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ABSTRACT

This paper examines the sampling characteristics of combining data collected by several low-orbiting satellites
attempting to estimate the space-time average of rain rates. The several satellites can have different orbital and
swath-width parameters. The satellite overpasses are allowed to make partial coverage snapshots of the grid box
with each overpass. Such partial visits are considered in an approximate way, letting each intersection area
fraction of the grid box by a particular satellite swath be a random variable with mean and variance parameters
computed from exact orbit calculations. The derivation procedure is based upon the spectral minimum mean-
square error formalism introduced by North and Nakamoto. By using a simple parametric form for the space-
time spectral density, simple formulas are derived for a large number of examples, including the combination
of the Tropical Rainfall Measuring Mission with an operational sun-synchronous orbiter. The approximations
and results are discussed and directions for future research are summarized.

1. Introduction

Several satellite missions intended to measure rain-
fall are in the planning and execution phase. For ex-
ample, the Tropical Rainfall Measuring Mission
(TRMM) is an earth probe currently being developed
by the National Aeronautics and Space Administration
(NASA) and the Japanese space agency, NASDA (cf.
Simpson et al. 1988). Also under development is
the Earth Observing System (cf., e.g., Baker 1990). A
primary goal of these missions is the delivery of a space-
time-smoothed time series of rain rates, especially over
the tropical oceans. Typically, the duration of such a
time series should be years, the temporal smoothing
filter should be of the order of 1 month, and spatial
smoothing should be over nominal square grid boxes
of about 500 km on an edge. Since rain rates exhibit
such irregular statistical behavior, it is a formidable
problem to understand the logic of the error budget in
such measurement configurations. Since virtually all
feasible designs can only sample the field in the grid
box at intervals of several hours, one must try to un-
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derstand the magnitudes of the sampling errors and
their interaction with the inherent measurement errors
characteristic of the individual sensors. It is especially
interesting to contemplate the combination of data
from several satellites with differing orbital parameters
and therefore differing intrinsic error structures.

The problem is sufficiently confusing that simplified
treatments of the error problem that lead to “back of
the envelope” formulas can be very useful. North and
Nakamoto (1989, hereafter referred to as NN intro-
duced a technique to help sort out the important fea-
tures that contribute to the total error variance due to
a gappy sampling design. The method led to a formula
for the sampling-error variance that consisted of an
integral over the space—time spectrum of the rain-rate
field weighted by a filter that depends only on the sam-
pling design. In particular, they analyzed the cases of
a single satellite overpassing the grid box at regular
intervals making flush (100% coverage on each cross-
ing) visits and separately a regular array of point rain-
gages located at the surface. Other studies have been
performed using simulated flights over a real dataset
(McConnell and North 1987; Kedem et al. 1990),
computed overflights of simulations of the area-aver-
aged rain-rate field by an autoregressive process
(Laughlin 1981; Shin and North 1988), and flights
over a stochastic space-time rain field produced by a
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model tuned to tropical oceanic rain data (Bell 1987;
Bell et al. 1990).

North et al. (1991) have studied the possibility of
combining raingages with the satellite overpass data.
They found that this particular design combination has
some simplifying features that are reminiscent of the
estimation problem based upon statistically indepen-
dent measurements on a population. This finding for
obtaining an estimate in the present case where all data
are collected from a highly dependent sample base is
somewhat surprising at first glance. The orthogonality
principle found seems to apply to any gauges (discrete
points in space but continuous in time ) when combined
with snapshot data (continuous in space but gappy in
time ) such as that taken from satellite overpasses. The
rule allows the data to be combined after the fact,
weighting them inversely by the error variances that
would be obtained as if each subsystem were operating
alone.

The present paper augments the list of solved prob-
lems in this area by considering the case of multiple
satellites and allowing the individual satellites to make
realistic partial coverage visits at each overpass. The
aim remains to provide simple formulas that can lead
the planner to an approximate error analysis for this
class of configurations without having to resort to te-
dious computer intensive case-by-case simulations of
random rain-rate fields overflown by concurrent exactly
computed orbits. That a brute force approach is in-
convenient can be demonstrated by consideration of
the number of parameters that need to be varied in a
typical study: 1) satellite and instrument parameters—
inclination, altitude, instrument scanning swath width
for each satellite in the constellation; 2) grid-box pa-
rameters—box dimensions and latitude of box center;
and 3) rain-rate field parameters used in the simulation
algorithm—characteristic length and time scales, both
of which may be geographically and seasonally depen-
dent (cf. Bell 1987; North and Nakamoto 1989; Bell
et al. 1990).

The plan of the paper is to first review the North
and Nakamoto spectral formalism along with the def-
initions of terms. A simple example of a space-time
spectrum is introduced that is reasonably accurate and
extremely useful in obtaining approximate analytical
results. Before introducing the general case of multiple
satellites with partial coverage visits, we present two
simple special cases: two identical satellites with flush
visits and a single satellite with partial coverage visits.
Finally, the general problem is introduced, treating
multiple satellites with arbitrary attributes, including
the possibility that each makes only a partial coverage
visit on each overpass. The partial coverages are still
treated in this paper in an approximate way, weighting
each visit proportional to the fraction of the grid box’s
area intersected by the swath on each particular visit.
Comparisons of simulation studies have shown that
this is a good approximation to the much more labor-
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ious task of integrating the rain rate over each inter-
section by overpass (Shin and North 1988; Bell et al.
1990). As a further simplification to the exact calcu-
lation of each visit fraction as used by Shin and North
(1988), we take the visit fraction to be a random nurn-
ber drawn from a probability distribution characterized
by the satellite sensor attributes (orbit, swath, etc.). [n
the present paper, we take these random numbers to
be independent from one visit to another. In a future
paper, we intend 1o study the parametric form of the
distribution of visit fractions as a function of satellite
parameters. Simple and useful formulas are presented
at each stage, with tedious derivations abbrev1ated
when possible. ‘
An 1mp0rtant example frequently alluded to in the
paper is the combination of data from the TRMM sat-
ellite with that from a typical operational satellite such
as DMSP (Defense Meteorological Satellite Program)).
We will see that it is very beneficial to combine data
from the two satellites and that appreciable reduction
in error variance occurs if the two datasets are optimally
weighted. It does appear that the data can be collected
and converted to rain products separately and comi-
bined later to form monthly averages. ?;

