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[1] Potential predictability of seasonal precipitation over the US is
explored using a new canonical ensemble correlation (CEC)
prediction model, which optimally utilizes intrinsic sea surface
temperature (SST) variability in major ocean basins. Results show
that CEC yields a remarkable (10-20%) increase in baseline
prediction skills for seasonal precipitation over the US for all
scasons, compared to traditional statistical predictions using global
SST. While the tropical Pacific, i.e., El Nifio, contributes to the
largest share of potential predictability in the southemn tier States
during boreal winter, the North Pacific and the North Atlantic are
responsible for enhanced predictability in the northern Great Plains,
Midwest and the southwest US during boreal summer. Overall,
CEC significantly reduces the spring-summer predictability barrier
over the conterminous US, thereby raising the skill bar for seasonal
precipitation predictions. INDEX TERMS: 3309 Meteorology
and Atmospheric Dynamics: Climatology (1620); 3339
Meteorology and Atmospheric Dynamics: Ocean/atmosphere
interactions (0312, 4504); 3354 Meteorology and Atmospheric
Dynamics: Precipitation (1854); 3367 Meteorology and
Atmospheric Dynamics: Theoretical modeling

1. Introduction

[2] It is well known that sea surface temperature (SST) in the
tropical Pacific associated with the El Nifio is the main cause of
enhanced seasonal precipitation forecasting skill for the United
States (US) during the boreal winter. However the skill drops
dramatically in the spring, reaching a minimum in the warm
season. The dramatic reduction in forecast skill from winter to
summer through the spring season is known as the “‘spring
predictability barrier”, which has been endemic in both statis-
tical and dynamical seasonal forecasts. Recent studies have
found significant predictability from tropical and extratropical
Pacific SST on warm season precipitation over the upper Great
Plains and Atlantic States of the US during El Nifio summers
[Wang et al., 1999; Ting and Wang, 1997; Ropelewski and
Halpert, 1986]. However, the forecasting skill was still relatively
low in summer, even during time of strong SST signal in the
tropical Pacific.

[3] It has been suggested that the reduced precipitation pre-
dictability in the summer over the US stems from the weaker, and
more poleward position of the upper level westerly flow in the
northern hemisphere, thus limiting the transmission of tropical
SST influence to the US continent [Lau and Peng, 1992].
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However, SST variability in other ocean basins, especially the
extratropics may begin to have an impact on US precipitation in
summer [Higgins et al., 2000]. In addition to SST, other factors
such as soil moisture, snow cover and vegetation may influence
US precipitation predictability for both summer and winter
[Koster et al., 2000]. The canonical ensemble correlation (CEC)
prediction scheme presented in this paper has been developed
with the purpose of systematically exploring potential predict-
ability from various sources and catrying out experimental
climate predictions. In this paper, the rudiments of the CEC
prediction scheme is introduced and results for US seasonal
precipitation prediction are presented.

2. Basic Concepts and Procedure

[4] The basic concept of the CEC is shown schematically in
Figure 1. Given an initial climate state, denoted by 2;, the real climate
system evolves into a climate state )¢ in some future time At > 0.
Because of changing boundary conditions and the chaotic nature of
climate evolution from the initial state, €%; or arbitrarily close-by
states, a range of possible future states, within the “event cone”, R,
may be possible. A given predictor, based on a set of canonical
variables, may produce an event cone P, that maximizes the overlap
(or minimize the distance metric) with R. If P, and R have a large
overlap, then P, is considered a good predictor for Q. Other
predictors such as P, may produce a lesser overlap with R, but it
may capture different climatic states spanned by the event cone R, not
covered by P,. This situation can be applied to other predictors Py,
which span yet other portions of the event cone R. The objective of
the CEC is to construct, based on the totality of individual canonical
correlation predictions, an “ensemble event cone™ that maximizes
the overlap with R, taking into account all possible outcomes.
In CEC, the number of predictors, represented by Py, is unlimited,
and the predictors are not subject to orthogonality constraints.

