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Abstract. A random climate field over the globe can be decomposed into a series 
of spherical harmonic functions. This paper shows that the mean square sampling 
error for a spherical harmonic coefficient is composed of aliased powers from other 
spherical harmonic components due to the spatial gaps in sampling networks. A 
general formula is given for calculating the aliased powers. On the basis of the 
spectra derived from a noise-forced linear energy balance model (EBM) for the 
climate field the aliased powers are investigated in detail for the Gauss-Legendre 
networks and the latitude-longitude uniform networks. It is found that the Gauss- 
Legendre networks outperform the uniform networks of the same size as long as the 
number of stations is sufficiently large. 

1. Introduction 

There are many instances in climatology in which the 
spherical harmonic basis set is advantageous. For ex- 
ample, many general circulation models (GCMs) em- 
ploy them as part of their numerical scheme (the so- 
called pseudo-spectral methods). The spherical har- 
monics also form a convenient basis set for archiving 
data. Truncating such an expansion leads to the nat- 
ural interpretation of excluding scales smaller than a 
preset length on the sphere. There arises the problem 
of estimating the coefficients in the expansion from im- 
perfect observing systems. In this paper we consider the 
observing system to be a given set of discrete points on 
the sphere--observing stations. We are interested in 
the random errors due to a lack of sufficient density of 
the stations and the systematic errors due to aliasing-- 
the tendency for error in unresolved scales to contam- 
inate the estimate in resolved scales. In particular, we 
are interested in estimating the coefficients for a par- 
ticular temporal snapshot or for a time average of an 
evolving field. We are given the values of the field at 
a set of points on the sphere, and we wish to estimate 
the spherical harmonic coefficients from these measure- 
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ments. In our examples we employ a stochastic climate 
model in its low-frequency limit. In this simple model 
the geography of the land-sea distribution drops out, 
and the statistics of the random temperature field be- 
come homogeneous on the sphere. This simplification 
allows for analytical results, but in principle, a nonho- 
mogeneous field could also be treated by the described 
methodology. 

In this paper we take the field to have some special 
symmetries for convenience, but we intend in later stud- 
ies to generalize the findings to less symmetrical situ- 
ations. We shall also take our sets of points to have 
some special symmetry properties to make the compu- 
tations more transparent. In particular, we pay special 
attention to the Gauss-Legendre (GL) design (section 3) 
which has been utilized in many spectral GCMs. This 
grid is the one in which the points are equally spaced 
along latitude circles but located at the zeros of the 
Legendre polynomials in latitude along the meridians. 
With the GL design one is able to achieve an aliasing- 
free transformation between the spectral domain and 
the physical domain for band-limited fields [Washing- 
ton and Parkinson, 1986; Chen, 1993; Li and North, 
1996]. In section 4 of this paper we evaluate the aliased 
power of the GL design for the climate fields that may 
not be band limited. In particular, we present some 
numerical examples in section 6 based on a white noise 
driven EBM (section 5) whose power spectrum is not 
band limited but decays rapidly with respect to the 
wave numbers. Under this climate model we compare 
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the aliased power of the GL design with that of the 
latitude-longitude uniform (LLU) design in which the 
grid points are uniformly spaced along both latitude 
and longitude circles. The comparison shows that the 
GL design eventually outperforms the LLU design if the 
number of sampling points is su•ciently large. Con- 
cluding remarks are given in section 7. 

2. Concept of Sampling Design 

We regard the Earth as a perfect sphere of unit ra- 
dius. Therefore locations on the Earth are determined 

by the unit vector n - (cos •b cos 0, cos •b sin 0, sin •b) that 
points to the location in question from the center of the 
sphere, with latitude •b • (-•r/2,•r/2] and longitude 
9 • (-•, •]. Let T(n) denote the surface air tempera- 
ture field, which is random in nature. Then the spheri- 
cal random field T(n) can be expanded into a series of 
spherical harmonics •m(n), so that 

T(n) - • • Tlm•m(n), 
I•0 m•--I 

where 1 represents the meridional wave number (or de- 
gree) and m represents the zonal wave number. The 
spherical harmonic coe•cients T•m in (1) are deter- 
mined by 

- f (2) 
where •(n) is the complex conjugate of •m(n) and 
the integration is over the unit sphere. Strictly speak- 
ing, the expansion (1) is subject to certain conditions 
that must be satisfied by T(n). But we are not go- 
ing to dwell on these conditions. Interested readers are 
referred to the paper by Li and North [1996]. 

Suppose the surface air temperature field T(n) is ob- 
served from J stations located at {n•,---, n j}. We use 
the observed data {T(nj) J )j=• to estimate the spherical 
harmonic coe•cients Tim defined by (2). Simple linear 
estimators of T•m take the form 

J 

•["Im -- ZWj T(nj) Y/•n(nj), 
j-1 

(3) 

where the wj are real-valued weights satisfying the nor- 
malization condition 

y• w• - 4•r. (4) 
j--1 

Let nj - (cos •bj cos 0j, cos •bj sin 0j, sin •bj). Then the 
sampling design, in general, requires one to choose the 
3J real-valued parameters {•b•,..-, •bj}, {0•..-, 0j}, 
and {w•,...,wT} in the estimator (3) under a certain 
optimization criterion. Because of the constraint in 
(4) the number of free parameters to be chosen equals 
3J- 1. Note that one may also choose different weights 
for different spherical harmonic coefficients, so that 

• (lm) 
wj - .•j depends on the wave numbers 1 and m. 
In this paper, however, we restrict ourselves to the case 
in which the weights are wave number independent. 

