Environmetrics; 1992; 3(1): 15-27

Minimum Error Estimates of Global
Mean Temperature Through
Optimal Arrangement of Gauges

James W. Hardin', Gerald R. North?* and Samuel S. Shen3

ABSTRACT

This paper considers the minimum mean squared error (MSE) incurred
in estimating an idealized earth’s global average temperature with a finite
network of point gauges located over the globe. We use a spectral MSE
formalism to find the optimal locations for N gauges in the problem of esti-
mating the earth’s global average temperature. Limiting MSE configurations
are obtained as the limiting least error case for randomly distributed samples
of size N. Our results suggest that for N greater than about 60, one can
obtain estimates such that the amount of measured variance due to sampling
error is less than 10%, a result likely to be acceptable to climatologists.
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1. INTRODUCTION

There have been many studies on the estimation of the apparently in-
creasing global average surface temperature (cf., Hansen and Lebedeff 1987;
Jones et al. 1986a and 1986b; Houghton et al. 1990). Typically, these anal-
yses consider the trend in the mean temperature and attempt to either
forecast the time series or analyze the slope of a fitted model in order to
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investigate evidence of possible global warming. North, Shen, and Hardin
(1992), denoted NSH hereafter, have presented a formalism useful in making
quantitative assessments of the mean squared error (MSE) incurred in esti-
mating the global average temperature with a finite number of distributed
gauges over the sphere. This formalism is a spherical version of the planar
case derived for area averaged rain rates (North and Nakamoto 1989). The
technique is especially amenable to the development of least MSE strategies.

In the real world, the climatologist is constrained by the given locations
of gauges comprising his gauge network. These strongly favor the inhabited
and more developed parts of the world and in particular, the oceans are
typically poorly represented. We will focus here on an idealized case of
an earth which has rotationally invariant statistics on the sphere; i.e., the
covariance of the surface temperature evaluated between a pair of points
depends only on the great circle distance between the points. This tends to
be the case for earth when temporal smoothing is very broad; i.e., the low
frequency limit (Kim and North 1991).

We ask the very interesting theoretical question: For a given number of
gauges, N, what is the least MSE one might obtain? Clearly, this will occur
when the gauges are simultaneously ‘equidistant’ in some sense. The problem
is identical to that of finding the equilibrium configuration of N equal point
charges confined to a spherical surface. The problem of minimizing the
potential energy is identical to the problem of finding the locations for the
minimum MSE. Likewise, the problem is identical to the Gauss quadrature
problem of finding the locations of N optimal points in performing an integral
if the weights are constrained to be equal. There exist formulas for spherical
quadrature in estimating the numerical solution for integrating a function on
the surface of the sphere, but solutions do not exist for the optimal locations
for a general N.

Many approaches could be taken to find the optimal locations of the
N gauges. For example, one could take the partial derivatives of the MSE
with respect to the latitude and longitude of the point gauges and set the
results to zero. This would result in 2N nonlinear algebraic equations to
be solved for 2N roots, a formidable problem for N ~ 100. A second ap-
proach is to view the problem as one in Newtonian mechanics and integrate
the equations of motion of N particles confined to the spherical surface and
under the influence of conservative repulsive forces. The introduction of fric-
tion would damp out oscillations. A third approach, and the one we adopt,
is to introduce realizations of N gauges randomly located on the sphere.
This Monte Carlo approach can be performed in various ways. The simplest
approach is to perform straightforward random realizations looking for the
configuration which provides the minimum MSE. Alternatives to this ap-
proach include attempting to determine if a given random configuration has
no pair of gauges within a predetermined distance. However, this requires
a considerable search for each realization. The brute force method will con-
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sider some configurations with gauges too close together, but increasing the
number of iterations should overcome these cases and arrive at the desired
result.

2. A SAMPLING ERROR FORMULA

Since the derivation of the MSE formalism has been shown in NSH, we
present here only a very brief discussion of the problem. Identical assump-
tions presented in NSH on the smoothness of the autocorrelation function
and the notational convenience of assuming a zero mean process are used
here. We denote the long term temporal average surface temperature at a
point 7, a unit vector pointing from the earth’s center as @(72). The as-
sumption of spherical homogeneity leads to the form for the autocovariance

function
t (B(R)B(")) = o*p(i - ') (1)

where the angle brackets () denote the ensemble average, 0% = (@2('&))
is the low frequency variance of the temperature field; and by definition
p(1) = 1. As in NSH, it is convenient to develop p(# - #') into a Fourier
Legendre series,