[5] Specifically, the CEC prediction model is based on linear
regressions that maximize the correlation between the weighted
integral of SST and precipitation fields including an equal-area
correction factor [Kim and North, 1998; Shen et al., 2001]. In this
study, the monthly anomaly data of SST and precipitation are
obtained by removing the climatology and linear trend and
normalized by the sample standard deviation at each grid box.
Hereafter only detrended data are used. The matrix for the
correlation eigen-problem is solved in the EOF space to obtain
the maximum correlation between the canonical correlation vari-
ables of SST and precipitation [Barnett and Preisendorfer, 1987].
The predicted precipitation field, P( + Af), is then expressed in
terms of the canonical variables of SST(¥), where ¢ denotes time and
At is the forecast lead time. To maximally extract precursory
signals in global SST, the world ocean is partitioned into non-
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Figure 1. Schematic diagram illustrating the basic concepts of
Canonical Ensemble Correlation (CEC) prediction.

overlapping sectors, and separate forecasts each using up to 6
canonical variables, are made based on different ocean sectors.
This is a crucial step, because predictions from individual sectors
allows the natural SST variability in that sector to be fully utilized
in prediction. The CEC forecast is then obtained at each grid box as
a weighted average of the individual forecasts. Here, the CEC has
an advantage over traditional Canonical Correlation Analysis
(CCA) prediction which employs direct CCA from global SST,
where intrinsic ocean variability outside of the tropical Pacific is
often obscured by the dominant El Nifio signals.

[6] The precipitation data used for this study are derived from
optimal interpolation from over 17,000 stations in the Global
Historical Climatological Network Version 2 and the Climate
Anomaly Monitoring System for the period 19511999 [Chen et
al., 2001]. The data cover the global land with a spatial resolution
of 2.5 degrees latitude-longitude. In this work, only data over the
US continent are used. The SST data are obtained from the US
National Center for Environmental Prediction for the same period
with a spatial resolution of 2° x 2° latitude-longitude [Smith et al.,
1996]. To reduce small-scale noise, the SST data are further
averaged to boxes of 4° x 6° latitude-longitude.
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Figure 2. Three-category hit score (%) for DIJF precipitation
prediction derived from SST anomalies from (a) Tropical Pacific,
(b) North Pacific, (¢) Tropical Atlantic, and (d) North Atlantic. A
hit score of 33% or less indicates the absence of prediction skill. At
5% and 1% significance levels, the greater than 33% hit scores are
approximately 45% and 48% respectively. The area with the hit
score greater than or equal o 45% is shaded.

LAU ET AL.: CANONICAL ENSEMBLE PREDICTION

208 - r ' - ON — ; £ -
130W 120W 110W 100w S0W BOW TOW 2 130W 120W 110W 100W 90w BOW T7O0W

[ E—
ashd- [ A

50N 7

45N 4
40N 4
LCTE .
JONA ¥
PLTE PRTSRSTEY |

40N1 -~

35N W
onq--o
FLE P

N v - . i : . - v - .
70 S0W 170% 1ToW 100W 9OW BOW 70W 10N 120w 110W 100W SOW 8OW 70W
Figure 3. Same as in Figure 2, except for JA.

[7] For validation, we use a bootstrapping techniques, in which
the EOFs and canonical correlation of SS7{r) and P(1r + Ar) are
computed using 48 years, with the forecasting year taken out. The
climatologies, statistics, and weights are re-computed for each 48
years. As a result, 49 hindcasts can be obtained. To avoid spurious
skill and to ensure the robustness of the statistics, we have varied
the training periods in a range from 48 to 40 years, and conducted
cross-validations of the forecasts [cf. Barnston and Van den Dool,
1993; Van den Dool, 1987]. The results presented here are largely
independent of the training period and the cross-validation techni-
que used. In this paper, we focused only on the zero-lag predictions
i.c., specification of rainfall from simultaneous SST. Predictability
of individual forecasts with Ar > 0 and further applications of CEC
are reported clsewhere. The zero-lag “prediction™ represents the
potential predictability for precipitation given perfect knowledge of
the simultaneous SST field. In practice, the zero-lag CEC predic-
tion can be used in conjunction with a two-tier forecast scheme, in
which the SST is predicted by an ocean model or a coupled model.

3. Evaluation of Potential Predictability

[8] To evaluate the forecast skill, a three-category "hit™ score is
used [Wang et al., 1999]. For each grid box, the observed
precipitation values for a given season in 49 years are sorted in
an ascending order. Three categories are formed according 1o the
first third (below normal), the middle third (normal), and the last
third percentiles (above normal). If the forecast and observed
precipitations are in the same category, the forecast is a “hit”.
The forecasting skill is the hit rate, which is the number of correct
forecasts divided by the total number of forecasts, i.c., 49. For a
no-skill random forecast, the expected hit score is 33.33%. For a
sample size of 49 years the hit rate of 45% (48%) is significantly
different from a random forecast at the 5% (1%) significant level.
Other skill scores have been tested. The results reported here are
robust and independent of the choice of skill scores.