2.1. Partially Aliasing Free Sampling 

There are many ways of designing a sampling network 
[Hardin and Upson, 1993; $hen et at., 1994; Kim et at., 
1996]. In this paper we consider a design that forces 
the aliasing-free identity 

•lrn -- Tim (5) 
to hold for as many wave numbers t and m as possible. 
This idea is similar to that of the Gaussian quadrature 
in numerical analysis [$toer and Butirsch, 1980]. 

To understand the smallest sample size required in 
this design, let us consider, for example, the case in 
which the aliasing-free identity (5) is required to hold 
in the triangular region 7• '- {(1, m)' [ml <_ l, 0 _< 1 i 
L}. Corresponding to this region, there are 2(L + 1) 2 
real-valued equations determined by the real and imag- 
inary parts of (5) for an arbitrary (possibly complex- 
valued) field. It is therefore necessary that the net- 
work consist of J _• (2(L + 1) 2 + 1)/3 stations so that 
the number of free parameters in the network (which is 
3J- 1) matches the number of equations (which equals 

+ 
In most numerical simulation schemes for climate 

modeling it is often desirable that the network be sym- 
metric, so that (1) the stations corresponding to the 
four combinations of ½• and -½• with 05 and 05 -•r 
(mod 2•r) all belong to the network, and (2) the sta- 
tions n• and -ns, which belong to the network accord- 
ing to point 1, have the same weights. Because of this 
restriction the number of free parameters reduces to O r 
(instead of 3J- 1), and thus O r _> 2(L + 1) 2 becomes 
the minimum requirement for (5) to hold in 7•. For a 
real-valued field the requirement is O r >_ (L + 1) 2, be- 
cause the 25m (and the Tim) are symmetric in the sense 
that Tt• - (-1)mTt,_m, so that the number of equa- 
tions can be reduced by one half. This requirement is 
consistent with the sampling theorems of Li and North 
[1996]. 

2.2. Aliased Power 

For a given sampling network with the observing sta- 
tions located at nj, the mean square error (MSE) of the 
estimator •["Im for estimating Tim is defined by 

where the angle brackets stand for ensemble average. 
To evaluate the MSE, we note that •tm in (3) can be 
rewritten as 

rim -- Wj • rl' m' •' m' (nj ) • (nj ) 
j=l I' =0 m' =--I' 

- Tt,,;; F(/, m, , m'), (6) 
l' =0 m'=--l' 
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where 

J 

r(l,m,l',m') - •w• Yl, m,(nj) Yl•n(nj). 
j=l 

(7) 

For any given (l, m) we call F(I, m, l', m') the alias- 
ing coefficient associated with the spherical harmonic 
Y/'rn' (n). Clearly, the structure of F(/, m, l', m') shows 
how the aliasing effect from different spherical harmon- 
ics occurs in the estimator •Ptm. 

For a homogeneous random field T(n) with (T(n)) - 
0, let p(x), with p(1) - 1, be the correlation function of 
T(n) as defined by 

(T(n) T(n')) - o'•p(n ß 

where rr 2 - (T2(n)) is the variance (or power) of T(n). 
The power spectrum of T(n) is defined as 

= Pl • I (l - 0, 1, 2,...), 

where Pt(x) represents the Legendre polynomial of de- 
gree l. It can be shown that 

p(x) - E (2/+ 1)pt Pt(x). (8) 
1=0 

Because the field T(n) is homogeneous, different spher- 
ical harmonic coefficients are uncorrelated. In fact, one 
can write ILl and North, 1996] 

{ Tlm Tl*•m, } = 4•ra 2pt &'-t 6m'--m, (9) 

where 5• is the Kronecker delta with 50 - I and 5• - 0 

Using these results, one can derive the following for- 
mula for the MSE: 

e•m = 4•ra 2 { Pt [1 - F(I, m, l, m)] 2 
+ p,, r (10) (t',m')•(t,m) 

Note that, according to (9), the power (or variance) of 
Tl, m, is { ITl,m, 12/ = 4•ra 2pt,. Therefore the relationship 
given by (10) reveals that the MSE e•m is composed of 
aliased powers from all spherical harmonic components 
via a weighted sum. For this reason we also refer to 
as the (total) aliased power in the estimator •tm- 

To measure the strength of the aliasing effect in •tm 
relative to the power of Tt^m, one may define the (total) 
relative aliased power in Ttm as 

4m 
eTm = (iT, ml2) 

= [1 - rq, m, l, m)] 2 

+ P'--' r 
(P,m')•(l,m) Pt 

(11) 

Clearly, in (11) the proportion of the total aliased power 
that can be attributed to the 2l' + 1 spherical harmonics 
of degree l' (i.e., Yl, m,(n) with m' = 0, +1,... ,+/') is 
given by 

1 { [1 - F(/ m, l m)] 2 5t,-t dlm(l t) : e-•m ' , 

+ Pt.•.' E F2 (/' m, l', m') (1 - 5t,-l(•m,-m) ß 
Pt m' =--1' 

(12) 

Since y•wøø=o dtm(l') -- 1, we call dtm(l') the (normal- 
i•zed) spectral density of aliased power of the estimator 
Tim. It is clear that dtm(l') describes the distribution 
of the aliased power over different wave numbers of the 
spherical harmonics. 

