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ABSTRACT

The spatial and temporal characteristics of rainfall over Oklahoma and Kansas are analyzed in this paper
using the raingage data collected during the Preliminary Regional Experiment for STORM-Central (PRE-
STORM). The autocorrelation function and the spectrum are obtained directly from both processing the raingage
data and using a theoretical stochastic model of space-time precipitation. This theoretical model serves as an
intermediate step to obtain more information from the raingage records. The spectra obtained are then compared
with those obtained from oceanic precipitation in the GARP ( Global Atmospheric Research Program) Atlantic
Tropical Experiment (GATE) and with that obtained from analyzing raingage records in east Texas. Finally,
the spectra are used to evaluate the sampling errors that are due to the spatial gaps in measurements. The
sampling error is expressed as an integral over the product of the spectral density of the stochastic rain field and
a filter function. This filter function solely depends on the space-time configuration of the measurement in-
struments. The values of the analytical and numerical results on the sampling error are obtained for ground,
spaceborne, and combined sensors of precipitation for several aggregation levels in space and time and alternative
spacing and visiting times. It was found that sampling errors of land precipitation are higher than those reported

for ocean precipitation.

1. Introduction

Precipitation measurements on a giobal basis have
a high priority in several national and international
meteorological space plans. Spaceborne sensors are the
main instruments that can provide this information
(cf. Simpson et al. 1988). Our present program in-
cludes evaluation of the errors due to spatial and/or
temporal gaps in measurements from space sensors and
associated ground networks for the estimation of area-
averaged time-lumped precipitation. The simplest ap-
proach to the quantification of these sampling errors
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appears to be that of North and Nakamoto (1989).
Their approach requires the mathematical represen-
tation of the precipitation process or at least its space-
time spectral density. An alternative approach to es-
timate these sampling errors is to use Monte Carlo
methods (e.g., Bell et al. 1990). Other studies where
the sampling errors of precipitation measurements for
raingage networks are Huff (1970), Zawadski (1973),
Rodriguez-Iturbe and Mejia (1975), Bras and Rodri-
guez-Iturbe (1976), Silverman et al. (1981), and Ga-
briel (1981). A summary of raingage-network design
approaches is found in Bras and Rodriguez-Iturbe
(1985).

North and Nakamoto (1989) established an analyt-
ical technique to estimate the mean-square sampling
error of measurements of the rainfall process due to
intermittence either in space (raingages) or in time
(spaceborne sensors). In their work, the mean-square
sampling error €2 is expressed as an integral over fre-



375

quency fand two-dimensional wavenumber (v, v,)
with an integrand consisting of two factors: a design-
dependent filter |H(/, v,, vy)l2 and the frequency-
wavenumber spectral density of the precipitation field
S(f, vy, v,). Namely,

2 = fff |H(f, vx, uy)|2S(f, vy, vy)dfdvedy,. (1)

The appealing aspect of (1) is that the information
about the sampling design and the properties of the
rain field are clearly factored. Thus, the sampling error
from a given measurement design (e.g., raingage net-
work and satellite) is solely governed by the spectral
characteristics of rainfall. It is interesting that this figure
of merit, €2, only depends on the second moments of
the rain field.

Our present analysis of rainfall spectra is motivated
by its presence in (1). Likewise, our discussion of the
spectra is directed toward the resultant sampling errors.
This present study examines spectra from data in two
distinct manners. On one hand, we examine the spectra
directly from observational records. On the other hand,
we examine them by way of a stochastic rainfall model
tuned by the observational data. For our study there
are only a few cases [like the GARP (Global Atmo-
spheric Research Program) Atlantic Tropical Experi-
ment (GATE)] where rainfall datasets exist in a con-
venient form with large areal coverage and high tem-
poral and spatial resolutions. In these cases, standard
spectral estimation techniques can be applied. To help
compensate, we include the additional tool of the sto-
chastic rainfall model developed by Waymire et al.
(1984; hereafter the WGR model). It can extrapolate
the missing information and provides an alternative
way to estimate the spectrum. It should be acknowl-
edged that the assumptions of the model limit the shape
of the spectrum.