2. Mean-square error !

The aim is to estimate the space-time average of a
field such as rain rate y(r, ¢). The true space- tlmu
average is denoted as

\I/——f d*rdt Y(r, 1), (1
where r is a point in the plane tangent to the surface
of the earth, ¢ is the time, B = D X [0, T'] is the space-
tfime box in the above integral, D = (—L/2, L/2)
X (—L/2, L/2)is the averaging grid box, and 7 is the
averaging period. Typically, L ~ 500 km and T

~ 1 month. A diagram is shown in Fig. 1.
Now consider an estimator of ¥ given by discrete

FiG. 1. Schematic illustration of the space-time volume
used in averaging the rain rate.
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visits consisting of area averaging at times ¢,, n
=1, « « -, N through the period T~

_ 1z L X(r, 1)
Vs = LzN,E fDd re v, (2)

where X(r, ¢,) is a function that is unity in the inter-
section of the satellite swath and the grid box and zero
outside the intersection (see Fig. 2) and u = 2 g,/N
1s introduced to make the estimate unbiased. The visit
Jraction g, is given by

1 2
gnszer(r;zn)~ (3)
A measure of the performance of a particular design
i1s the mean-square error for a particular volume D
X [0, T]. Consider then

5= ((¥ = ¥)*), (4)

where () denotes ensemble average. The mean-
square error is the average error squared after perform-
ing the experiment many times with the same space-
time process.

By inserting the Fourier transform of y(r, ¢) into
the error formula,

a=[ar[ @ne.nrsesn )
is obtained (see NN for more details), where fis fre-
quency (cycles per second, ¢ s™"), v = (v, ;) is wave-
number (cycles per meter,c m™'), H(», ) is a complex
valued function dependent only on the design, and
S(v, f) is the space-time spectral density of the rain-
rate field given by the triple Fourier transform of the
covariance lagged in space and time. Here

S(v, f)
- f dr f 4 s2p(x', 7) exp[~2mi(v- ¥ + f7)] (6)

and

olp(r', Ty = (Ur, DU —r, 1~ 1)), (7)
such that p(0, 0) = 1. It is here that the assumptions
of stationarity of the time series and homogeneity of
the spatial process have been invoked. In principle,
these assumptions can be relaxed by use of empirical
orthogonal functions or, equivalently, Karhunin-
Loéve functions (e.g., North et al. 1982), but the het-
erogencous cases are not considered here.

The formula for €% is noteworthy for two reasons:
1) it separates the factors concerning the rain field
(spectral density) from those of the design (the filter
function H) and 2) it tells us that the mean-square
error depends only on second-moment properties of
the rain field. The spectral density may be very difficult
to estimate for such a strangely behaved field as rain
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F1G. 2. Schematic illustrating the passages of a satellite swath over
slices of the space-time volume at equal intervals. The g, is the fraction
of the grid-box area intersected by the swath at the nth overpass.

rate, but nevertheless, the mean-square error as a per-
formance indicator does not depend on any higher
moments. This means that issues of non-Gaussian be-
havior of the rain-rate field do not enter (providing, of
course, that all relevant moments exist ). Of course, the
mean-square error may not be the appropriate indicator
of error depending upon how non-Gaussian the errors
are distributed and the application.

A spectral form for rain rates. In NN, North and
Nakamoto assumed that the stochastic rainfall process
Y(r, t) is governed by the following differential equa-
tion:

— NVARUr, 1) + W, ) = F(r, 1),

0
7o —-—‘“6'[’ 2 (8)

where 1 is an inherent time scale of the rainfall process
and A is an inherent length scale. These two scales are
sufficient to describe the rain field in this model. The
forcing function F(r, t) is a zero-mean noise process
in space and time but is cut off at some high wave-
number v, (the spectral density of F vanishes beyond
v.) to prevent divergences. The last considerations en-
sure that (y(r, ¢)) = 0, which means that the long-
term mean has been removed. Our model rain-rate
field has the unphysical property that even for large
mean values it can become negative. This is not con-
sidered to be a significant drawback in the present series
of applications. The rain-rate field is then essentially a
first-order continuous autoregressive process in time
and a special isotropic form of a second-order auto-
regressive process in space. One interpretation is that
rain rates are sporadically produced and destroyed by
the source term; they are damped away by the linear
term and diffused spatially by the V2 term.

The main reason for using this rain-field model is
that it is so easy to analyze spectrally. It is a pleasant
surprise that it is reasonably accurate in describing
GATE [GARP (Global Atmospheric Research Pro-
gram) Atlantic Tropical Experiment] data, which were
taken over the tropical Atlantic in the summer of 1974
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FiG. 3. Graph of the normalized error (¢) divided by the standard
deviation for grid-box-month averages ( o4} versus the gap between
visits Af, normalized by twice the intrinsic time scale of the rain field,
7o. For a typical low-orbiting satellite, such as TRMM or DMSP,
flying over tropical oceanic rain, the abscissa is 0.5 (Af =~ 12 h, 7¢
=12 h).

