is the velocity, p* is the pressure, p is the constant density, ¢ is the constant
gravitational acceleration. We introduce the following nondimensional variables:

(uy 'L') — (u*; 671/21;*)/1/5—771-) (I, I/‘ - (El/zr*i y*)/H’
p=p%legll), n=n*H, h—e*h*H,
e = (H/LE<1.

Here H and L are taken as vertical and horizontal scales respectively. Assume that u, v,
p and 7 possess asymptotic expansions of the form

¢ = @0 + e, + gy + - (6)

C
with uo =1, 2, =0, p, =1 — y, 5, = 0. Let the upstream Froude number F (: /—_:)
be VgH

F =1 {¢F,, F,< 0/ (subcritical). (7)

Then one can readily derive an equation for #, which is a forced stationary Korteweg-
de Vries equation as follows [4]:

3 1
Fipe — 5 Mz — T Nizzr = b2, x> T (8)
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with
mlx) = n'(x) =0 as xr =z, 9

where 4 is assumed to be of compact support with supp (k) = [x_, z.].
Definc a complete metric space

B ={f|feC{fx_,x]), ilfl| = max |f(x)] <M for some given positive constant M}.

r Zxr<r,

Forz. < x < x,, Egs. (8) and (9) can be converted into an integral equation

mx) = _]/——_lfil':‘:fsm V—SF, (x — 1) [% n3z) + 3/&(‘[)] dr. (10)

x-

By using the contraction map theorem in B, we can easily show that if F, satisfies

(3/(2Y=6F.)) 381 4 6 /M) (x, —2) <1 (11)
and
(9M /) =6F) (z. —x) < 1, (12)

then (10) has a solution in B. For given k and M, Eqs. (11) and (12) can always be satisfied
as long as |#,| is sufficiently large.

Having established existence of a solution to Egs. (8) and (9) from x_ to r,, we turn
to find the extension of the solution to [x,, co). This is equivalent to solving the following
initial value problem:

% (m? =Plp) — D, x> a, (13)
mlxy) =m* (14)
where

P(ny) =028, —n,), (15)
D = D(F,, h) = % [— 0% 4 6F,(7,") — 3(m,*)*], (16)

and 7,* and 7], are obtained from the solution of (10) at x = x,.

Tt is known that the above initial value problem has a cnoidal wave solution, a wave
free solution or an unbounded solution depending upon P(y,) = D(F,, h) having three
distinct roots, a double root, or only one real root [5]. One can readily show that P(y,) = D
has a double root for D 4= 0 if and only if F, = F; < 0 where

32
D(FL, k) = EFLB. (17)

32
Numerically we found that 0 > D(F,, h) > r F3if F, < Fz (cnoidal wave solution),
and D(F,, k) > 0if 0 = F, > F; (unbounded solution), for

hz) = { S (18)
0, 2] > 1
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with £ > 0. It is condition (17) that determines the hydraulic fall free surface of Forbes.

For a given R, we can find an Fj. Numerical results are shown in Fig. 2.
For F, < Fj, the solution to Eqgs. (13) and (14) can he expressed as

45, 4= 1 4=
() = 5 cos {f - 53 4 [cos ) — cos (0 — 5
X cn? (l/lf’1 (cos (9 + %) — cos8 ()) (x — xo))], x>, (19)

where
1 ) 7
h = T arccos [27D/(16F3) — 1}, 00 < 5 (20)

The phase shift 2, will be determined by (24). The period of the above cnoidal wave is

27 -1
T =2 “/F1 (cos (6 + —;—) - CO8 9)] K(&?) (21)

with
cos § — cos (0 + —?)
k2 = — L <1, (22)
27
cos f — cos (0 -+ _3—)
and
)
[Z dt
K(k?) = —_ 23
(%) J Vl—kzsinH (23)
0

In order to make (19) satisfy (14), the phase shift x, must satisfy

4F, 4n 1
7/‘1*:——? cos (0 + 5]~

2
+ (cos 0 — cos (6 + 43_7[)) cn? (l/F, (cos (6 + :);—C) — cos ()) (v, — xu))l. (24)
1Fyl
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There are two limiting cases:

(i) As F, — —o0, DiF* ~ 0, 8 ~ x/3, k* ~ 0, and K(k*) ~ K(0) - =/2. By (21), the
period 7' is 2.—:/‘/—61"1 which corresponds to sinusoidal wave.

(ii) As (17) holds, 0 — 0, &* = 1, and K(k?) = K(1) = oco. By (21), the period is 7" = oc,
which corresponds to the wave free solution of a hydraulic fall. This hydraulic fall can be
expressed by

‘ 3 —
(x) = 44&,3)(-1 ~ =sech? |/ 382 (r — .r,))). (25)

&

This is the analytical expression of Forbes’ hydraulic fall solution mentioned in the Sum-
mary.

By the way, we point out that a similar limit was analytically discovered by J. W, Miles
[6] for a case of very short obstruction (see [6, Eqys. 4.6a, b]). Mathematically, the assump-
tion of short obstruction in [6] is equivalent to 2(x) o d(x) in our case (see k. (8) of this
paper), where §(x) is the Dirac delta function. Hence the limit found in (6] may be considered
as a special case of our present paper.

Three typical free surface profiles for 2 = 1.0 and F, = —4.0 (sinusoidal wave),
F, = —1.4 (cnoidal wave), and ', — —1.291561 — &, (hydraulic fall) areshownin Fig. 3.
Ny
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oF J Fig. 3. Three typical solution profiles of Egs. (8) and
02F 4 (9) with A(x) defined by (18) for # = 1.0. The solution
- ] of the smallest amplitude corresponds to F, = —4.0.
-0.6F 3 This solution is a approximately sinusoidal wave whose
1.0F period can be computed from the formula 27 /1 —64,.
E CNOIDAL WAVESE The periodic solution of the larger amplitude is a ¢noi-
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