In this paper, the observational spectra are obtained
from the GATE and from the PRE-STORM (Prelim-
inary Regional Experiment for STORM-Central ) ex-
periments. In addition, the study examines the spectra
from the WGR model tuned to both the GATE and
PRE-STORM experiments and to raingage data from
eastern Texas. Where possible, the observational and
model-based spectra will be compared. One purpose
for using both GATE and PRE-STORM experiments
is to compare and contrast the differences in midcon-
tinental precipitation to oceanic precipitation.

After a discussion of the data and spectral estimates,
our attention turns to the stochastic rainfall model. An
analytical expression for the spectrum in terms of the
model parameters will be used along with values for
the various parameters estimated from the data. Finally
we conclude with a discussion of the sampling errors
and their consequences for estimating large space-time
averages of rainfall like those proposed for the Tropical
Rainfall Measuring Mission (TRMM; Simpson et al.
1988).
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FIG. 1. The PRE-STORM area over the central United States. The
circles indicate PAM locations and the crosses indicate the SAM
sites.

2. The spectrum of PRE-STORM

PRE-STORM was a field experiment in 1985 de-
signed to record meteorological information from
convective activity over Kansas and Oklahoma. Figure
1 shows the PRE-STORM area and the mesonet sites
that collected the rainfall data used in this study. These
sites were placed nearly 50 km apart on an 10 X 8 grid.
The circles in Fig. 1 denote the locations of the Portable
Automated Mesonet (PAM ) stations, while the crosses
denote the locations of the Stationary Automated Me-
sonet (SAM) stations. Further details on the PRE-
STORM experiment are discussed by Meitin and Cun-
ning ( 1985).

Rainfall in 5-min aggregations were reported at each
of the mesonet sites from 1 May 1985 through 27 June
1985. In this study, the records at each site were ex-
amined for missing and obviously spurious data. These
missing and spurious data were replaced by linearly
interpolated values. In nearly all cases, this resulted in
setting these flagged points to zero. At most sites, less
than 5% of the data were interpolated, although at eight
locations about 15% of the data were interpolated.

For our study, the data were analyzed as a contin-
uous space-time field. The space~time spectral density



FEBRUARY 1993

was estimated separately for May and June from non-
overlapping 15-min aggregated samples. The spectral
densities were obtained by squaring the Fourier coef-
ficients and smoothing in wavenumber and frequency
space (see, for example, Bartlett 1978; Chatfield 1980).
With a raingage spacing of 50 km, much of the spatial
information of individual storms was lost and the spa-
tial spectra represent only the largest spatial scales of
rainfall. Additionally, some of the power at large wave-
numbers was most likely aliased into the lower wave-
numbers. As a result, these spectral densities can only
provide a lower limit on the sampling errors of raingage
networks because the power at large wavenumbers is
a major contributor to these errors. However, not all
space-time information was lost. As seen in the PRE-
STORM spectra in Figs. 2 and 3, there is a concentra-
tion of power along a line indicating eastward propa-
gation in both May and June. The eastward-propagat-
ing power is spread about a 25 km h™' phase speed
denoted in the figures by dashed lines. This phase speed
is representative of the large-scale motion of the rainfall
field and will be used in later sections involving the
stochastic rainfall model (this propagation is also ob-
served at the other north-south wavenumbers as well).
In contrast, there is no apparent propagation in the
north-south direction. By experience, the castward drift
is not unexpected since storm systems typically move
from west to east across Kansas and Oklahoma.
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FIG. 2. Frequency-wavenumber spectrum of PRE-STORM rainfall
for May. This portion of the spectrum is for the north-south space
wavenumber zero (i.e., », = 0). The contour lines follow a logarithmic
scale. The ratio between adjacent contour lines is ¢35,

376

0.30

0.20 -

0.10

Frequency (1/hr)

-0.10-{

-0.20

-0.30-

-0.40

-0.004 0.004 0.008

East-West Wavenumber (1/km)

-0.008

FI1G. 3. Frequency-wavenumber spectrum of PRE-STORM rainfall
for June. This portion of the spectrum is for the north-south space
wavenumber zero (i.c., », = 0). The contour lines follow a logarithmic
scale. The ratio between adjacent contour lines is %5,

Also observed in Figs. 2 and 3 is the general character
of both spectral densities. Besides the eastward-prop-
agating power, the spectra are red, decreasing power
with increasing wavenumber and frequency. Further-
more, the spectral densities are quite noisy, a charac-
teristic of the strong spatial and temporal intermittency
of rainfall. The temporal spectral density with », = 0
and v, = 0 (hereafter the temporal spectral density)
for the PRE-STORM data is shown in Figs. 4 and 5.
This plot contains the data along the v, = 0 axis shown
in Figs. 2 and 3. These figures reveal the rapid decrease
in power out to time scales near 4 h. At higher fre-
quencies, the power is more uniform, tending toward
a white spectrum. The flat nature of the spectra at these
frequencies may reflect the sampling characteristics of
the sparse raingage network, where individual storms
often appear as é functions within the measurement .
network.