If the network is designed so that •Im -Ttm when 
T(n) = Ytm(n), then, according to (6), the identity 

J 

F(l,m,l,m)- y• w• Im(r)l - 1 
j--1 

(13) 

must be satisfied. (Note that T(n) - Ylm(n) implies 
TPm' : 5P-15m'-m.) We call (13) the unbiasedness 
condition. Clearly, the unbiasedness condition (13) re- 
duces to the normalization condition (4) if 1 - m - 0. 
When (13) is satisfied, the leading terms vanish in (10)- 
(12), because [1 - F(/, m, l, m)] 2 = 0, 

3. Gauss-Legendre Networks 

For computational simplicity, one often needs a net- 
work that treats the longitude and latitude locations 
separately, so that nj takes the form 

npq -- (COS •q COS Op, COS •q sin Op, sin •q). 

The Gauss-Legendre (GL) networks [e.g., Washington 
and Parkinson, 1986; Li and North, 1996] are such ex- 
amples. A GL network of size J = MN can be obtained 
as follows: (1) Place the stations at the intersections 
of M latitude rings and N longitude rings, where the 
latitudes Op are uniformly spaced and the latitudes •q 
are determined by the zeros of the Legendre polyno- 
mial PN(sin •b). (2) Determine the weights according to 
Wpq: (2•r/M)gq, where the gq are defined by 

: fi x-xj dx I j=l, j-•q 

with Xq = sin •q being the zeros of PN(X). It is easy 
to see that a GL network is symmetric in the sense 
discussed in section 2. 

Let Ptm(X) be the associated Legendre functions de- 
fined by [Arfken, 1985] 

Ptm(X) -- (-1)m(1 -- X2) m/2 dm 



4478 LI ET AL.' ALIASED POWER OF A STOCHASTIC TEMPERATURE FIELD 

Then the spherical harmonics Y/m (n) can be written as 

]/•m (n) -- Clm Plm (sin •b) e imO , 

where 

/21 + I (1- m)! 
Clm --(--1)m v ]{• (1 + m)!' 

Therefore, for a GL network, one obtains 

N 

rq, m, m) - gq Pi2m (sin •bq). 
q--1 

(14) 

Since P/•m (X) is a polynomial of degree 21, one can apply 
the Gaussian quadrature formula to (14) and obtain 

/: r(t, m, m) - 27rC•m Pi2m (x) dx 
1 

= I V(1, m) e TN-x. (15) 

In other words, an M x N GL network satisfies the 
unbiasedhess condition (13) in TN-X. This condition, 
however, cannot be extended to higher order terms. For 
instance, if 1 = N and m = 0, we have P•m(sin •bq) = 
PN(Xq) = O, so that F(N, 0, N, 0) = 0 y• 1. In this sense 
the GL networks are only partially unbiased. 

When N is very small, the distribution of the stations 
in a GL network is highly nonuniform in the north- 
south direction. When N becomes large, the distribu- 
tion gradually approaches uniformity, but because of 
the spherical geometry the weights Wpq decrease with 
respect to the latitude •bq and are highly nonuniform 
with respect to q. 

4. Aliased Power in GL Networks 

In this section we investigate the com•position of the 
aliased power e•m when the estimator Tlm is obtained 
from the GL networks. Since the power spectrum pl 
of the field T(n) can either be derived from a physi- 
cal model or estimated from data (see section 5), the 
major task here is to evaluate the aliasing coefficients 
F(1, m,l',m'). 

To evaluate F(1, m,l',m'), we note that for the GL 
networks, equation (7) becomes 

where 

F(1, m,l',m') 
M N27 r 

= Z Z • gq Yl'm'(npq)Yl•n(T•'Pq) 
p-1 q=l 

•- Clm Cl'm' AM(m, m') BN(I, m, (16) 

M 

AM(re, to') - • Z ½i(m'--m)(--•r+2•p/M) 
p=l 

N 

BN(1, m, l', m') - Z gq Plm(sin qSq) P/,m,(sin •bq). 
q--1 

It is straightforward to show that 

AM(m, m t) -- 27r Z (--1)MS•m'-(m+Ms) ' (17) 
$----00 

Combining this with (6) and (16) leads to the conclu- 
sion that Tl'm' may contribute to the aliasing error in 
•lm only if m • - m q- Ms for some integer s. Fur- 
thermore, since P•m(-X) -- (•,x)l+mPlm(X), we have 
P/m(-Z) P/,m,(-z) - (-1)/+/q-MSPlm(Z) Pl'm'(Z) for 
m • - m + Ms. Also note that the Xq are symmetrically 
distributed around zero and that if Xq, is the mirror of 
Xq (i.e., Xq, - -Xq), then both of them get the same 
weight gq, - gq. Therefore, if 1 • makes 1 + 1 • + Ms an 
odd number, then P/m (x).P/, m' (X) is an odd function of 
x, and 

N 

BN(1, m, l', m') - • gq Plm (Xq) Pl, m, (Xq) - O. 
q=l 

This result, combined with (6), (16), and (17), implies 
that Tl,m, is aliased to Tlm only if (l', m') takes the form 
(1 + Ms + 2r, m + Ms) for some integers r and s. 