(Hudlow and Patterson 1977; for the comparison see
Nakamoto et al. 1990). It was shown by NN that

a
4r’7df% + (1 + 4n?\gv?)?”

Sy, f) = (9)

where o takes the value such that the integral of S(v,
f) over the cylinder {v = |v| < ».} X [~00, 0] is
equal to o2, the point variance.

North and Nakamoto (1989) studied the case D
= [0, L] X [0, L] for a single satellite returning at
regular intervals At and with g, = 1 (flush visits). Let
o’ be the variance of [, d’ry(r, t). The quantity ¢
is a convenient parameter to use instead of ¢, the point
variance, since the latter is often very large and hard
to measure. When L is sufficiently large (much larger
than \), the relation between the two quantities in
the above rain-field model is

[ 20[
L 2
Another convenient variance to refer to is the variance
of space-time volume averages, o57. This is the vari-
ance of grid-box-month averages of the exact rain rate.

It is also easily expressed in terms of the space~time
point variance, ¢2, and the variance of instantaneous

box averages, o3:
27
2 _ 2 0
OaT = UA(’YT .

Then North and Nakamoto’s method‘ leads to

2
2 _ ai2ro [ [ At At _
7 Nar [(270)"“]’(210 a2

At At '
= 627{{ | coth{—| - 1].
UAT[(zfo)co (270) 1]

(10)

= 2700';7'4.

(11)

(13)
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Here At = T/ N is the time interval between two s.ic-
cessive flights over the area D, and Nis the total num>er
of flights of the satellite over D in [0, T']. Time interval
At is called the satellite revisit interval. Hence, when
Atz ~ 0, then €2 — 0 as expected. The above form ila
is an approximation that is more accurate when both
T and N are larger, say 7 > 15 X 24 h and N > 30.
The ratio of € to 647 is a measure of the sampl.ng
error to the standard deviation of grid-box-month av-
erages as taken in the simple rain-field model. Figure
3 shows the dependence of this index on the visit in-
terval in units of 27o. For a low-orbiting satellite, ihe
normalized visit interval is about 0.5; hence, the npr-
malized error is about 0.25. One can also ask about
the portion of the measured variance that is accounted
for by sampling error. As is shown in Fig. 4, the portion
accounted for by the sampling error is only about 7%.
If the abscissa is reduced to 0.25 (roughly equivalent
to a pair of satellites with optimal phasing, that is, with
visits every 6 h), the portion of unexplained variance
can be reduced to only about 3%. In both cases it must
be borne in mind that the computation of ¢37 pre-
sented here does not include such low-frequency phe-
nomena as El Nifio, the inclusion of which could easily
enlarge our value of the natural variability and make
our satellite estimates even better when referred to this
index. ‘
There are further useful approximations of formula
(13) for cases of rare and frequent satellite visits. If the
visits are very rare (say At/2ry > 3.5), notice that
coth(3) = 1.0049 and coth(x) = 1 as x = 0. There-

fore, we have
2= g—é 1 - g—T—O .
N At

In this case, we have the estimate of a mean by a fixed
number of independent drawings N. The samples
drawn are not independent and hence the effective
number of independent drawings is reduced by the fac-
tor in brackets. Otherwise the formula looks like th2

(14)

20+

0 02 0.4 0.6 0.8 1
NORMED VISIT INTERVAL

FI1G. 4. Percentage of variance of a time series of month averages
due to sampling error for a single satellite making flush visits. The
calculation is based upon results of Fig. 3.
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usual standard-error formula familiar from elementary
statistics.

If the visits are very frequent (say Az/27 < 2), using
the Taylor expansion (not the Laurent expansion usu-
ally listed in mathematical handbooks) of coth( At/
2714), we have

2o 1o3 At 1 (Az)2 5

12 (13)

T T — | oar.
To
The conditions of the last case often hold in practical
cases of low-altitude earth-orbiting satellites flying over
tropical oceanic rain. For derivation details of the above
formulas (9)-(12), the reader is referred to NN. The
exact summation form of (12) (which replaces 72 by
6) was not given in NN, in which only the first term
of the expression was retained.

These formulas can also be used for two identical
satellites whose visits are spaced at equal intervals
(phase difference is one-half period) by considering N
as the total number of visits by both satellites and Af
as the interval between successive visits. The formula
for I satellites returning at equal intervals for a given
T can also be used. Consider, for example, I identical
sun-synchronous satellites, equally phased, and for a
grid box at the equator with tropical oceanic rain char-
acteristics [see NN: 79 ~ 12 hand At = (12 h)/I, T
= 1 month]; finally, the variance of area-average rain
rate o, is about equal to the mean rain rate u, (Shin
and North 1988). The sampling error as percentage of
the mean is 5.3%/ V1. 1t must be kept in mind that the
assumption of flush visits has been used and relaxation
of this assumption will enlarge the error considerably
as will be shown in subsequent sections.