There is no strong peak in these spectral densities at
the diurnal cycle. Two possible reasons may contribute
to a lack of a spectral peak at this frequency. First of
all, there is a phase progression across the central
United States in the diurnal cycle (Wallace 1975).
Thus, the spatial average contained in the temporal
spectral densities (i.e., zero wavenumber component )
would act to smear the peak at the diurnal cycle. Sec-
ond, only a record of rainfall 57 days long is being
analyzed, a relatively short time series considering the
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FIG . 4. Temporal spectrum of PRE-STORM rainfall for May. The
dashed line indicates the spectra derived from the WGR model. Both
spectra are normalized by their variance.

large fraction of time it does not rain. [It is suggested
that 90 days are needed to extract a diurnal cycle (T.
Bell, personal communication).]

Another spéctrum derived directly from observations
is from the GATE experiment and was first reported
by Nakamoto et al. (1990) from the radar records of
Arkell and Hudlow (1977). The temporal spectra of
GATE are shown in Fig. 6 along with a portion of the
PRE-STORM spectrum. While there are differences in
the resolution and sampling characteristics between
GATE and PRE-STORM, a comparison of the spectra
provides a “quick look™ into the possible satellite sam-
pling-error differences between oceanic- and land-based
rainfall. All the spectra in Fig. 6 have been normalized
following Nakamoto et al. (1990) to highlight the dif-
ferences in the shapes of the spectral density functions.
Besides the peak near the diurnal cycle in one of the
GATE spectra, both the GATE and PRE-STORM
spectra follow the same general shape down to time
scales near | h. Below this frequency, the GATE
spectra drop off at a faster rate than the PRE-STORM
spectra. The results of Nakamoto et al. (1990) indicated
that at these higher frequencies the GATE spectra fol-
lowed an f ~* dependence, although the PRE-STORM
spectral densities from period of 2 days down to 4 h
appear to follow an />3 dependence. This slope is
consistent with the slope reported by Crane (1990) for
similar frequencies obtained from radar measurements.
The spatial smoothing of the GATE data (4-km av-
erages ) may account for some of the reduced variability
at higher frequencies. In contrast, the sampling error
of the sparse network of gauges in PRE-STORM may
enhance the “white” character observed in the higher
frequencies in Figs. 4 and 5 and may have also ac-
counted for the absence of a diurnal cycle. The con-
sequence of the sharper decay of the temporal spectra
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FIG. 5. Temporal spectrum of PRE-STORM rainfall for June. The
dashed line indicates the spectra derived from the WGR model. Both
spectra are normalized by their variance.

of GATE implies a smaller satellite sampling error
(demonstrated in later sections).

3. Parameters and spectrum of WGR model

The WGR stochastic rainfall model incorporates
many observed features of rainfall. A couple of features
specifically included into the model are “rainbands™
and the clustering of rainfall in both space and time.
The model represents rain in a hierarchical approach,
with rain cells embedded in cluster potential centers
that are in turn embedded in rainbands. [ Readers are
referred to the original paper by Waymire et al. (1984)
for further details.]

% ——— PRE-STOAM Spectrum
+  GATE Spectrum #1
x  GATE Spectrum #2

Spectral Density

T T —————
102 10"
Frequency (1/hr)

FIG. 6. A comparison of GATE and the PRE-STORM frequency
spectra over the entire record. The GATE spectra has been adopted
from Nakamoto et al. (1990). All spectra have been normalized
following Nakamoto et al. The straight lines indicate possible slopes
observed in these spectra.
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TABLE 1. WGR-estimated parameters from PRE-STORM for May. The SSQ is a measure of the fit, u is the mean, &2 is the variance, p,
is the temporal lag-1 autocorrelation, and p, is the simultaneous cross correlation of sites 50 km to the east.