[ o]
p(h i) = 3 (20 + DpuP(i - ') (2)
=0
where equality holds under the assumption that the expansion converges
almost everywhere.
Utilizing this approach, one can write the variance of global average
temperature as
0% =0’po . (3)

For a given array {N} of gauges, NSH were able to derive the formula
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The p, are the degree variance spectrum for the low frequency fluctua-
tions of the temperature field. NSH also provide a parametric form for this
spectrum under a simple stochastic model for the temperature field. Thus
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and, because of the normalization,
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which fixes po for a given climate length scale Ag. In what follows, the op-
timal configurations obviously do not depend on the specific value of A or,
even to a large extent, upon the form of p; (the only constraint is that the
‘charges’ should be repulsive!). The MSE, however, will depend sensitively
on the value of Ag and the form of p;, the climate length scale and the ‘red-
ness’ of the spatial spectrum. The value of )¢ is then to be 13/50 (which leads
to po = .0613) to agree with data and the earlier assumptions. Finally, we
choose a cutoff value L for the summation over the spherical harmonic in-
dices imposing the assumption that the contributions to the overall variance
from the spectral degrees higher than L are negligible.

As in NSH, we construct two figures of merit for a given network of
gauges. The variance signal to noise

o2
Ay = 6—? (7)

and the percentage of measured variance due to sampling error,

€2
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3. MONTE CARLO EVALUATION OF THE SAMPLING ERROR

Natural questions arising from our formulation include:

1. At what rate does the sampling error tend to zero as the number
of gauges increases to infinity?

2. What is the gain in adding gauges to the network in terms of sam-
pling error reduction?

3. What role, if any, does the cutoff value L take in the calculation of
the sampling error for small values of L; clearly it is equivalent to
setting p; = 0 for { > L (band limited processes).

In the next few sections we present numerical estimates of the answers
to the above questions by relating previous work and presenting the results
of a Monte Carlo study of the sampling error. Works such as Hansen and
Lebedeff (1987) pointed out that the spatial coverage of a single temperature
gauge (calendar annual averages), owing to spatial correlation, may be as
much as 1200 kilometers. Others have given numbers as high as 1500 kilo-
meters for the ‘reach’ of the gauges, where reach is defined as the distance
at which the correlation between two gauges falls to below 1/e. If one takes
a planet the size of earth, then the number of gauges needed to effectively
‘cover’ the planet is approximately 65. In looking for the minimum sampling
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error for a given number of gauges, N, how does one find the optimal loca-
tions for the gauges? This is analogous to equal interval sampling in time
series analysis as what we seek is the most equipartitional configuration of
N gauges, {N*}. In unidimensional integration, the well-known Gaussian
quadrature methods include techniques for estimating the error incurred in
using the numerical technique. Gaussian quadrature also allows the user
twice as many degrees of freedom in that the technique not only chooses
the weights used at every point of evaluation, but also treats the locations
themselves as random variables.

However, while one-dimensional domains are well established in the lit-
erature, spherical quadrature techniques (see, for example Stroud, 1971, or
Stroud and Secrest 1966) essentially amount to finding the roots of many
simultaneous equations, and formulas for calculating the errors and/or error
rates do not exist. Thus, we took the Monte Carlo approach. The Monte
Carlo approach is not expected to be a very efficient method for finding the
precise locations of the N optimal gauges. However, we conjecture that the
minimum is a rather broad one with small curvature (a frequency histogram
of the MSE for random configurations should be skewed to the right); hence,
our estimate of the minimum MSE should be rather robust.

The Monte Carlo approach to answer these questions consisted of a C
program that generated random positions uniformly on the sphere. Given
the number, N, of gauges, the program would randomly generate a config-
uration and then calculate the sampling error. At the end of the program,
the minimum sampling error and the configuration corresponding to the
minimum sampling error was output to a file. In order to eliminate identi-
cal solutions due to the inherent periodicity of random number generation
algorithms, the program was executed in batches of 25,000 random config-
urations so that the random number seed could be changed. In the case
of a cutoff value of L = 15, each network of gauges (sample sizes include
1,2,...,10,15,20,...,100) was considered in the Monte Carlo program a
total of 100,000 times. That is, for each sample size N, 100,000 configu-
rations were randomly simulated in lots of size 25,000 where each lot was
initiated with a different random number seed. After this initial investiga-
tion, it was acknowledged that the cutoff value L might impose alength scale
in the calculation and thus affect the conclusions. Therefore, we considered
an additional 100,000 configurations for each sample size using cutoff values
L =5 and L = 25. In Table 1 we present the variance signal to noise index
calculated for each sample size, and in Figure 1 we present a plot of these
values for each cutoff value L. Future studies wishing to find the actual op-
timal configurations for each configuration might wish to use a more elegant
search method, but the gain in signal to noise will be small. This can be seen
by comparing the configurations given in Table 2 of NSH for only 2 gauges.

