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Estimation of the Global Mean
Temperature with Point Gauges

Gerald R. North!, Samuel S. Shen? and James W. Hardin®

ABSTRACT

This paper considers the mean squared error (MSE) incurred in esti-
mating an idealized earth’s global average temperature with a finite number
of point gauges located in a specified or stochastic way over the globe. For a
class of model earths with rotationally invariant statistics, the MSE formula
can be cast into the form of a summation over spherical harmonic indices.
The summand factors into a part which depends on the design of the gauge
network and a second part which is the degree variance spectrum of the
surface temperature field. After presenting this formalism, we provide an
example spectrum for the surface temperature field derived from a simple
two parameter stochastic climate model defined on the sphere. An exam-
ple calculation is given for the case of N gauges randomly arranged on the
sphere. In addition, the sampling error is computed for some simple regular
arrays of gauges as illustrative examples.

KEY worDS: Global mean temperature; surface temperature field; spherical
harmonics.

1. INTRODUCTION

Several groups around the world are attempting to estimate the trend in
the apparently increasing global average temperature (cf. Hansen and Lebe-
deff 1987; Jones et al. 1986a and 1986b; Houghton et al. 1990), since it is
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now recognized that the increasing concentrations of certain trace gases have
the potential to drive the temperature to even higher levels (Houghton et al.
1990). There are three main thrusts of physical science research concerning
the so-called greenhouse effect: Estimation of the trends in the earth’s cli-
mate based upon observations over the last century; Estimation of the trends
in the greenhouse gases according to past observational data and future lev-
els based upon assumed greenhouse gas emission scenarios; Formulation and
study of climate models which simulate and forecast the trends.

In this paper we focus on a very small portion of the first of these prob-
lems: for an idealized fluctuation field on the sphere with a given network
of isolated unbiased point gauges, what is the expected mean squared er-
ror in the estimation of the global average value of the temperature field?
The problem lies in the fact that the gauges are separated by finite spatial
distances and that these spatial gaps lead to an inevitable ‘sampling error’.
Complicating the problem is the fact that the field has correlations from one
point on the sphere to another and that these correlations depend on the
length of temporal averaging employed. We do not intend to present the
final analysis of this problem here, but rather explore some simplified mod-
els of the procedure, both the field and the measurement design, in order to
better understand the estimation issue.

Our attention is focused on an idealized planet whose surface tempera-
ture fluctuation statistics are rotationally invariant on the sphere (the analog
of stationarity in time series analysis); we also discuss the limits in which
such an analog is faithful. For a given temporal smoothing filter, only one
function is necessary to specify such a field: the spatial autocorrelation func-
tion or equivalently, the spherical harmonic variance spectrum. We will for-
mulate the mean squared error (MSE) for the problem as a sum over the
spherical harmonic indices of a factor dependent only on the sampling design
and another factor which is the spherical harmonic variance spectrum. The
technique is the spherical version of a planar one employed in the analysis of
area average rain rate estimation designs by North and Nakamoto (1989). A
simple stochastic model of the temperature field will be developed which is
useful as a guide in the problem. Finally, a few examples will be presented
which give a feeling for the magnitude of error to be expected in some typical
designs. The problem will then be cast into the perspective of taking the
earth’s average surface temperature within a specified tolerance.

2. THE GLOBAL AVERAGE TEMPERATURE

Let the temperature be designated by ©(#,t) at the point 7, a unit
vector pointing from the sphere’s center to the point in question, and at
time f. We assume that the random temperature field is homogeneous and
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stationary. This assumption amounts to

(0(#, 1), 0(', 1)) = app(R - A, T) (1)

where () denotes the ensemble average, o7, = (0%(#, t)) is the instantaneous
point variance of the temperature field ©(7,t), and 7 = t — ¢/ is the time
lag. The space-time autocorrelation, p(# - 7', 7) is an even function of each
of  and obviously invariant under interchange of # and 7'.