Parameter
Temporal aggregation (h)
A 223 « B i
0.5 1 2 3 6 ™ ™Y (™) t™ {mm h™") v SSQ
i, P p1, & 0.0191 0.0013 2.842 0.384 151.6 5.982 0.028
’ pX
i, p1 o1, & 0.0191 0.0011 1.031 0.761 206.1 1.796 0.038
o7, px
o, Py p, & 0.0292 0.0005 1.010 0.415 187.1 2.982 0.421
7%, Px
U, P 01, 02 0.0292 0.0010 1.196 1.106 130.3 2.982 0.064
0, Px
u, py p1, 0% 0.0292 0.0012 3.788 1.106 194.2 4.648 0.112
‘72; Ox

The parameters of the WGR model are defined as
follows: A, is the average time (h) between storms; p;
is the average number of cluster potential centers in a
rainband per unit area (km™2); i is the maximum
rainfall cell intensity at the moment of birth and at the
center of the cell (mm h™?); ¢ is the cluster spread
factor (km); 8 is the cellular birth rate (h™'); E[v] is
the average number of cells per cluster potential center;
u = (uy, ) is the vector of average storm velocities
(km h™'); aris the attenuation coefficient in time (h™');
and D is the attenuation coeflicient in space (km). The
original formulation assumed no particular distribution
for v or iy. In this version, v is chosen to be a Poisson
random variable, while i, is chosen to be a constant.

The parameters were estimated using a technique
that is similar to the one described by Islam et al. (1988)
by using temporally aggregated records. This numerical
method finds the minimum of the sum of the squares
of the normalized deviations, that is,

2
! ] ,

M
min(SSQ) = 3 [—f";p) -
where f,(p) is the WGR-derived nth statistic for the

n=1

given set of the parameter p, and 8, represents the
nth sample statistic obtained from the data. Typically
the mean, variance, lag-1 autocorrelation, and simul-
taneous cross correlation at one temporal aggregation
level are used along with the variance and lag-1 auto-
correlation at another aggregation level. Only six of the
nine parameters are typically obtained in this manner
(i.e., M = 6); three parameters—u, D, and ¢—are
determined from the meteorological conditions. As will
be discussed later, prescribing D and ¢ will restrict our
ability to examine the sampling error of raingage net-
works.

In the PRE-STORM study, D and ¢ were chosen to
be 2.0 and 3.5 km, respectively, while the velocity was
uy =25kmh™" and u, = 0 km h™' (based on the
spectra shown in Figs. 2 and 3). Tables 1 and 2 show
the estimated WGR parameters for the PRE-STORM
analysis. The smaller the value of SSQ, the better the
fit of the parameters to the sample statistics. These pa-
rameters indicate a storm arrival time near 60 h (A™")
and a storm duration of 1-4 h (87'). Individual cells
typically lasted for 20-30 min, while the initial intensity
at the center of the cell was quite strong near 150
mm h~'. The analysis in later sections of the PRE-

TABLE 2. WGR-estimated parameters from PRE-STORM for June. The SSQ is a measure of the fit, u is the mean, o2 is the variance, p,
is the temporal lag-1 autocorrelation, and p, is the simultaneous cross correlation of sites 50 km to the cast.

Parameter
Temporal aggregation (h}
A L o g io
0.5 1 2 3 6 (t™h (h™ ()] (h™) (mmh™) v SSQ
M, Py o1, 62 0.0153 0.0015 2.409 0.263 146.9 10.007 0.091
s Px
i, by o1, &2 0.0114 0.0015 0.992 0.229 149.2 4.987 0.036
a7 Px
#y oL, 0° 0.01379 0.0015 0.875 0.209 146.9 3.963 0.0141
a°, Px
i, Oy Py, @ 0.0433 0.0019 2.677 2.106 154.0 2.722 0.296
y Px
i, ) o 0.0375 0.0025 2.677 1.106 154.0 2.648 0.349

> Px
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STORM data using the WGR model incorporates the 2ABE[v)}pix? D%}
values for the lowest SSQ for both months. b, = a(B% — &?)
The analysis of the WGR model parameters for the
GATE experiment was previously done by Valdés et o, — 2MBE[(v — 1)]pr w2 D%
al. (1990). Their estimation procedure relied on spatial 37 (B2 — a?) ’

statistics rather than temporal statistics as done here.
Several examples of their estimated parameters are
provided in Table 3. The comparison between the PRE-
STORM and GATE parameters reveals the differences
between rainfall over the tropical oceans and that over
land as viewed by the WGR model. The major differ-
ences are found in parameters p; and iy, which indicate
that the rain over land is more sparse, yet the intensity
of each cell is greater than that over the tropical ocean.
As will be discussed later, this result suggests that rain-
fall over land will have a larger sampling error mainly
due to its larger spatial variability, but the normalized
error will be only slightly larger.