[9] As atest of the CEC, the hit scores for US wintertime (DJF)
and summertime (JJA) predictions, based on SST in individual
ocean basins, have been computed. The ocean basins are the
tropical Pacific (TPAC, 30°S-30°N), the North Pacific (NPAC,
north of 30°N), the tropical Atlantic (TATL, 30°S-30°N), the
North Atlantic (NATL, north of 30°N), and the Indian Ocean (IND,
north of 30°S). We have also computed the skill score using the
global ocean, i.e., all ocean basins. The all-ocean skill score is
comparable to that computed from TPAC, because of the domi-
nance of the ENSO signal in an all-ocean SST EOF decomposition
(See discussion for Figure 6). In all the results shown, six dominant
EOF modes are used. The skill scores vary only slightly if more
EOFs have been used. Figure 2 shows the DJF forecast results
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Figure 4. The “influence function™ on US precipitation by SST
from dominant variability in different ocean basins. The color
indicates the most important influence from the corresponding
ocean basins. For example, the red region is most influenced by the
Tropical Pacific: (a) Season DJF, (b) season MAM, (c) season JJA,
and (d) SON.

using the SST from TPAC, NPAC, TATL, and NATL. Figure 2a
indicates that TPAC has the overall highest score and the most
spatially coherent score pattern, concentrating in southwestern US
and Mexico, and southeastern US. The NPAC (Figure 2b) contrib-
utes significant scores (>45%) in the west and southwest of US and
the Great Lakes and Ohio Valley. The TATL (Figure 2¢) and IND
(not shown) appear to have the least skill scores, compared to the
other ocean basins while the NATL (Figure 2d) is responsible for
the high hit rates in the Pacific Northwest, northeast and southwest
US. The skill score for JJA from individual ocean basin, as shown
in Figure 3, is much reduced and less organized, with the exception
of the NPAC, which appears to possess prediction skill in a region
stretching from the Gulf Coast of Texas to the northern Great
Plains and the Midwest.

[10] To evaluate the influence of each ocean basin on precip-
itation prediction over different regions of the US, each grid box
is identified with the ocean basin of *maximal™ influence, based
on the highest temporal correlation between predicted and
observed precipitation. Figure 4 shows the distribution of the
“influence function™ for US precipitation predictability for all
four scasons. During DJF (Figure 4a), it is clear that the TPAC
has the strongest influence across the southern states, spanning the
southwest, Mexico, the Gulf Coast, the southeast and the eastern
seaboard. The TPAC influence reaches up to the mountain states
and central US. The NPAC has the strongest influence in the Ohio
Valley and the northwest, while the NATL controls the northeast-
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Figure 5. The spatial distribution of the CEC precipitation skill
score over the US for (a) DJF and (b) JJA. The area with the hit
score greater than or equal to 45% is shaded.
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Figure 6. The seasonal cycle of the mean seasonal forecast skill
for the selected regions: (a) North American Monsoon, (b) Pacific
Northwest, (¢) West Coast and Mountain States, (d) Great Plains
and Midwest, (¢) Gulf Coast, and (f) Mid- Atlantic coast. The thick
solid line indicates the CEC forecast. The forecasts from the five
individual ocean basins and global ocean are as indicated by
different colored lines, e.g.. the red solid line represents the skill
from the TPAC.

em seaboard, Northern California, Idaho, and Montana. During
MAM (Figure 4b), the influence of the TPAC reduces substan-
tially, while the NATL gains influence in the northeast and along
the East Coast. Other regions appear to have comparable, but
generally weaker influences (relative to the wintertime) from differ-
ent ocean basins, The previously noted lower skill score in JJA is
also reflected in the rather disorganized pattern of the influence
function all over the US (Figure 4c), with perhaps the exception of
northern Great Plains which is subject to the strongest influence
from the North Pacific. The JJA pattern suggests a lack of a single
dominant SST-related forcing mechanism for US summertime
precipitation variability. In SON (Figure 4d), the dominant influ-
ence from the NPAC emerges over the Pacific Northwest, the
central mountain and southwest states, and the Northern Great
Plains/Midwest region. Elsewhere, the TATL appears to have
gained influence relative to the other ocean basins. It is clear from
the foregoing results that EI Nifio effect, through SST in the TPAC,
is not always the major contributor to rainfall signal over the US,
especially in the warm seasons.