Since in the present problem we are not especially interested in the
time dependence, but rather the errors incurred because of the sparseness
of the gauges, we will examine only the case of long term averages of the
measurements (i.e., the low frequency limit). To define what is meant by
this, it is convenient to use the (complex valued) Fourier transformation

O(n, f) defined by
O(n, f) = / dt O(n, t)er™It | (2)

In what follows we will generally be interested in the low frequency limit of
the Fourier Transform, ©(#,0), which is real valued. From an operational
point of view we can find this quantity by passing the data through a moving
average filter whose span is much longer than the autocorrelation time of
the system (a decade or so). The dependence on the width of the averaging
window is important to climatologists and will be dealt with in a separate
paper. We assume that the process is well behaved and, without loss of
generality, we assume a zero mean process. By “well behaved”, we mean that
the first two moments are finite and that the process satisfies smoothness
assumptions such that a Karhiinen-Loéve expansion in spherical harmonics
results in

2

Y0 as L — oo (3)

L n
H@m)-z S Srvm)

n=0 m=-n

where 2 means converges with probability one.
The global average of @(7) over a unit sphere is given by

= 1 ~
0=— dQ0e(n) . 4
= | 408G (4)
Note that we have dropped the f dependence since we are henceforth dealing
only with the f — 0 limit.
Because of the spherical symmetry prescribed in this idealized problem,
it is then convenient to expand the low frequency temperature field into

spherical harmonics Y;*(7) (Arfken 1985), defined by

. 2n+1(n-m) )
Y (R) = \/ yo En+ mg! P™(cosf)e'™® | -n<m<n (5)
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where P are the standard associated Legendre functions and the normal-
ization coefficients are chosen so that the ¥,*(72) are orthonormal, i.e.,

A Y,f"'(ﬁ) nT,(ﬁ) = bmm bnnt (6)
4

and we may expand O(#)

n

6(a) =Y Y OrY(n) (7)
n=0m=-n

where
Or = | dQY*(n)8(n) . (8)
4
The field ©(7) can be modelled with realizations of a surface temperature
field computed from a stochastic model. Later we will provide a simple
model for the random field which can be used in explicit calculations.

The variables O are complex valued~random variables. In the special
case that the second moment statistics of ©@(#) are rotationally invariant on
the sphere,

(B(R)B(#")) = o?p(in- ) . (9)

Here, N
o’ = (0%(n)) (10)

is the low frequency point variance of the field and is a constant due to the
assumption that the field is stationary and statistically rotationally invariant.

The spatial autocorrelation function p(7 - #’) can be expanded into
Legendre polynomials P, (72 - ') as

oo

p(-2') =) (204 1)pnPu(-7') . (11)

n=0

The addition theorem for spherical harmonics (Arfken 1985),

4

Pa(- ) = 507

Y R@Yr@) (12)

can be used with (8) to obtain

4702 P bt By = (OO (13)
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3. ESTIMATOR OF THE GLOBAL TEMPERATURE AND
SAMPLING ERRORS

Let 7i; denote the position of the i-th point gauge on the surface of the
sphere, ¢ = 1,2,...,N. Here, N is the total number of gauges. The true
average of the random temperature field @(#) on the surface of the entire
sphere is ¥ , and is obtained by

v=1[ d0é@) . (14)
4r 4r
In this formula, df2 denotes the solid angle partition of the unit sphere and
the integration for d) is over the surface of the entire unit sphere. The
straight arithmetic average by these N gauges is employed as an unbiased
estimator of the true global average temperature ¥:

1,
1 o
=i A ] dQ B(R) K (7) (15)
where N
K(2) = 35 363~ ) (16)
i=1

where the Dirac delta function notation is defined more conventionally as
8(h —n;) = 6(¢p — ¢:)6(cos@ — cos ;) (17)

such that an area integral over the singularity gives unity.
The mean squared error (MSE) is then defined by the following ensemble
average:

& = ((T-UnY) . (18)

With the homogeneity assumption, {(@(#)0(#')) = a?p(R-R') , this formula
can be written as
2

& = i / do / 4 p(in-2Y(1 - K(R)(1— K@) . (19)
In this integral, the integration domain is Q X  where (2 is the entire surface
of a unit sphere. The expectation operator ({}) may be moved under the
integral in (18) by an application of Fubini’s Theorem since all values are
non-negative. Following equations (19) and (11), one can derive that

(47r)2 Z(zz+1)p, / dQ / 4 Py(A-a")(1- K(a))(1-K(#")) . (20)
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Applying some familiar identities from the literature on spherical har-
monics, e.g. (Arfken 1985), one can obtain a compact expression for the
above double sphere integral:

/ ‘“’/ 49’ Pi(a - )1 - K(R))(1— K(3"))

(42 LN pia oy @)
(4m) N2 ZP;(n, ;) — bio

i,j=1

The mean square error may now be expressed:

0 N

20+ 1)py . oA

62 = 02 E (7-2— E P;(n,- ~nj) . (22)
=1 i,7=1

Next, we examine the relationship between the low frequency point
variance, o2, and the variance of the area average on the sphere, 6. The
quantity o is defined as follows

ok = <(£—7; [ ag @(ﬁ))2> : (23)

After some manipulation, we can derive that
aé =0 2p0 ) (24)

which relates the point variance to the variance of global averages. It is
convenient to express our result in dimensionless form that allows us to
compare the sampling error variance due to the sparseness of the gauges
to the variance of the ‘natural variability’ of global averages. As a kind of
‘figure of merit’ convenient to the climatologist, we define

_ 9%
A{N} == (25)

where the subscript {N} refers to a specific configuration of N gauges. This
measure is a kind of ‘signal to noise’ for the variances. Clearly we want it
to be as large as possible. An equivalent measure is the percent of the total
measured variance contributed by sampling error variance:

2
€
Viny :m -100% (26)
1

= -100% . 27
1+A{N} 0 ( )
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Before turning to specific configurations consider the special case of
N = 1. We obtain

Po
28
T— e (28)

Vi =(1 - po) -100% . (29)

Ay =

This tells us that the error is very sensitive to how much of the variance
of the field is concentrated in the global mode. A very ‘red’ spectrum will
yield better estimates with only a few gauges. A very red spectrum means
that the p, tend to zero quickly as » increases. This in turn means that the
autocorrelation length on the sphere is large.

Clearly the limit N — oo is also of interest. It seems likely that
Afoo} = o0 and Viny — 0. The proof (not attempted here) must make use
of the partitioning of the point gauges on the sphere and the convergence
properties of the spectrum.

4. RANDOMLY DISTRIBUTED GAUGES OVER THE
SURFACE OF THE SPHERE

In the last section, we presented a general formula to evaluate the sam-
pling error for deterministically distributed point gauges on a spherical sur-
face. In this section, we discuss the case that the point gauges are randomly
distributed. Let 72; denote the position of the i-th gauge. Since it is assumed
that the gauges are randomly distributed, 7; is a random variable and has
an associated probability distribution function (pdf). We denote this pdf by
p(7;) and suppose that it can be expanded in spherical harmonics as

p(R) =D D pr(OY(®) (30)

n=0 m=-n

The simplest possible case is that the distribution of the gauges is uniform.

Namely,

. 1 .
p(’n;):z; y i1=1,2,...,N . (31)

This corresponds to the zeroth order spherical harmonic in (30). We further
assume that all the random variables {7;}, are independent. Hence,

p(fy,...,nn) = p(R1)p(fg)...p(aN) . (32)

By equation (22) derived at the end of the last section, the mean squared
error in the case of randomly distributed gauges is a function of the random
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variables {n;},. Next we wish to evaluate the expectation value E? of
fz(fll, . .,ﬁN).

B =/ 40, / A (R, ..y AN)P(RL, - o)

o,

N
oo 1 N
=0’ Z(Ql + 1)p; - el E I; (33)
=1 $,j=1
where I;; is given by the following integral
L= [ a0y [ don Rl a)et)eti) plaw) - (30
~

Since p(72;) is a pdf,

dQ;p(‘ﬁ,‘)=1 ’ 'l:=1,2,...,N .

4r
Hence,
Iij = / dd; / dQ; Pi(f; - ;) p(a)p(R;) - (35)
This leads to
oo
E? =0’ 2(21+ 1)p; - ]—;3 N+ .Zl L; | - (36)
- ij=
i

Insertion of the spherical harmonic expansions (12) and (30), results in

0-2 b 47!' ! N mys e Mk
B = 15> @+ e | N+ 5 > > er@e@) | - (37
= m=—1 ij=1
oy

The variance ‘signal to noise’ is then

rand O'é

In the specific case of uniform distribution of the gauges on the sphere,

) 1 .
Pr("’) = —\/7—7;61110610 3 1= 1,2’. . -,N ) (39)



GLOBAL MEAN TEMPERATURE 9

equation (37) implies

(o]

2041
E? = o? 40
and
E}l\?}d = NA{l} . (41)

This last is an interesting formula. It states that the sampling error variance
incurred on the average for N randomly located gauges is the same as for
N independent measurements with a single gauge. Clearly NV gauges on
the sphere would lead to a larger error because of correlations (the effective
number of gauges would be less than N). The process of averaging over
all configurations with N gauges appears to reduce the error to that of N
independent measurements. This is counterintuitive as one might suspect
that as N increases, the sampling error would decrease. However, considering
an ensemble average of all possible random configurations, we find that is
not the case. Numerical evidence is provided in Hardin, North, and Shen
(1992).