By common practice in GCM modeling we always as- 
sume that M is an even integer in the sequel. Under this 
assumption the spherical harmonic components that 
may contribute to the aliasing error in T/m are char- 
acterized by (l', m') being of tn• form (1 + 2r, m + Ms), 
where r and s are integers satisfying -1/2 < r < o• and 
-(l+2r +m)/M < s < (1 + 2r-m)/M, or -o• < s < o• 
and (I TM + Ms I -l)/2 < r < o•. Let the domain of (r, s) 
defined by these inequalities be denoted by Arm. Then 
we can express Tlm as 

•lm -- Z Tl+2r'mq-Ms F(/, m, l -•- 21', m q- Ms). 
(r,s)eA•.• 

(18) 

Since (0, 0) e Aim, the term Tlm F(/, m, l, m) always 
appears on the right-hand side of (18). For (1, m) e 
7-N-x we have F(/, m, l, m) - I due to the unbiasedness 
condition (15) satisfied by the GL networks. 

Furthermore, the GL design also ensures that [Li and 
North, 1996] 

F(1, m, 1 + 2r, m) - 0 

v - < # 0. 

Therefore, with (l', m') - (1 + 2r, m + Ms), if Turn, is an 
alias of Tlm and s • 0, then the distance between T/, m, 
and Tlm in the spectral (wave number) domain, i.e., 

/• _ V/(1, _/)2 + (m'- m) 2, 

satisfies/z - V/(2r) 2 + (Ms) 2 > M; if s - 0, then the 
distance satisfies/z - 2r > 2(N-l) as long as N > 1. In 
other words, the aliases of Ttm in an M x N GL network 
are separated in the spectral domain by a distance of 
at least M if the zonal wave numbers of the aliases are 

different from the zonal wave number of T•m, or by a 
distance of least 2(N - l) if the aliases and T/m have 



LI ET AL.: ALIASED POWER OF A STOCHASTIC TEMPERATURE FIELD 4479 

the same zonal wave number but different degrees (for 
> 
To visualize the structure of the aliasing coefficients 

F(/, m, l', rW) for the GL networks, we present two ex- 
amples in Figure I that demonstrate how the Tt'm' 
are aliased to Too in the estimator •P00. In this fig- 
ure the small squares represent the aliasing coefficients 
that are annihilated by the GL design but may be dim- 
inated in general by other symmetric networks. For •00 
the annihilated coefficients correspond to rW = 0 and 
l • = 2, 4,..., 2(N - 1). Also note that the sparseness of 
nonzero aliasing coefficients increases as the number of 
stations is increased, resulting in a decrease of the alias- 
ing effect. Similar behavior is found in the estimators of 
other spherical harmonic coefficients, as supported by 
two additional examples in Figure 2. 

If the field is band limited in the sense that Ttm= 0 

••14 x• 

-10 -8 _• 6 - -4-2 0 2 
_ 

_16_14 •2 
-18 

whenever l > Lo, then the Gaussian sampling theo- 
b 

18 

1 

.•-'• 10-- 

_12-10-8 • 6 - 4•2 -6-4-2 0 2 _ 

0 18 •16-14 

b 

8 4• 2 -4-2 0 2 l 6 -6 
_ 

_ 

0 18 -16-14 

Figure 1. Aliasing coefficients F(0, 0, l, m) in the esti- 
mator •P00 using GL networks. (a) An 18-station net- 
work with N - 5M - 3; (b) A 50-station network 
with N - 5M - 5. The solid and dashed arrows stand 
for positive and negative coefficients, respectively. The 
arrows at (l, m) = (0, 0) define the unit length. The tri- 
angular arrays of dots indicate the domain of aliasing 
coefficients. The small squares indicate zero aliasing 
coefficients achieved by the GL design but in general 
cannot be achieved by other symmetric networks. 

1 

._••2 14 -- 
.•,-• 10-- 

k -10 -8 _• 6 - -4-2 0 2 

2 0 18_16-14 -12 
Figure 2. Aliasing coefficients F(2, 0, l, m) in •P20 using 
GL networks. (a) An 18-station network (N- • [M= 

•M - 5). The 3); (b) A 50-station network (N - [ 
arrows at (l, m) - (2, 0) define the unit length. (See 
Figure I caption for more details.) 

rem ensures that with the choice of N >_ M/2 > Lo 
one obtains e•m - 0 and therefore •tm -Ttm for any 
(t, m) e [Li and North, 1996]. Because the band- 
limited field can be perfectly reconstructed from Tim 
with (l,m) e 7•o [Li and North, 1996], the GL net- 
work can completely eliminate the aliasing error if the 
stations are sufficientø The GL network is also efficient 

because it achieves the aliasing-free identity in 7•o with 
the minimal number of stations, J0 - 2(L0 + 1) 2, re- 
quired under the symmetry condition. 

Because of the special structure of F(/, m,l •, m •) in 
the GL networks it is easy to show from (18) that the 
aliased power e•m for a homogeneous field takes the form 

e•m - 4•ra2 { p, [1 - F(/, m, l, m)] 2 

Y]. Pl+2r F2 (l, m, l + 2r, m + Ms) }, (*,s)eA,ø• 

(20) 
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where •47m - •tlm \ (0, 0). Similarly, we can express the 
relative aliased power e•m as 

½•m -- [1 -- r(•, •, •, •)]• 

+ y]• pt+2r r 2(l, m, l + 2r, m + Ms). 
(,.,s) e.47.• p• 

(21) 

Note that [1 - F(/, m, l, m)] 2 - 0 if (/, m) e TN-1, be- 
cause the GL networks are unbiased in TN-1. Also note 

that the identity (19) holds for the GL networks. 
To end this section, we point out that (20) and (21) 

also hold for networks in which the latitude rings are 
uniformly spaced but the latitude rings are not neces- 
sarily located at the zeros of a Legendre polynomial. 
An example of such networks is one that places the lat- 
itude rings uniformly with equal weights so that •bq - 
-•r/2 + •rq/(N + 1) and gq -- 2/N for q- 1,.--,N. We 
call this network a latitude-longitude uniform (LLU) 
network. The LLU networks are symmetric but (19) 
may not hold in general. 