3. Two simple special cases

This section is primarily a preparation for the next
section. Here two simple special cases are considered
before the complicated general situation described in
section 4 is reached.

a. Two identical satellites with flush visits

Consider the measurement of the same rain field in
the space~time box D = [—L/2, L/2] X [—-L/2, L/
21 X [~T/2, T/2] in section 2. Instead of using one
satellite, two satellites that have the same orbital attri-
butes are used. Both of them make flush visits to the
square [—L/2, L/21X[—L/2,L/2]. Hence, from the
sampling viewpoint, the two satellites are identical and
fly on the same orbits. The distinction between the
satellites visits to a given grid box is the phase separation
between their periodic overpasses. Because of nonzero
Tp, the information in the rain field at a time is cor-
related to that at another close time. Visits that are
bunched too close together will tend to be redundant,
while too sparse visits will miss important variations.
On this basis we conclude that the least sampling error

ET AL. 403

is realized when the phase lag between the satellites is
adjusted for equally separated visits. This section will
show how important this effect is.

Next the error estimation formula is derived for two
identical satellites with an arbitrary phase separation.
Let ¥, and ¥, be the unbiased estimators of the space—
time volume average based upon the discrete samplings
of the first satellite and the second satellite, respectively.
Then

L S I :
¥, = LZTfDd Y delK,(z)\lx(r, 1), (16)
where
N—1 T
Ki(t)= At 2 6[—— 5 +t—(n+ Oi)AlJ (17)
n=0

and i = 1, 2. Here 6;At, i = 1, 2 are the phase lags. Let
6, =0, 0, =0 and 0 < 6§ < 1. The unbiased linear
estimator from the combined data of the two satellites
1s

Vo=V +ay¥,, 0<qa, ar<l,
a;t+ay=1. (18)
The mean-square error is then
e = (¥ —-¥)*
= {[(ar + o) ¥ — ¥, — ¥, 1%)
= {{o (¥ = ¥y) + (¥ — ¥,)]*)
= ajel + ajes + 2aia605. (19)

In the above, ¢?, i = 1, 2 are the mean-square errors
of a single-satellite sampling as studied in section 2.
Term ¢, is the interference term that depends on the
phase lag. One can derive [assuming (15)] that

(¥ =¥ (¥ - ¥2))

I

€12

cos(2nw0)
1+ 4n2rd(n/At)?

I

oiT 2

n#0

(20)

Of course, it is easy to show that for identical satellites,
a;2 = 0.5 independent of 6.

Figure 5 shows a graph of the error (normalized by
the standard deviation of grid-box-month averages,
o 47) as a function of the phase separation 6 for typical
values of the parameters for tropical rain (Ar = 12 h,
0= 12h, T=30days, L > Ao =~ 40 km). As expected,
the error is least when the satellites have equal phasing
(6 = 0.5).

A satellite such as TRMM only makes equal interval
visits to grid boxes along the equator. At other latitudes,
the visits are such that ascending overpasses are at pe-
riods of about 24 h and descending overpasses are at
intervals of about 24 h, but the two have a phase re-
lationship that ranges from equal interval at the equator
to redundancy at the turning point (35°). Actually,
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FI1G. 5. Normalized error ( ¢/ ¢.47) versus normalized phase lag for
two identical satellites making flush visits. The least error occurs
when the satellites are equally spaced in time (8 = 0.5). The largest
error occurs when the phase is zero or unity when the two satellites
are redundant.

TRMM may make several crossings of a grid box near
its turning point within a few hours of each other. Our
approximations no doubt break down near these pe-
culiar zones. The previous formula can be used, pre-
tending that TRMM is two satellites each with a period
of 24 h. Figure 5 shows the error (again normalized
by the volume standard deviation ¢47) that might be
expected for tropical oceanic rain for two satellites with
periods of 24 h making flush visits but with a phase
difference 4; 0 < 6 < 1. For TRMM, the equator cor-
responds to # = 0.5 and the turning point corresponds
to 8 = 0, 1. Of course, these calculations have been
made for flush visits. The strong latitude dependence
of the fractional coverage will tend to reduce the lati-
tude dependence shown in Fig. 5 (Shin and North
1989; Bell et al. 1990).

b. Single satellite with partial-coverage visits

Shin and North ( 1988) considered the grid-box-av-
eraged rain-rate field as a univariate time series in their
calculations of sampling error. Partial coverage visits
to the grid box were taken into account by weighting
a visit by the fraction g, of the box intersected by the
swath on the nth visit (Fig. 2). In their study, they
calculated the sequence g, (n =0, 1, - N—1)from
exact orbit calculations. Unfortunately, the computa-
tion of exact visit fractions is tedious and must be re-
peated for each set of orbit and grid-box parameters.
Here we continue to make the approximation of
weighting the visit by g, but instead of computing the
sequence explicitly, the g, is modeled as random vari-
ables with first and second moments computed from
the exact orbital calculations. This procedure simplifies
the formulation and brings out the important depen-
dences. Unfortunately, an additional approximation is
necessarily introduced that the wvisit fractions are sta-
tistically independent from one visit to another. A later
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study will address the issue of just how good an ap-
proximation the weighting by fraction and their cor-
responding statistical independence really is in these
computations. In its defense we point to the favorable
comparison of the Shin and North calculations with
those of Bell et al. (1990), which were performed with-
out use of the visit fraction'approximation.