5. A MODEL SPECTRUM

In order to proceed to numerical results useful to climatologists, we
need a spectrum for the temperature field. Fortunately, a simple model ex-
ists that appears to capture the main features of the space-time correlations
of the temperature fluctuations. The model is a so-called noise forced energy
balance climate model where the forcing function is characterized by broad
band noise in both space and time. For an introduction and thorough dis-
cussion of the model the reader is referred to North et al. (1983), North and
Cahalan (1982), Leung and North (1990, 1991) and Kim and North (1991).
The general time dependent stochastic model is given by

no(h, 1) - NV?O(, 1) + O, 1) = F(h,t) ,  (42)

where O(7,t) is the local departure of the temperature from its steady state
value (that when the noise forcing is switched off); Ag is an inherent length
scale in the model and 7y is an inherent time scale. We are only interested
here in the low frequency limit of the process (the more general case will be
treated elsewhere; cf. Kim and North 1991). We can find the low frequency
limiting system by setting /8t — 0 in the last equation. This removes 7
and leaves only a dependence on the length scale A (for low frequencies
or long time averages this length scale is about 15/ times the radius of
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the earth); F(7) is a noise forcing function in space — its spatial spectral
density is white. Then

~A2V20(4) + O(n) = F(#) (43)

and
(F(R)F(R")) = 0%6(R — 7') . (44)

We note that if the statistics of F' are rotationally invariant on the
sphere, then so will those of ©(#), since the differential operator V2 in the
last equation is rotationally invariant.

The physical interpretation of the equation is as follows. The governing
equation represents the heat budget for an infinitesimal area on the sphere.
Heat is spread on the sphere by a diffusion mechanism, represented by the
V% term. It is_damped by thermal radiation of heat energy to space, the
linear term in O(7).

Finally, small imbalances in the heat budget are modelled by the ran-
dom processes forcing the system, F. These forcing anomalies might be
due to cloud fluctuations, eddy heat fluxes, etc. That this model captures
the main features of fluctuations of the surface temperature field has been
demonstrated fairly convincingly (cf. Leung and North 1991; North et al.
1983; Kim and North 1991). The latter two studies use a different effective
heat capacity over land and ocean and are able to reproduce the land-sea dis-
tribution of the forced seasonal cycle as well as the geographical distribution
of the second moment statistics, we are not including the space dependence
due to land and sea in this simple model. In the low frequency limit, which
we are considering here, the distinction between land and sea disappears.

Taking the Fourier-Spherical Harmonic transform of the governing equa-
tion we obtain

am 'Flm
O =1 + X2+ 1) (45)
which leads to
£0 (46)

PL=Z T+ R0+ )P

where pg is a normalization guaranteeing that p(1) = 1. Some values of po
for different length scales are given Table 1. The preferred value of Aq is
15/s0 based on simulations.

Given the (low frequency) spatial spectrum for the temperature field
above, we are in position to evaluate the MSE for a given array of point
gauges, {#;}]L,. From this derivation we may substitute

p
L+ X2 1(()1 ENE (47)
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Ao Po
10/60 © 0.0276
15/60 0.0613
20/60 0.1071

Table 1. Values of pg for various length scale parameters, Ag.

for p; in the expression for the variance yielding

(> N

2 2 (214 1)po 1 PN

= =3 Pdi-ay) 4
and estimate this expression choosing a cutoff degree L assuming that con-
tributions to the overall variance from degrees larger than L are negligible.
In the following examples, L is chosen to be 15 and the expression calculated

182

L=15 N
1o g QLD 1S g,
=06 X maaigeDp W 2 M) - (@)

6. NUMERICAL EXAMPLES

In order to illustrate the above formula and its use in investigating
configurations of gauges we examine several examples. We choose 3 different
sample sizes: 40, 140, and 614 gauges. With the networks of size 40 and 140
we construct several “regular” grids on the sphere and place gauges at the
intersections of the grid lines. In several cases in the regular array, multiple
gauges are degenerately stacked at the poles making the actual number of
distinct gauges less than the nominal 40 and 140.