5. Noise-Forced Energy Balance Model 

In this section we consider a homogeneous field gen- 
erated by a simple climate model. To be more specific, 
consider the white noise forced linear energy balance 
model given by 

_0 t) - t) + t) - t). •-o ot (22) 

where T(n, t) is the local departure of the temperature 
from its climatology, •-0 is an inherent timescale, and A0 
is an inherent length scale. As we mentioned in the in- 
troduction, this paper only concerns the low-frequency 
limit of the climate process. For this purpose the time- 
dependent term in (22) is not crucial and can be omit- 
ted. The resulting time-independent EBM becomes 

+ r(.) - F(.). (23) 

where A0 is the length scale in units of the Earth radius 
and F(n) is the spherical white noise field satisfying 
(F(n)F(n')l - a• 5(n- n') with 5(.) being the Dirac 
delta. Let the spherical harmonic expansion of F(n) be 

(x• 1 

F(n)-• • FtmY•m(n), (24) 
l--O m----1 

where F•m - fF(n)Y•(n)d•. Then, by substituting 
(•) and (24)into (23), we obtain 

•m 

1 + A• l(l + 1)' 

Since (IFlml2> -- 47ra•, it follows that 

(25) 

47r•2pt- (IT•ml :•) - 47r• 
(1 + )•g l(l + 1)) 2' 

Therefore, with P0 - •r•/•r a, we can write 

P0 (l - 0, 1 ..-) (26) Pt- (1 + A• l(l + 1)) 2 ' ' 
Note that Pt = O(/-4) as I --• ½x). In other words, the 
power spectrum Pt of the field decays as fast as 1-4 with 
respect to the degree I. Using the condition p(1) - 1 
and (8), one can determine P0 from the identity 

Z (2/+ 1) (1 + Ag l(l + 1)) 2 Pt(l) - 1. /:0 

In fact, since Pt(l) - I for all l, one obtains 

21+1 } (1 + )• l(l + 1)) 2 

-1 

Note that Po is a monotone increasing function of Ao as 
shown in Figure 3a. In our examples, the value of Ao 

/90 

1.0 -10 

0.8 

0.6 

0.4 

0.2 

0.0 

Pl 

-15 - 

-20 - 

-25 - 

-30 - 

-35 I I I I I 

0.0 0.5 1.0 1.5 2.0 0 2 4 6 8 10 12 

A0 l 

Figure 3. (a) Plot of Po as a function of Ao for the white noise driven time-independent EBM. 
(b) The EBM-based power spectrum p• (in decibels) as a function of the degree l (Ao - 0.3141). 
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•- lO 

n- 5 

• 0 
O 
n -5 

• -10 

ß • -'15 - 

> -20 - 

• -25 - 
n- -30 - 

G-L 

LLU 

i I I i i i i I i i 

1 2 3 4 5 6 7 8 9 10 

N 

Figure 4. Plot of the relative aliased power e•o (in 
1 for the white noise decibels) as a function of N - •M 

driven EBM. 

is determined by the length scale of the anomaly field. 
For the annual mean field the EBM length scale is about 
2000 km [Kim and North, 1993]. If we take the radius of 
the Earth to be 6367 km, then •0 becomes 2000/6367 - 
0.3141, and the corresponding p0 is 0.0954. With this 
value the EBM spectrum Pl is shown in Figure 3b. In 
the sequel we always use •0 - 0.3141 in the EBM (23). 

Using (8) and the fact that p(1) - P•(1) - 1, one can 
also write 

or2 - Z (2/+ 1)cr2pl. (27) 
/--0 

In this expression the total variation of T(n) is decom- 
posed into a weighted sum of the power spectrum. Since 
there are 21 + I spherical harmonic components of de- 
gree 1 in the expansion (1), it is evident from (27) that 
Pl = { ]T•m[•//(4•r(•) represents the proportion of vari- 
ation in T(n) that can be attributed to each of the 
/th-degree harmonics. With this interpretation of the 
power spectrum one may conclude that the global aver- 
age Too, which corresponds to the zeroth-degree spheri- 
cal harmonic Y00 (n) = v/•, describes about 10% of the 
total variation of the EBM field because po = 0.0954. 

6. Numerical Examples 

For the homogeneous field T(n) generated by the 
EBM (23) we estimate the spherical harmonic coeffi- 

cients Tlm by fire in (3), using the observations from 
a Gauss-Legendre network. In this section we compute 
the relative aliased power e•m and the spectral density of 
aliased power dlm (1 •) and investigate their relationships 
with the size of the network. The computation was 
performed by using Mathematica 2.2 on a Sun Sparc 10 
workstation. 

First, consider the estimation of the global average 
Too by •00o With (1, m) - (0, 0) the formula (20) is 
simplified as 

c• [2r/MJ 

e•o - 4•a • • p•r r 0, 
r--1 s=-L2•/MJ 

where L'J is the "floor" function such that LxJ - n if 
n _• x • n + I for some integer n. Similarly, we obtain 

• L2•/MI 

e•o -- Z p• Z r • (0, o, 2r, Ms). (29) 
r--1 PO s----[2r/MJ 

Note that in these formulas F2(0, 0, 2r, Ms) - 0 if s - 0 
andr- 1,---,N- 1. 