Valdés et al. (1990) derived the analytical form of
the frequency-wavenumber spectrum of the WGR
model. This spectrum depends on all nine parameters
of the model parameters, and its analytical expression
is as follows:

F(D, 0
S(f, vx Vy) =, 'O;Z(ﬂ'z')'
2ap(B* — a?)
0 (a® + 4n2f?) (B2 + 4x’f?) 2(r:)o(r)
aB(B? — a?) F(D, o)
+ 65 (a?+ 02)(B% + 02) 4x(D?* + o2’ (2)
where

F(D, o) = 8x(D? + ¢?)
X exp[—4~1r2(D2 + az)(vi + VJZ,)]
0 = 2m(w ey + vyu, + f)

_ M E[v]prwD?i}

]
! 2a

and where 6(x) is the Dirac delta function, », and v,
are the spatial wavenumbers, and [ is the temporal
frequency. Here the spectrum is normalized such that

ok = fff S(f, vx, vy)dfdvcdr,
= 6, + b
1 +(6 C!)I: 2 47I'(D2+ 0.2) 4
where ¢% is the variance of the rainfall field at a point
in space. Since the rainfall field is assumed to be ho-
mogeneous and stationary, this variance is a constant.

In (2), the temporal shape of the spectrum has both
an /2 and an / ~* dependence. This is a consequence
of the exponential descriptions for the two temporal
time scales in the WGR model. The spatial character
of the spectrum is nearly Gaussian, although it is mod-
ified by an advection process (the advection term v,
+ wu, is found in @). These spectral shapes are rela-
tively simple and can only represent the gross spectral
character of rainfall. In Figs. 4 and 5, both the observed
and WGR temporal spectra are shown for May and
June 1985. In the figures these spectra were normalized
so that [ S(f, vy, v,)/ okdfdvw, = 1.0. The WGR spec-
tra captures the general shape of the observed spectra,
although it does highlight the sharp decay at low fre-
quencies and weak decay at high frequencies in the
observed spectra.

An explanation for these separate regions may sim-
ply be that individual storms are the source of high-
frequency power that appears to be nearly random,
and hence almost “white,” while the background en-
vironment that supports the rainfall is the main source
of the low-frequency power. The WGR model tries to
capture this characteristic with two temporal scales o~

TABLE 3. WGR-estimated parameters for GATE (taken from Valdés et al. 1990). The SSQ is a measure of the fit, x is the mean, o is the
variance, p, is the temporal lag-1 autocorrelation, and p, is the simultaneous cross correlation of neighboring grid points.

Parameter

Spatial aggregation (km)

Ax4  8x8  16X16  32xX3 (h):‘) AN ) (htzl) (mnioh") . SSQ
o 2 o 00128 0.0038 173 0355 55.1 382 0021
o & 00146  0.0024 1.32 0.185 77.8 9.44 0063
o &, oy 00131 0.0029 132 0228 78.8 866  0.179
et e £ 00235 00038 133 0469 55.1 538 0.023

o o, oy 00235  0.0060 132 0639 57.0 330 0.116

P15 Px
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and 87!, The inability of the WGR model to capture
this characteristic may possibly be a consequence of
the simple exponential temporal dependence for the
storm attenuation and birth rate of cells.

4. Sampling errors for the WGR model

As previously mentioned, North and Nakamoto
(1989) provide a formalism for evaluating the sampling
error from a variety of measuring designs. The two
components to the sampling errors are the rainfall
spectrum, S(f, vy, v,), and the design-specific filter
H(f, vy, v,), as shown in (1). Specifically, for the case
of a satellite sampling every Az and viewing a complete
box of area L X L over time 7, the design-dependent
filter is

H(f; VX’ Vy)
1
= G(VxL)G(VyL)G(fT)[I - G(fAt)]’ (3)
where
sin(wx)
G(x) = . 4)
X

Using the formulas in (2) and (3), the approximate
mean-square sampling error for a satellite-based sensor
can be shown to be (see the Appendix for details)