The linear extimator of the space-time box average
of the rain rate is given by (2). Since the evaluation of
(2) s extremely complicated as we go through a'se-
quence of visits, we adopt here the simple rule that it
may be approximated by

k

1 Yg, »
Vs~ oy 2 gfw(r wdx, (2

L

where g,, the visit fraction, is defined by (3) and 4 is
its average value. This is of course the approximation
used by Shin and North (1989), but here we go a step
further and take the g, to be a sequence of independent -
identically distributed random variables whose mo-
ments depend only on orbit-swath—footprint geometi-y.
This will be very convenient since in the final formulas
the only properties of the g, will be their mean and
variance, which depend on the averaging box, the sat-
ellite orbit, and the swath width. Several rather drasl ic
assumptions have been made here and we need ‘to
be careful about their implications. First, the md1v1dqal
intersections are smaller than the entire box, and arza
rain-rate averages for such intersections will have larger
variances than for the entire box. Second, the intér-
sections will have shorter autocorrelation times than
for the entire box. Each of these will lead to estimatzs
of the sampling error that are smaller than the actual
sampling error. While an exact analysis is complicated

E/SIGMA
o o
» o

0 —
0 02

04 06 08 1

NORMALIZED PHASE LAG

FIG. 6. Same as Fig. 4 except that the revisit period is twice as
large. This graph applies when one considers a single satellite but the:
ascending and descending nodes (each with revisit period 24 h) sep-
arately. These crossings are equally spaced when the grid box is locatec.
at the equator but shift their phase toward zero as the turning poini:
of the orbit (35°N for TRMM) is approached. The graph is for flust;
visits. Inclusion of fractional visit effects will tend to compensate for
the latitude dependence. - ¥
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and breaks the spirit of our present endeavor, it is im-
portant to carry out and will be done at a later time.
It 1s comforting to note that the calculations of Shin
and North (1989) agree well with the simulations of
Bell et al. (1990), which computed these forms more
exactly:

1
Vs = Z_Z?J\D d’r J.T dtK(1; 8o, + * +, En—1 1¥(x, 1).
(22)
The function K(1) is defined by
K(t; 8o, * '5gN—~l)
N—-1
=ArS ‘&5(—I+z—nm). (23)
n=0 M 2

In what follows, g, is taken to be a random variable.
Let u, denote its expectation value, which is assumed
to be independent of #.

Following the steps in NN, one can derive

= (¥ - ¥)%)

= [ @ [ arsen 16200601y 62 (T

XB(f;g()’ ".:gN—])s (24)
where
B(f; 8, ** . gn-1)
280 Yo,
=] - —— = Cos 2n— DAt - T
AN 1 guga .
(—7:) U mio 2 exp[2wifim — n)At].
(25)
Here the function G(x) is defined by
Glx) = sin{mwx) ‘ (26)
X

We assume gy, g1, * * *, gv-1 to be N independent
and identically distributed random variables. Let P,(g,)
be the PDF (probability distribution function) of g,,
n=0,1, -+, N— 1. Then the multivariate PDF for

{go, "+, 8N} s
N-1
P({go, * - an1}) =[] Pelgn). (27)
n=0
Let
Bg = f dgngnPy(gy) (first moment), (28)
v2 =fdgng§Pg(gn) (second moment), (29)
o = v5— 2 (variance of g,). (30)
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Following NN and carrying out some tedious alge-
braic manipulations, one can obtain

N—1
E?=1]] fdgnez(go, s, gn-1)P(go, v v, 8Nar)
n=0

_oaf 2 xt 2
N At p? o et — |
2 2 (At/ro)(l—N)_l
——"—;‘i[l ¢ - } (31)
N 1 — e”tm0

After neglecting the O(1/N?) term, the above for-
mula can be rearranged as

At At ol At
E?=o%{[—|coth{— | — 1+ 22—, (32
UAT[(2TO) cot <7~To) pz 270} (32)

This formula clearly indicates that the sampling-error
variance due to the fractional visit sampling may be
decomposed into two parts. One part is purely due to
the time gap between flush visits. The other part is an
additional sampling-error variance due to the fact that
the visits cover variable fractions of the grid box.

We note that a deficiency of our approximate for-
mula is apparent when o, is small, namely, the portion
of the error variance due to fractional visits approaches
0 even though p,is less than 1. This means that visiting
exactly one-half the box on each visit is as good as
visiting the whole box—clearly a shortcoming of our
simple weighting approximation. This error comes
about because we used the large-grid-box approxima-
tion earlier and even applied it to the fractional visit.
Hence, implicit in the formulation is the assumption
that the fractional visit areas are much larger than
A3, where Ao is the inherent length scale in the rain-
rate fieid.

Now we return to the case of / identical sun-syn-
chronous satellites as at the end of section 2, only
this time the fractional-visit term is allowed to enter.
Using the same data as in that case along with o3
~ 0.50 pz, we find

053)* + 0.00427"/
percentage error ~ 100[(0 053) I 0-00 ] (33)

10.5%
=7 (34)

Two interesting numerical examples follow.

1) The TRMM satellite with altitude 350 km, in-
clination 35°, nominal swath width 600 km: for grid
boxes along the equator of dimension 500 km, pu,
= 0.439 and ¢Z = 0.112 are found from orbit calcula-
tions. We are led to erpmm/ 04 ~ 0.112, which corre-
sponds to an error of about 11.2%, since o4 ~ u, for
a 500-km box over the tropical oceans (Shin and North
1988).
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2) The Special Sensor Microwave/Image SSM /I on
board the DMSP (sun-synchronous) satellite with al-
titude 800 km, inclination 98.6°, swath width 1400
km: for the same grid boxes as above orbit computa-
tions show, u, = 0.671 and ¢ = 0.132. In this case we
find epmsp/ 04 ~ 0.0876, which corresponds to an error
of about 8.76%. The higher altitude with its wider swath
width for the sun-synchronous orbiter leads to a some-
what smaller sampling error than for TRMM.