Using the EBM spectrum (26) and M - 2N, Figure 4 
and Table I show the relationship between the relative 
aliased power eo•0 in (29) and the network parameter N. 
In the calculation the infinity sum (29) was replaced by 
a finite sum over r so that l' - 2r _• 30, which, due 
to (25), is equivalent to assuming that the noise field 
F(n) in the EBM (23) is band limited with Elm -- 0 for 
1 > 30. Note that the size of the network is J - MN = 

2N 2. It is shown in Figure 4 that with the increase of 
the number of stations from J - 2 (N - 1) to J - 
50 (N - 5) the relative aliased power e•0 decreases 
approximately from 6 dB to -15 dB, yielding a 21 dB 
reduction; another 12 dB reduction can be achieved by 
increasing the number of stations to J - 200 (N - 
10). As is shown in Table 1, the aliased power of the 
two-station network is more than 4 times as much as 

the variation of the spherical harmonic coefficient Too, 
because e•o ' 4.2, whereas the 200-station GL network 
reduces e•0 to about 0.002, so that the aliased power in 
•00 is only 0.2% of the power of Too. 

For comparison, the relative aliased power e•o for the 
uniform design is also presented in Figure 4 and Table 1. 
As we can see, when the number of stations is small 
(e.g., J - 2-32 or N - 1-4), the two designs are almost 
indistinguishable in terms of the aliasing effect; when 

Table lo Relative Aliased Power e•0 for Networks of Different Sizes 

Number of Stations (J - 2N 2) 
Network 2 8 18 32 50 72 98 128 162 200 

Gauss-Legendre 4.2 0.60 0.18 0.067 0.030 0.015 0.008 
Latitude-Longitude Uniform 4.2 0.62 0.17 0.071 0.048 0.045 0.049 

0.005 0.003 0.002 

0.054 0.060 0.066 
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more stations are employed in the networks, the advan- 
tage of the GL design becomes prominent. For exam- 
ple, with 128 stations (N = 8) the GL design achieves a 
10 dB improvement over the uniform design. Moreover, 
whereas the aliased power of the GL design decreases as 
the number of stations grows, the aliased power of the 
uniform design stops decreasing at N - 5; in fact, it 
starts to increase slightly as N becomes larger. The su- 
perior performance of the GL design is primarily due to 
its effective accommodation of the fact that most of the 

power of the EBM field T(n) comes from the harmonic 
components of low wave numbers (see Figure 3b). 

To investigate the distribution of the aliased power 
over different wave numbers, we note that for r - 
1, 2,---, we have d00(2r - 1) - d00(0) - 0 and 

L2•/•J 

I P2r Z r (0, 0, 2r, Ms). (30) d00 (2r) - e)0 p0 
s--L2r/•J 

Since the GL design satisfies (19), it is easy to see that 
with M = 2N we have d00(2r) = 0 for r = 1,-.., N - 1. 

Using (30), we calculated the doo(1) for two GL net- 
works, one with N = 2 (J = 8) and the other with 
N = 5 (J = 50). The results are shown in Figure 5, 
where the circles represent the aliased power compo- 
nents that vanish in the GL design but may not vanish 
in general, and the cross indicates the degree I = 0 in 
question; the aliased power at this point equals zero be- 
cause the unbiasedness condition (15) is satisfied. As 
can be seen from Figure 5, the aliased power concen- 
trates on low degrees when the number of stations is 
small, whereas the concentration shifts to higher de- 
grees when the number of stations is increased; the 
aliased power components in e•0 of degree 1 lower than 
2N are all annihilated by the GL network of J = 2N 2 
stations [Li and North, 1996]. 

Similar analysis can be performed for the estimator 
•lm. In fact, for any (/,m) the relative aliased power 

e•m in (21) can be calculated according to the formula 

e•m -- [1 - F(/, m, l, m)] 2 + E Pl+2• 
Pl 

Lq+2r-m)/MJ 

s--Lq+2r+m)/MJ 

x (1 - 

r2(1,m, 1 + 2r, m + Ms) 

(31) 

With r >_ -[//2J it can be shown that 

dlm (1 + 2r + 1) -0, 

I {[1- r(1 m/m)] 2 dlm(1)- ½•m ' ' ' 

L(l-m)/MJ } + y•. F2(1, m,l,m + Ms)(1 -5s) , 
s=-L(l+m)/MJ 

and, for r • 0, 

dlm (1 + 2r) - 
L(l+2r-m)/MJ 

1 Pl+2r E r2(/, m, 1 + 2r, m + Ms). 
e•m Pl s=-[(l+2r+m)/MJ 

Since M - 2N, it is easy to see that [(l+2r+m)/MJ - 
[(/+ 2r- m)/MJ - 0 if-1/2 _< r < N- 1. Therefore, 
for the GL networks, (19) implies that dim (1 + 2r) -- 0 
ifr e {-L1/2J,- [1/2J + 1,...,N-l- 1} \ {0}. In other 
words, the GL design eliminates all the aliased power 
components in e•m whose degrees 1 • are lower than 2N- 
1 but different from 1. Moreover, the condition (15) 
implies that dlm (1) - 0 if 1 _• N - 1. 