One can see from the results for the variance signal-to-noise ratio that
the choice of cutoff may affect the results in size but that the relative dif-
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Figure 1. Signal to noise ratio of minimum Monte Carlo MSE gauge configuration

for two cutoff values in the spherical harmonic expansion (L = 15,25) and the

theoretical mean sampling error for all possible configurations (shown as Ag\?}n 4}

for L = 15) versus the variance of an area average.

ference in the ratio between sample sizes is not affected. It is clear that a
cutoff of L = 5 suppresses a significant amount of error variance and leads
to unsatisfactory results for earth-like parameters (Ao =15/50). That the
curves for L = 15 and L = 25 are so similar suggests that the results are
reliable for these cutoff values. We expect a straight line for each of the plots
since for very sparse designs (N < 65) the individual point estimates will
be essentially independent, leading to the familiar standard error law. As N
becomes sufficiently large, the straight line should turn over as the measure-
ments become more dependent. In fact, we do find this for a sample size of
150, but it is not shown here since only 10,000 iterations of this sample size
are performed due to excessive computer time and the fact that we are not
looking for the exact point at which the line turns over. Since we had failed
to capture so much of the variance between gauge locations using a cutoff
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Number AN An AN
of Gauges L=5 L=15 L=25
1 0.10 0.07 0.07
2 0.23 0.13 0.14
3 0.37 0.24 0.23
4 0.58 0.35 0.33
5 0.78 0.46 0.44
6 0.96 0.61 0.57
7 1.50 0.73 0.69
8 1.83 0.88 0.83
9 2.24 1.05 0.99
10 2.83 1.23 1.11
15 4.66 2.08 1.90
20 6.43 2.87 2.87
25 11.22 3.61 3.46
30 9.94 4.80 4.11
35 14.86 5.47 5.23
40 15.27 6.74 5.57
45 20.83 6.98 7.22
50 28.63 7.94 7.08
55 23.07 8.81 8.02
60 25.51 9.95 8.74
65 25.61 10.73 9.74
70 24.78 11.31 10.56
75 25.92 12.02 11.77
80 37.18 14.99 11.75
85 32.77 13.13 12.90
90 33.84 14.87 14.34
95 37.64 14.97 14.63
100 39.46 15.48 14.74
125 54.79 19.32 19.09

Table 1. Signal-to-noise ratio of sampling error to the variance of an area average
for minimum Monte Carlo MSE gauge configurations for various cutoff values in
the spherical harmonic expansion (L = 5,15, 25).
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value of L = 5, we do not include them in the figures, but show the values
in the table so that comparisons may be made. Instead, we show the values
associated with the overall mean of randomly placed gauges. In section 4
of NSH, the signal-to-noise ratio for averaging over all configurations of ¥
gauges was shown to have the relationship

Ag%‘}d = NA(, (10)

where the sampling error variance incurred on the average for N randomly
located gauges is the same as for NV independent measurements with a single
gauge.

In Table 2, we present the percent contribution to the total variance by
the sampling error and a plot of the values are given in Figure 2. One can
see that to decrease the percent variance to below 10%, using a cutoff value
of 15, necessitates a configuration of about 55 or 60 gauges. In the following
section we compare our optimal values with those expected from a specific
network of 63 gauges commonly used in climatology.

4. ANGELL-KORSHOVER CONFIGURATION

In a study of tropospheric and stratospheric temperature variations, An-
gell and Korshover (1983) used a network of 63 radiosonde stations for data
collection. This configuration has also been used for global surface tempera-
ture estimation. They characterized the network as “well-distributed” and in
this section we would like to investigate this claim. Recall that these stations .
were used in a study of the real earth’s climate while we have considered a
planet with rotationally invariant statistics. Qur aim in studying this pa-
per is purely to investigate the available configuration of earth temperature
gauges in our present analysis of sampling errors on our simplified planet. A
study of the errors of the regional, zonal, and global means in terms of the
trend and the standard deviation has been presented (Trenberth and Olson
1991) using simulations with numerical atmospheric models. We believe our
approach is more general and leads to additional insight into the estimation
problem. The locations of the 63 stations are shown in Figure 3.