[11] The CEC forecast is obtained from cach individual ocean-
basin forecast by assigning an appropriate weight for each forecast
at every grid point. In this paper, we will show results for the
simplest version of the CEC forecast, which is obtained by
assigning a weight of unity to the most skillful forecast and zero
to the rest, based on the 48-year training period. The result of this
CEC is not too different from those based on the super-ensemble
approach [Krishnamurti et al., 2000] with forecast weights propor-
tional to the regression coefficients. From a comparison of Figure 5
and Figures 2 and 3, it is clear that the CEC forecasts raises the
skill score in all regions, relative to the forecasts from individual
ocean basins regardless of the season. In DJF, the skill score
increases substantially in the Pacific Northwest and the Great
Lakes/Ohio Valley, most due to the inclusion of SST signal from
the NPAC and the NATL (see Figure 2). In JJA, arcas with hit
scores significantly greater than random forecast skill increase
substantially, especially in northem tier states and in the southwesL.
The increased score in JJA is mostly derived from SST signal from
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the NPAC and NATL. Note that the 49-year mean CEC skill scores
for DIJF and JJA are generally higher and cover more areas than
previous studies based on ENSO years only [Wang et al., 1999].

[12] The increase in skill score by the CEC is robust and
applicable to all regions and all seasons, as evident in the averaged
skill score over six representative regions of the US, i.e., the North
American Monsoon region (NAM: 105-115°W, 20-32°N), the
Pacific North West (PNW: 120-127°W, 40-50°N), West Coast/
Mountain States (WC/MS: 105-125°W, 32-40°N), Northern
Great Plain/Midwest (NGP/MW: 87—105°W, 37-45°N), the Gulf
Coast (GC: 80-100°W, 25-32°N), and the Mid-Atlantic (MA:
70-77°W, 32-42°N). Shown in Figure 6 are the 49-year mean
skill scores for CEC, and for the five individual basins and the
global ocean for three-month means running throughout the entire
annual cycle, averaged over the six regions. For all regions,
regardless of the time of the year, there is a substantial increase,
ranging from 10-20%, in the CEC skill score compared to those
from the global ocean and from individual basins. Notice that the
skills for the global ocean follow closcly those of the TPAC. The
increase in CEC skill is most notable in the spring and summer,
thus greatly reducing the spring predictability barrier. In regions,
such as NAM and the GC, the increase is only modcst during the
boreal winter, presumably because all the predictable SST signal is
due to El Nifio, which is already maximally extracted from the
tropical Pacific. However in other regions such as WC/MS, PNW,
and NGP/MW, the wintertime skill scores are also substantially
increased. ‘

[13] Most interesting, the NGP/MW regions show a skill score
of approximately 50% for both summer and winter. In the one-
season lag forecast (not shown), the skill score for this region is
actually higher in the summer than in the winter, mainly due to the
tmpact of the North Pacific SST. This result is consistent with the
recent findings [Lau and Weng, 2000a, 2000b], which showed that
enhanced summertime precipitation in the northern Great Plains
and Midwest may be related to the occurrence of global monsoon
modes, which are sustained by air-sea interaction over the North
Pacific.

4. Potential Application of CEC

[14] Results of the CEC forecast model for seasonal precipita-
tion prediction have shown a remarkable across-the-board increase
in prediction skill for major regions of the US regardless of the
time of the year. Further increase in skill scores is conceivable by
stratifying the data according to phases of major climate events
such as ENSO and/or other major decadal climate signals. It is
worth noting that the CEC skill reported here, averaged over 49
forecasts, without stratifying, is comparable to, or better than the
prediction skill of the previous study for ENSO events [Hang et
al., 1999]. When the skill scores are stratified according to El Nifio
and La Nifia, results (not shown) indicate that additional improve-
ment in forecast skills (>60-70% hit rates) can be achieved in the
NGP/MW and NAM Region. Another significance of the CEC
forecast is its implicit use of the nonlinear interaction among the
SSTs over different ocean basins and precipitation over the US.
The nonlinearity is reflected in the forecast results since the CEC
forecast from all oceans is far better than the sum of the forecasts
from individual ocean basins and the forecast from global SST. We
note that predictability may also be further increased by including
soil moisture, snow cover, and other regional data that provide
additional information independent of large scale SST. However,
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because of the use of information not available in real forecasts and
validation, the actual forecast skills are expected to be lower than
the potential predictability estimated here. How much of the CEC
potential predictability can be hamessed in actual precipitation
forecasts using either empirical means or dynamical models is a
major challenge for future research.
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