0.6 - 
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Figure 5. Spectral density of aliased power doo(1) for the white noise driven EBM. (a) An eight- 
1M -- 2) with e•0 ø 0.60. (b) A 50-station GL network (N - 1M - 5) station G L network (N - • • 

with e•0 ' 0.03. 
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In Figure 6 we plot the relative aliased power e•m 
as a function of N - 3///2 for several values of (1, m). 
The calculation was carried out for the GL and LLU 

networks under the EBM (23). Again, the infinite sum 
over r in (31) was truncated so that 1 • - 1 + 2r _< 30. 
Observe that in all these cases the GL design eventu- 
ally outperforms the uniform design as the number of 
stations becomes sufficiently large. For a fixed num- 
ber of stations the advantage of the GL networks seems 
more pronounced for estimating low wave number com- 
ponents (/• - v/12 + m 2 small) than for estimating high 

wave number components (/• large). If the stations are 
insufficient (i.e., N is small), the uniform design may 
have a small edge (if any) over the GL design. This find- 
ing is not surprising, because the EBM power spectrum 
is not band limited• and even for a band-limited field it 
is still required that N be greater than the bandwidth 
in order for the GL design to eliminate the aliasing error 
[Li and North, 1996]. 

More computational results are given in Tables 2-5, 
where the e•m in Tables 2 and 3 are calculated by using 
(31) with the truncation 1 • - 1 + 2r _• 40 and the e•m in 

Table 2. Relative Aliased Power e•m for 98-Station Networks (N - • 
Gauss-Legendre Network Latitude-Longitude Uniform Network 

m /=1 /=2 /=3 /=4 /=5 /=1 /=2 /=3 /=4 /=5 

0 0.009 0.021 0.045 0.099 0.22 0.134 0.379 0.461 0.330 0.30 
I 0.016 0.021 0.042 0.092 0.20 0.042 0.057 0.287 0.679 1.22 
2 0.029 0.045 0.087 0.17 0.059 0.048 0.142 0.34 
3 0.061 0.096 0.17 0.082 0.082 0.16 
4 0.131 0.20 0.124 0.15 
5 0.28 0.21 

The infinite series of r in (31) was truncated so that l' = l + 2r _< 40. 
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Table 3. Relative Aliased Power e•m for 128-Station Networks (N- • 

Gauss-Legendre Network Latitude-Longitude Uniform Network 

m /=1 /=2 /=3 /=4 1-5 1-1 1-2 1-3 1-4 1--5 

0 0.006 0.012 0.026 0.055 0.12 0.157 0.462 0.634 0.542 0.30 
I 0.009 0,012 0,025 0.051 0.11 0.042 0.047 0.257 0.615 1.11 
2 0.017 0.026 0.050 0•10 0.057 0.036 0.111 0.26 
3 0.035 0.055 0.10 0.073 0.059 0.11 
4 0.073 0.11 0.098 0.10 
5 0.15 0.14 

See Table 2 for remarks. 

Tables 4 and 5 are based on the truncation l • - l + 2r • 
30. A lower-order truncation is used in Tables 4 and 

5 because of the computational difficulties encountered 
in Mathematica for evaluating the associated Legendre 
functions P•m(X) when (/, m) is too high and Ixl is too 
close to unity (which happens if N is large). 

To demonstrate the distribution of the aliased pow- 
ers given by (32) and (33), we present, as an example, 
the spectral density of aliased power dll (l •) in Figure 7 
for the GL and LLU networks of the same size. The 

calculation shows that the total relative aliased power 
e•l of the GL network is only one third that of the LLU 
network (0.014 versus 0.042). Figure 7 also shows that 
for the LLU network nearly 80% of its aliased power can 
be attributed to the low wave number components with 
l • - I and l • - 3, whereas the GL design eliminates all 
aliasing errors from the low wave number components 
with l • _< 2N-l- I - 12. This comparison again 
suggests that the annihilation of the low wave number 
components (represented by circles in Figure 7), where 
most of the energy of the field concentrates, be primar- 
ily responsible for the smaller aliased power achieved by 
the GL design. 

7. Discussion and Conclusions 

In this paper we have investigated the aliased power 
of the Gauss-Legendre networks in the estimation of 
the spherical harmonic components of the surface tem- 

perature field over the globe. Using the white noise 
driven EBM, we have calculated the total aliased power 
and the spectral distribution of the aliased power for 
both Gauss-Legendre and latitude-longitude uniform 
networks. Numerical results show that with a suffi- 

cient number of stations the Gauss-Legendre network is 
able to achieve a smaller aliasing error than a latitude- 
longitude uniform network of the same size; this result 
is especially true for the estimation of low wave num- 
ber components. Of course, the aliased power can be 
further reduced by simultaneously choosing the weights 
wj and perhaps the locations nj in the network so as 
to minimize the aliased power [e.g., Hardin and Upson, 
1993; $hen et al., 1996]. The resulting "optimal" net- 
work, however, usually depends on knowledge of the 
power spectrum of the field. On the other hand, the 
Gauss-Legendre design, though suboptimal, does not 
depend on the power spectrum and is particularly effec- 
tive for a spherical field whose spectrum is band limited 
[Li and North, 1996] or decreases sufficiently rapidly 
with respect to the wave numbers. 