If we use this network of gauges and insert the locations into (9), we
obtain

Vangen = 14.89% . (11)

One can see that this compares with the optimal configurations of between
35 and 40 gauges. In fact, Figure 2 shows that the decrease in percent
contribution to variance by adding gauges is very low once we have 40 gauges.
This means that the cost associated with adding temperature gauges may
outweigh any gain in precision which is what we see in this example.
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Figure 2. Percent of measured variance due to sampling error for the minimum
Monte Carlo MSE gauge configurations for two cutoff values in the spherical har-
monic expansion (L = 15,25) and the theoretical mean value for all possible con-

‘/{rand}

figurations (shown as (N} using L = 15) versus the number of gauges.

An interesting comparison with optimal locations can be made by ex-
amining the histograms provided in Figures 4 and 5. Figure 5 graphically
depicts that the value obtained for the Angell-Korshover is at about the
tenth percentile for random configurations of 60 gauges and Figure 4 shows
the minimum for 40 gauges to be slightly less. The skewness exhibited in
both of these histograms is not as pronounced as we had anticipated, yet
still appears to be long tailed to the right. In fact, the minimum value for
60 gauges, as seen in Table 2, is 8.53%.

5. CONCLUSIONS

The addition of gauges to an optimally located network of 45 or 50
gauges has little effect on minimizing the MSE for our model earth. In
terms of cost, there is little return in terms of relative MSE reduction for



24 J. W. HArRDIN, G.R. NORTH AND S.S. SHEN

Number Vn Vn VN
of Gauges L=5 L=15 L=25
1 91.23 93.51 93.74
2 81.56 88.41 87.47
3 72.80 80.56 81.27
4 63.38 74.18 75.15
5 56.09 68.31 69.45
6 50.91 62.13 63.67
7 40.01 57.74 59.02
8 35.32 53.21 54.59
9 30.82 48.73 50.29
10 26.12 44.81 47.46
15 17.65 32.44 34.54
20 13.46 25.82 25.82
25 8.18 21.71 22.41
30 9.14 17.25 19.56
35 6.30 15.45 16.05
40 6.15 12.93 15.23
45 4.58 12.53 12.17
50 3.38 11.18 12.38
55 4.15 10.20 11.09
60 3.77 9.14 10.26
65 3.76 8.53 9.32
70 3.88 8.13 8.65
75 3.11 7.68 7.83
80 2.62 6.25 7.84
85 2.96 7.08 7.19
90 2.87 6.30 6.52
95 2.59 6.26 6.40
100 2.47 6.07 6.35
125 1.79 4.92 4.98

Table 2. Percent of measured variance due to sampling error for the minimum
Monte Carlo MSE gauge locations versus the number of gauges N for various cutoff
values in the spherical harmonic expansion (L = 5,15, 25).
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Figure 3. Sinusoidal projection of Angell/Korshover temperature gauge locations.

adding a small number of gauges. The preceding section also illustrates the
gain in minimizing MSE by considering optimally located gauges. One could
instead consider finding optimal weights for a given network of gauges instead
of changing the design. This problem may be of more practical concern to
climatologists as they do not have the freedom to choose gauge locations
(though they do have the freedom to choose the best subset of locations from
given data). Most studies would use all available data. Our emphasis on the
best subset is in the sense of the relative gain in adding locations. Optimal
weighting is similar to the optimal interpolation problems found in mining
geostatistics examined with various kriging methods. Another generalization
to the proposed approach to sampling error estimation we would like to
consider is adding the time component to the analysis. This latter will break
the rotational symmetry since ocean and land exhibit different correlation
lengths for time smoothing of less than 5 years (see, for example, Kim and
North 1991).

Our spectral MSE formalism leads to the optimal error versus number
of gauges curve. This should serve as a useful guide to climatologists in
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Figure 4. Frequency histogram of the percent variation explained by the network
of 40 gauges for 100,000 random configurations using cutoff value I = 15 in the
spherical harmonic expansion. The mean of these configurations is 26.26% while

1/(1+ 40A7974) = 26.47% showing agreement with the earlier theoretical results.
{1}
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Figure 5. Frequency histogram of the percent variation explained by the network
of 60 gauges for 100,000 random configurations using cutoff value I = 15 in the
spherical harmonic expansion. The mean of these configurations is 19.24% while

1/(1+4 60A727) = 19.36% showing agreement with the earlier theoretical results.
{1}
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their design of global observing systems. We are intrigued by a class of
other estimation problems in spherical geometry which are analogous to
those on the real line encountered in equal interval sampling in time series
analysis. For example, in a band limited process (one for which p; = 0 for
! > L), a finite configuration N > Ng(L) could be used to calculate spectral
quantities with zero error in analogy to the famous sampling theorem. Other
interesting problems include assessment of aliasing in the estimation of the
spherical harmonic degree spectrum.
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