First consider choosing several equally spaced (angularly) latitude and
longitude lines. It should make a difference if we choose latitudes that in-
clude the poles, since the gauges placed in equal longitudinal angles will be
degenerate. For 40 gauges consider 5 latitudes and 8 longitudes and for 140
gauges consider 10 latitudes and 14 longitudes. We will choose to start and
end at the poles and to start and end at 80° (North and South) for compar-
ative purposes. Note that while we placed 40 and 140 gauges on the sphere,
we have only 26 and 114 uniquely positioned gauges respectively if we choose
the pole-to-pole approach. This does not occur in the case where the poles
are not represented. We can also flip the order in which we assign these
gauges so that we choose 8 latitudes and 5 longitudes and 14 latitudes and
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10 longitudes for the two network sizes. Again notice that the pole-to-pole
approach results in 32 and 122 uniquely positioned gauges respectively.

Finally, consider the case in which 614 gauges are placed on the sphere
with 1 gauge at each of the poles and the remaining 612 gauges placed at
every corner of a 10° x 10° box. In Table 2 we provide the calculated values
for A{ny and V{3 for all of the example gauge configurations in addition
to some simple designs for small samples.

N Gauge layout Ay | Viny (%)
1 Anywhere 0.070 93.0
2 (90N,0) (45N,0) 0.131 | 884
2 (90N,0) (0,0) 0.148 | 87.1
2 (90N,0) (455,0) 0.149 | 87.0
2 (90N,0) (90S,0) 0.150 87.0
4 (90N,0) (30N,90E) (30S,180) (90S,90W) 0.327 75.4
4 (90N,0) (30S,0) (30S,120E) (30S,120W) 0.344 | 744
4 (90N,0) (0,0) (0,180) (90S,0) 0.345 74.3
4 Vertices of inscribed tetrahedron 0.348 74.2
6 (90N,0) (0,0) (0,90E) (0,90W) (0,180) (90S,0) 0.610 62.1
26 poles plus 3 rings of 8 (pole-to-pole) 1.021 49.5
40 5 rings of 8 (80N-80S) 1.757 36.3
32 poles plus 6 rings of 5 (pole-to-pole) 1.611 38.3
40 8 rings of 5 (80N-80S) 2.813 26.2
114 poles plus 8 rings of 14 (pole-to-pole) 2.281 30.4
140 10 rings of 14 (80N-808S) 2.686 27.1
122 poles plus 12 rings of 10 (pole-to-pole) 5.130 16.3
140 14 rings of 10 (80N-80S) 6.380 13.6
614 Grid corners at every 10° 7.523 11.7

Table 2. Values of A(n} (variance signal to noise) and Vxy (percent of measured
variance accounted for by error variance) for various configurations.

As we suspected, as the sample size increases the error decreases, but an
equally important property makes itself apparent. For a given sample size,
there may be a significant discrepancy in the size of the error due to the
configuration. Notice, for example, how in the configurations for 40 gauges
we can decrease the percentage of measured variance due to error variance
from 36.3% to 26.2% by rearranging the gauges. This fact is even more
obvious for the configurations of only two gauges. The smaller the opening
angle between the two gauges, the larger the error. In our example, we placed
the two gauges at opposite poles; however, since we are assuming rotational
invariance, we are free to place them on the two intersecting points of any
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line that passes through the center of the sphere. Our choice of latitudes
and longitudes in this section is purely illustrative.

7. CONCLUSION

In this paper we presented a spectral formalism for assessing the random
sampling errors in the estimation of the globally averaged temperature for
an idealized planet using point gauges. A number of simplifications were
imposed to make the presentation as simple as possible: 1) We took the
statistics of the random field to be rotationally invariant. 2) We dropped all
time dependence, essentially working in the low frequency limit. We then
proceeded to work out the mean squared error. Two measures of the error
were presented: the ratio of variance of global average temperature to the
error variance, a kind of variance ‘signal to noise’; and the percentage of the
measured variance due to the ‘sampling error.” We were able to find a simple
analytical expression for V gauges distributed randomly (uniformly) on the
sphere. We presented a stochastic model of the surface temperature field
which can be used to provide a simple parametric form of the spectrum that
can be used in the calculations. Using the model spectrum we were able to
produce numerical results for regular configurations of gauges on the sphere.
For the model spectrum tuned to earth at low temporal frequencies, we found
that the percentage of measured variance due to sampling error ranged from
93% for one gauge to 13.6% for a specific configuration of 140 gauges. We
made no attempt to optimally weight the readings from individual gauges
or to optimally locate the gauges in this paper. We intend to pursue these
as well as the time dependent problems in future papers.
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