Although the Gauss-Legendre and latitude-longitude 
uniform networks are particular, we consider them in 
this paper because they make the analytical investi- 
gation more transparent,and the results concerning 
their properties provide some mathematical insights 
and theoretical background for further investigations of 
more realistic networks. The extension of the devel- 

oped methodology to more realistic networks (e.g., ran- 

Table 4. Relative Aliased Power e•m for 162-Station Networks (N- x 9) •M- 

Gauss-Legendre Network Latitude-Longitude Uniform Network 

m /=1 /=2 /=3 1--4 /--5 1--1 1--2 1--3 1--4 1--5 

0 0.003 0.007 0.015 0,030 0.062 0.180 0.540 0.810 0.813 0.532 
I 0.005 0.007 0.013 0.028 0.058 0ø043 0.040 0.235 0.572 1.036 
2 0.010 0.015 0.026 0.052 0.057 0.029 0.088 0.212 
3 0.020 0.030 0.054 0.070 0.046 0.074 
4 0.040 0.061 0.084 0.071 
5 0.081 0.109 

The infinite series of r in (31) was truncated so that 1 • - 1 + 2r _• 30. 
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Table 5. Relative Aliased Power e•m for 200-Station Networks (N- 1 10) •M- 

Gauss-Legendre Network Latitude-Longitude Uniform Network 

m l--1 /=2 I--3 /=4 /=5 /=1 I--2 /=3 /=4 1--5 

0 0.002 0.005 0.009 0.018 0.039 0.202 0.614 0.979 1.103 0.886 
I 0.003 0.004 0ø009 0.017 0.035 0.045 0.037 0.223 0.545 0.986 
2 0.006 0.009 0.017 0.033 0.058 0.027 0.079 0.190 
3 0.012 0.019 0.032 0.070 0.041 0.060 
4 0.025 0.039 0.081 0.060 
5 0.049 0.097 

See Table 4 for remarks. 

domly distributed stations) will be the major subject of 
a forthcoming paper. 

We should point out that the estimators •lm defined 
by (3) are closely related to the weighted least squares 
(WLS) estimators [Trampert and $nieder, 1996]. In- 
stead of discretizing the integral (2) with the sum (3), 
the WLS approach fits the data {T(nl),.--,T(nj)} 
with a finite order (truncated) spherical function 

L l 

•(n)--Z Z •tmYt•n(n) 
/=0 m=--l 

whose coefficients •lm are determined by minimizing 
the weighted sum of squared errors 

WSSE - 

J 

Z wj IT(nj)- •(n•)l 2 
j--1 

The optimal coefficients •lm are the WLS estimators of 
Tlm for (/, m) E 7•, and it is easy to show that they 
satisfy the linear equations 

F(1, m, l', m') •t,m, - •lm (34) 

for (1, m) • 7'•, where the •lm are defined by (3) 
and F(1, m,l',m') is defined by (7). With an M x N 
GL networks, such that M > 2L and N > L, it fol- 
lows that Tlm -- •Im for all (1, m) • 7•, because 
I•(l• Tit, l', Tit') -- •l-l' •m-m' for any (l, m), (l', m') • 7'•. 
This result implies that if the sampling rate is suffi- 
ciently high in the GL network, then the estimators 
ftm in (3) coincide with the WLS estimators f•m in the 
truncated triangular region 7•. 

Equation (34) also provides an avenue to the un- 
derstanding of the aliasing errors in the WLS estima- 
tors. For simplicity, let •, •, and t denote the vectors 
formed in the same way by •m, •m, and T•m, respec- 
tively, with (1, m) • 7•, and let r denote the (L + 1) 2- 
by-(L + 1) 2 coefficient matrix in (34). Then one can 
rewrite (34) as r - so that • - r-l•. One can 
also rewrite (6) as • - r t + r, where r is a vector 
formed in the same way as t, with the (/,m)th ele- 

ment being t•lm -- •l'--L+l Em'----l' Tl'm' r(l, m• l•rn •) 
for (/, m) • T•. Combining these expressions leads to 
• - t + r-it, and therefore the total MSE of the WLS 
estimators can be easily calculated according to 

2 

= tr( (• - t) (• - t) H) -- tr( r -1 ( r r") r-", 
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Figure 7. Spectral density of aliased power d11(1) for the white noise driven EBM. (a) A 98- 
station GL network (N - 1 7) with e•21 ' 0.014. (b) A 98-station LLU network with •M- 
e121 '0.042. 
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where tr(.) represents the trace of a matrix and the su- 
perscript H stands for Hermitian transpose. Similarly, 
the total MSE of •lm can be written as 

L l 

= tr[ (I -- r) (t t (i - r) + 
For a GL network of size M x N with M > 2L and 

N > L one obtains r - I, so that the total MSEs 
become e 2 - e•vœ$ = (rHr) -- (rrH). Note that in 
general the computation of the WLS estimators •Im 
requires the inversion of the matrix r, which can be 
burdensome if L is large, whereas the computation of 
•lm is quite straightforward. 

Aliased power in spectral GCMs can contaminate the 
output quite seriously. However, few modelers have 
paid much attention to the fact that the degree of non- 
linearity can also affect the required resolution of the 
networks for spectral modeling. Here the degree of non- 
linearity is defined in the same way as it is in fluid dy- 
namics. For example, the degree of nonlinearity for the 
Navier-Stokes equations is two. We feel that in order 
to achieve the aliasing-free transformation the demand 
on stations increases quadratically with the increase of 
the degree of nonlinearity. Therefore, when nonlinear- 
ity is strong, the spectral modeling approach may have 
little advantage in practice over the finite difference ap- 
proach. In particular, if the feedback nonlinearity is 
present, then the spectral modeling can cause serious 
problems due to the aliasing effect when the stations 
are insufficient. This problem deserves further research. 
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