ET AL. 380
1 [8x8,D?[aAt alAt
2= (L 2= coth[ — ) — 1
& L2T<a [2“’(2) }
At At
+ 2(6,L% + 83){ = | 8 coth | Z=
2 2
BAL a?—pg?
- e L 5
acoth( 5 )] o » (5)
where NAt = T. The approximations require large

sampling areas and long times; the larger the sampling
area and the longer the sampling time, the more ac-
curate the approxtmations. For this study, the sampling
area is sufficiently large and the sampling time is suf-
ficiently long so that (5) is an-acceptable approximation
based upon the accuracy test of (5) given in the Ap-
pendix.

The design-dependent filter of a network of raingages
equally spaced in both axes at a distance A/ for the
same space-time volume is

H(f, v, 1) = G(fT)G(v<L)G(v,L)

1
X[I_G(uxAl)G(uyAl) - (6

In the limit of a large number of gauges (L/Al > 1),
the sampling error in the WGR model can be written
as (again see the Appendix for details)

4 2 & exp[—4x D (n® + m?)/ A7)
=73 {88, D?
‘s TLZ[ Thi e El El [a? + 4x2(uen + uym)]/ AL

exp[—47%(D? + ¢?)(n* + m?)/ Al?)

+ 26306(8% — a?) % %

m=1 n=1

In the above formula, there is no term involving the
quantity #,. This is because the 6, term represents the
zero wavenumber component to the autocorrelation
of the rainfall field. However, there is a dependence
associated with terms accompanying 6,, thus 8, is found
in the sampling error for satellites. This is explicitly
shown in (2). Hence there is no contribution from this
term in the raingage sampling error.

There are several cases in the current study in which
the above formulation is not appropriate. The results
in those situations are obtained by numerical integra-
tion. However, the above expression reveals the stron-
gest dependence of the sampling error on the WGR
parameters and will be helpful in later discussions.

It is beneficial to evaluate the sampling error when
both sensors, spaceborne and ground, are available.
With a combination of sensors, the estimate of the
space-time-averaged rainfall may be chosen such to
minimize the sampling error. Using the same sampling
schemes adopted here, North et al. (1991) derived an
analytical form for the minimum sampling error for a
combined network of raingages and spaceborne sen-

[a® + 472 (uen + u,m)?/ AP} B? + An2(uen + uym)z/Alz]] - (D

sors. They found that the combined sampling error is
approximately

2.2
2 €s€g

€~ .
€2+ €3

(8)

5. Evaluation of sampling errors

The sampling errors were evaluated from both the
observed and WGR-derived spectra for the PRE-
STORM experiment. When appropriate, the analytical
expressions from the previous section were used, oth-
erwise the results were obtained by numerical integra-
tion. The sampling errors from GATE and eastern
Texas raingage data were obtained from the corre-
sponding WGR-derived spectra. In all cases, L = 500
km and T = 30 days, while for the satellite sensor, At
= 12 h. These parameters are consistent with TRMM-
like products. The sampling errors are also presented
in percent of ¢/ g, where o3 is the variance of area
averages. Over the tropical oceans, this ratio is about
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1.25, however, for PRE-STORM the ratio is larger,
about 2.0.

a. Sampling errors for PRE-STORM

The sampling errors estimated from the PRE-
STORM observational spectra are shown in Table 4.
In the table, the results for May and June have been
averaged together. The maximum number of raingages
considered is only 25 (a 5 X 5 grid) because of the
limited spatial resolution. With larger raingage net-
works, the design-dependent filter begins to vary sig-
nificantly over the spectrum’s bandwidth. This phe-
nomenon affects the accuracy of the numerical inte-
gration. As mentioned before, the raingage sampling
errors in Table 4 should only be considered as a lower
bound, since all the variance at wavelength shorter than
100 km was missed (or aliased into longer wave-
lengths). To illustrate, a simple extrapolation of the
spectra of the form exp[—(vy + »,)/w], With »g
= (.05 km™"', was carried out. The resulting sampling
errors were a factor of 2 larger than those reported in
Table 4. Therefore, to obtain a more accurate estimate
of the sampling errors requires a larger range of wave-
numbers than that available in the PRE-STORM ex-
periment.