Later the question of how the data can be combined
with optimal weighting is considered.

4. Combining data from I satellites

In this section, we approach the complicated prob-
lem of I satellites each with its own orbit characteristics.
Since the computations are complicated, they are pre-
sented in the Appendix. Here we present the notation
and define the problem. The treatment will make use
of the approximation scheme introduced earlier for
fractional visits.

a. Notations and the general formulation

The area we are interested in is D = [0, L]
X [0, L]. The number of satellites flying over D to
sample the rain field Y(r, ), r € D, and t € [0, T] is
1. Each time a satellite visits D, it takes an area average
over the intersection of the swath width and the grid
box D. The percentage of the coverage of the area D
at the nth visit of the satellite (i) is denoted by g{”.
The following notations are adopted:

T: total sampling time;

D={0,L]X[0,L]: sampling area;

N;: number of visits of satellite
(i) over D during [0, T1,

At = T/N;: sampling interval (also

called the revisit period)
of satellite (7);

0;: the phase lag of satellite (1)
measured as a fraction of
At

sampling time for satellite
(1) at its nth visit;

sample estimate of the vol-
ume average for satellite
(i)in [0, T1;

combined sampling average
of all the 7 satellites in [0,
T];

random percentage of the
area D for satellite (i) to
cover at its nth visit [0
< gP < 1]; and

W . space-time average of the

random field Y(r, ¢) in
the box D X [0, T7].

1= (n—Y—0)M7,
(f)‘l/Z <f; <V
\I,S :

‘I’S:

gy
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In the above list, n = 1,2,3, -+, N;;i=1,2,3,
- » «, I. In our computations a choice was made about
how to compute N; for satellite i. One possibility is to
take an overpass to occur at approximately every 100
min, in which case N, is very large and most of the g,
are zero. Another choice is to make T/N; close to
12 h, and when there are multiple visits in one 12-h
period, the individual g, are added and they are lumped
into a single visit. This latter leads to a sequence of g,
that is mostly nonzero and therefore easier to deal with.
Hence, the latter method was chosen in our numer..cal
presentations. . l

As shown in the Appendix, the result for the mean-
square error (taken over the ensemble of realizations
of the field and over the ensemble of fractional visits)
for the I nonidentical satellite combination is given by
the sum ‘

1 : .
E*=3 alE} + 2 2a;0;Ey, (35)

i=1 i !

|

I
where E? is the mean-square error for satellite i as
though it were acting alone, a = (ay, * * -+, o) f> a
weight vector such that 2 { o; = 1,'and E;; are cross or
interference terms. The cross terms are a measure of
the statistical interdependence of the different satellite
measurement subsystéems. As formulated, the unit sum
of the a; keep the estimate from being biased; however,
consistent with this constraint, a choice for them can
be made so as to minimize the mean-square error, as
will be discussed in the next section. The general for-
mulas for the mean-square error for I nonidentical sat-
ellites are presented in the Appendix under the as-

sumptions mentioned above.

b. Optimal weights

The problem of optimal weighting can be solved by
minimizing the last formula for D?( ) with respect to
each «; subject to the constraint, 2 «; = 1. First, con-
sider the problem for two satellites and suppose the
values of E?, E3, and E,, have been computed. The
total error variance is given by

EZ(O(I, az) = C\{%E% + 2a1a2E12 + (X%E% (36)

subject to
(37)

The last equation may be solved for a, and substituted
in the equation just previous to find a function only
of o}, which may be minimized by setting the derivative
of E*(a;) to zero and solving the result for the o,
which achieves the minimum in E?:

o +ay =1, a1,2>0.

(best) — E% - EIZ
E}—-2E,+ E%’

oy

(38)
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which leads to the other coefhicient
E?—-E
(best) 1 12
a = 39
2 E?-2E, + E} (39)

Note that when E|, = 0, we get the familiar result that
independent measurements lead to weights that are in-
versely proportional to the error variances «; o
1/E? that would have been obtained had the mea-
surements been done singly.

Now turn to the general case of I satellites with in-
dividual error variances E£? and cross (interference)
terms Ej; as indicated in (35). Treat the constraints

I
Za,:l

i=1

(40)

by the method of Lagrange multipliers (Arfken 1985).
That is, minimize

z a,-E,Z +2 Z a,—og—)\(z [¢ T 1)

i#f

(41)

with respect to the «; and the Lagrange multiplier A.
The first set of derivatives set to zero leads to
2 Mya; = M,

J

(42)

where ;= 1,i=1, » + -, I. The above set of ] equations
is to be solved for o with the parameter A chosen so
that the constraint is ultimately satisfied. This is easily
and uniquely accomplished by finding the inverse of
the symmetric matrix M;.

There are other potentially useful optimal weighting
schemes, which will be explored in a later paper. For
example, one might consider a weight «; , for the ith
satellite on its #th pass.

5. Weights for the TRMM-DMSP combination

As a very practical example we now consider the
case of data from the TRMM satellite combined with
that of a sun-synchronous satellite such as the micro-

0.03
0.02
0.01
0 //\ Hours
-0.01 \/

114 11.5 116 1.7 11.8 11.9

F1G. 7. The normalized interference term e,/ o%7) in the error
variance for the combined TRMM and DMSP datasets. The nominal
TRMM period is 11.50 h. Note that the magnitude of this term is
below 0.02 in the range of interest.
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FiG. 8. Normalized error (e2/a%7) versus weight given to the
TRMM data in combination with the DMSP data (whose weight is
I — atrmm). Shown are graphs for the interference term above and
below expected limits (cf. Fig. 7). It is clear that the choice of op-
timum aqrmm is hardly affected by the value of ¢),. It is also clear
that adding the DMSP data is beneficial, but the exact choice of
weighting (£0.2) is not critical to the reduction of error.

wave radiometer on the DMSP satellite. In a previous
section, TRMM and DMSP were shown to separately
have sampling errors of 11.2% and 8.76%, respectively.
A major difference between the satellite orbits is their
period of revisit to a box. For DMSP, this is 12.0 h
since it is sun-synchronous. For TRMM at the equator,
this period is about 11.75 h, which allows cycling
through the local clock in 24 days. Hence, in the sev-
eral-satellite formalism given above, (At)pmsp = 12.00
and (Af)rrmm = 11.75, which leads to T = 720 h, Np
= 60, Ny = 61.28, and r = 0.0213. Figure 7 shows
the (normalized ) interference term E;,/ %7 as a func-
tion of the TRMM period (At)trmmMm- It is found that
in the range of interest, | E;»/o%7| < 0.01, whereas
E%RMM/G%T ~ 0.372 and NEZDMSP/O'%T ~ 0.228. Flg-
ure 8 shows the combined error as a function of armMm-
The graph clearly shows the importance of including
the DMSP data (error reduced by about one-third).
On the other hand, the error is insensitive to the exact
value of arrmm chosen. Figure 8 actually shows two
curves that bracket the effect of the interference term.
The upper curve is for the normalized interference term
equal to 0.02 and the lower curve is for the value —0.02,
both of which are larger in magnitude than the size of
the interference term as shown in Fig. 7. Again, the
effect on our choice of optimal argmy is slight. In fact,
the error is hardly affected by the interference term.
This near-statistical orthogonality (null interference)
is reminiscent of the result found when data from point
gauges are combined with satellite overpass data (North
et al. 1991).

6. Concluding remarks

In this paper, we have presented a framework for
the approximate assessment of the random sampling
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errors incurred in estimating space-time-averaged
rain rates based upon aggregation of data from several
low earth-orbiting satellites. We have crudely included
the effects of partial coverage visits in a way that leads
to relatively simple formulas that can be used in pre-
liminary decision making. In our approximate for-
mulas the partial visit terms tend to roughly double
the error in cases of interest. As a pedagogical intro-
duction, we illustrated our procedure for a system of
two satellites making flush visits and for a single satellite
making fractional visits to a grid box. Several useful /-
satellite results can be found when the symmetry of
the orbits is high.

For a system of [ satellites with different individual
orbital attributes, we find that the total error variance
can be written as a sum of the individual error variances
plus interference terms contributed from all combi-
nations of pairs of subsystems. After presenting the
general formulas, we presented explicit numerical re-
sults for the TRMM satellite combined with a typical
sun-synchronous partner. The results of these prelim-
inary calculations show that it is definitely worthwhile
to include data from the second orbiter since it roughly
halves the sampling error. It is also worthwhile to op-
timally weight the two datasets approximately inversely
to their individual error variances. The error of the
combined dataset is insensitive to including the small
interference term between these two systems.

We note that this is hardly “‘the end of the story” in
combining satellite data for an optimally estimated
time series of space-time-smoothed rain rates. There
are a number of biases connected with individual sen-
sors that have yet to be reckoned with. These are ques-
tions of the diurnal cycle and how it can be extracted
from the two-satellite-combined data. Complicating
this last are the so-called 40-50 waves prevalent in
tropical wave data. These will alias the diurnal cycle
and vice versa. In future papers, we intend to answer
some of these questions with improved ideas and more
satisfactory models.
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APPENDIX
The Case of I Satellites

This appendix is the continuation of the discussion
in section 4a, where notation was established. Let
P{g"},-1] be the pdf (probability distribution
function) of the ith random sequence {g{”}3,. The
first and the second moments of the sequence are de-
fined as

1
wo = [ agor g0 an
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and
(vi")? = J: dgi’{P( g1} (A2)
forn=1,2,+++,N;andi= 1,2 +, I. The sampling

average of the ith satellite is

1

v =
ST

f d*rdny(x, 1)Ki(1), (A3)
DX[0,T]
where

() )
E g?,, — "),

ll’l_

K1) = (A4)

Here 6( ) is the Dirac delta function. The combmed
sampling average of all the I satellites is |

! :
‘I/S=Za‘11(') O0<a;<1 and Za,-=1.%
i=1 i=1 i

(:AS)
The true average of the rain field is i
1 I

V= f d’rdey(r, ). A6
TL? DX[0,T] rty(r, 1) ({ )

We wish to find the ensemble average of (¥ — ¥¢)?,
which will serve as a measure of the quality of the par-
ticular design under our consideration:

i

=<(\Il—\IfS) > ‘ (A7)
Then
1
€2 = "L4—T2 ff dzrdt<¢(r, HY(r’, t')>
X [1 = K()][1 — K(t)], (A8)
where
I
K(t) = 2 aiKi(2). (A9)

i=1

Note that {p(r, t), S(», f)} are a Fourier transfor-
mation pair. Hence,

p(r, t) = ff d*vdfS(v, f) exp[ =2wi(v-1r + fD)].

(A10)

With the above information, the following can be
derived:

26,2 + z Zaiaje,»j. (A] 1)

i=1 i#f
Here

F=([¥-¥12), i=1,2---,1, (Al2)
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and
6 = (¥ — w9V -

i#J,

v,
i,j=1,2,-+-+,1. (Al3)

Statistically we are interested in the expectation value
of €2, which by definition is

ff fdg(l”dg“’ < dgl

1
cdgD T] Pie

-dg\"dgy - - (A14)
i=1
This is rewritten into
1
E*=3 «?E? + > 200, F;;, (A15)
i=1 i+
where
E? —f fdgﬁ”dg‘” dg\) P (A16)
and
E;= f f dgi’dgy’ - - - dgi) dg\"dg¥’
< dgW PiPiey. (A1)

a. Evaluation of E?

Following the steps in section 2 for single satellite,
one can derive the following:

E? = g2 ff d*vdfS(v, f)G*(v, LYG* (v, L)G*(fT)

x [ dgde - -dgk) BL{g" e ]

X Pi[{g}01]. (A18)
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Here v = (»,, »2), and
NI

Bi[{g}h: T6UD)

laf]—-l_

cos{vrf[(Zn — DAY - T3}

oot expl2af(m — n)AtD]. (A19)
AT

The function G(x) is defined in section (b), and p'?
is the average fraction of the satellite i. And in this
section, it is also assumed that

6;=0, i=12,---,1.
Noticing that

(A20)

G(Lx) > % 6(x), as

we can derive that
) (H (H (H\2
.04 To A[ th Al —1l+ (_7_
N Al(l) 2 T0 270 [J(l)
(A22)

after dropping a term of O(1/N?). The quantity
[ 6?12 is the variance of the fractions over all the visits
and is equal to [y ?}% — [u?]2. Note that in the limit
of very wide swath widths, the fractions wilil always be
flush (100%) and u'” — 1 and o) — 0, which leads
us to the formula already derived:

(i) ()
gﬁ{l—c h[Al } 1].(A23)

L—>ow, (A21)

E?

E?(flush) =
( T 2 T0 270

This agrees with the formula (32).
b. Evaluation of E;

Next consider the cross term E;; when i # j. By (A17)
and (A13)-(A13), one can derive the following:

Ej=o f dvdfS(v. /)G <»1L>GZ<VZL>GZ<fT>f dgi’dgy’ - - - dgl) dg\'dg? - - - dgh])

X Byl {gP}ni, {g9

where

By[{g:”} 7, {8910 1= {1 = At exp(— me)/TG(fT)Z

L S1Pl{ g1 P {1 k], (A24)
g(i)
MO exp[27ifiP1}
_ N gl A
X (1= MV exp(rif T/ TG(T) X, $5 expl =21}, (A25)
n=1
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Since p{? = p and ¥’ = vV for every n, (24)
can be written into
G*(fT)

= 2re0? |
Ey “”f”wmwmwM»

% (G = D(G(AY) — 1)
(1 + 4x%r 3 f 2) )
Next examine the integration kernel (also called the
filter)

G*UT){GLAY] — 1{GLar] - 1}

GL/A DG /) ’
when N;, N;, and T are sufficiently large. As mentioned
before, when it is stated that N;, N;, and T are suffi-
ciently large, typically it is required that N;, N; = 30,
and 7" =15 days. Without loss of generality, assume
AtV = A1 Let Ay= AtY/ At So Ay = 1. Consider
the case that

(A26)

(A27)

A,j = k,‘j + Tijs (A28)

k;; positive integer and r; rational in (0, 1).
One can easily show (see Fig. 3) that
sin(NwAtf) 1 _
i S e L —1yW-Dngf_
Nsin(marf) ~ Nag > DT = n/a0
when N = 0. (A29)
Notice that
G(fT) _ sin[NwAtDf]
G(fAtY)  N;sin[rAtDf]
and that N; = N, since A; = ArY/Ar” = | and
N;AtY = N;AtY =~ T. Therefore, G(fT)/G[fAt?]
is a faster delta-convergent sequence than G(f7)/
G[fAtY]. Further, notice that
G(0x0)=1, and G(n)~0 and

G(nA;) ~0 when n>0.

(A30)

(A31)
Finally, the following approximation is given:
G*(ST){GLAr"] = 13{GL/AV] — 1}
G[fAt(i)]G[fAt(j)]
1 (—1)Y*Dn sin(N;nry«)
T N; sin(nrym)

n#0

n

X 8| f— m . (A32)

Here when nr; becomes an integer, the expression

sin(Njnr;m)/[N; sin(nryw)] is defined by (—1)*. This
approximation and by (A26) immediately gives

z (_1)(k,~j+l)n

n+0

27’00’3;

T

E = sin(N;nr;m)
v N; sin(nr )

1
X - .
1+ 4x273(n/ At'D)?

(A33)
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When r; — 0, one can verify that E; - E? = E7,
If there are only two satellites (/) and (j), then
a; = a; = 0.5. Hence, E? = a?E? + a}E} + 2a,0,E;
= E? = E7. This is the case that the satellite (i) and
the satellite (j) are doing the identical sampling. This
scheme certainly cannot reduce the sampling error and
the second satellite is redundant.

The formula for the total sampling error can be cb-
tained by combining (A15), (A22), and (A33):

; n . .
2700% [ At AZ(')
E2 - 12 0”4 th
() =2 « < o co - -1

i=1

2 (H712 2 )
ogilo 47p0 \
+¢Pﬂ>+0AZm%2hmwmx

i LM T [ n#0 l

sin(N;nryw)
N;sin(nrym){1 + 4x?r§[n/ ArD)?}° »

where a = (ay, -+ -, ;) is the vector of weights ¢s-
sociated with each satellite. :
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