The results in Table 4 also suggest that for our par-
ticular sampling scheme, the satellite sampling errors
are near 9%. Due to the high temporal resolution of
the PRE-STORM data, this estimate is considered to
be much more accurate than the raingage error esti-
mates. Temporal variability is the major factor con-
tributing to the satellite sampling errors. This result is
surprisingly small and only slightly larger than the 5%
error found in a similar analysis with GATE data
(Nakamoto et al. 1990). Another way to examine this
sampling error is to look at the area-averaged auto-
correlation function shown in Fig. 7. The figure reveals
that the autocorrelation function has a long memory
and the exponential decay of an autoregressive model
is not an appropriate representation. Consequently, the
time scale obtained from an autoregressive estimate is
not representative. As an example, Fig. 7 also shows
an autocorrelation function based on an autoregressive
model with a 3-h time scale. A more appropriate time
scale in this situation is the integral time scale deter-

TABLE 4. Sampling errors for spaceborne, ground, and combined
sensors for PRE-STORM data. The results for May and June have
been averaged together.

Number of
gauges Al (km) Satellite (%) Raingages (%) Combined (%)
25 100 8.5 10.5 6.6
16 125 8.5 11.1 6.7
9 167 8.5 16.6 7.5
4 250 8.5 24.6 8.0
1 500 8.5 57.6 8.4
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FIG. 7. Autocorrelation function of PRE-STORM rainfall over
the entire record. The dashed line indicates an exponential autocor-
relation function with a time scale of 3 h.

mined as the integral of the autocorrelation function,
namely,

T0 = f p(T)dr.

In this case, the integral time scale was found to be
5 h. This time scale is approximately one-half of that
found in GATE (Nakamoto et al. 1990). This is con-
sistent with the slightly larger error in PRE-STORM
than found in GATE. This larger sampling error is still
smaller than those reported by Seed and Austin (1990),
who found sampling errors near 22% for the Patrick
Air Force Base radar in Florida. The area considered
by Seed and Austin, however, was 50% smaller than
the PRE-STORM area. Part of this discrepancy can be
attributed to the fact that with the increase in area
comes a longer autocorrelation time and hence a
smaller sampling error.

The sampling errors obtained from the WGR anal-
ysis are presented in Table 5, and they generally agree
with the observational results. With satellite sampling
error near 12%, the differences in the temporal spectral
densities observed in Figs. 4 and 5 result in a slight
increase in the sampling error. The smaller sampling
error in the observations is most likely attributed to
the long tail of the autocorrelation function that is not
captured by the WGR model. This was also noticed in
the WGR model when comparing to GATE data
(Valdés et al. 1990).

The spatial spectrum in the WGR model depends
mainly on D and ¢ [see (7)], thus, the accuracy of the
raingage sampling errors is dependent on the represen-
tativeness of the chosen parameters. Since the sampling
errors are consistent with the observational results, the
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TABLE 5. Sampling errors for spaceborne, ground, and combined
sensors based on the WGR model for the PRE-STORM data. Both
May and June results have been averaged together.

Number of

gauges Al (km) Satellite (%) Raingages (%) Combined (%)

2500 10 11.7 0.1 0.1

625 20 11.7 1.1 1.0

277 30 11.7 2.3 2.3

100 50 11.7 5.5 5.0

44 75 11.7 10.1 7.7

25 100 1.7 15.1 9.2

21 108 11.7 16.7 9.6

4 250 1.7 472 11.3

WGR-derived errors appear to also be near the lower
bound.

b. Sampling errors for GATE

The sampling errors from the WGR model for
GATE are shown in Table 6. From the table it may
be seen that raingages give better results than the sat-
ellite only for very dense networks, the latter being
highly unlikely to be implemented in the tropics. For
networks with a spacing of approximately 100 km or
more between gauges, the satellite-based sensor will
have smaller estimation errors. These results are higher
than those obtained by North and Nakamoto, but sim-
ilar to PRE-STORM, the WGR model was unable to
capture the long autocorrelation times observed in the
GATE data (see Valdés et al. 1988, 1990). It is of par-
ticular interest that even when the WGR model has
shorter autocorrelation times than those found directly
from GATE data, the satellite still does a better job in
estimating the climatic monthly mean value of rainfall,
and in that sense they are consistent with the findings
of North and Nakamoto.

c. Sampling errors for eastern Texas area

The Brazos River valley in the vicinity of College
Station, Texas, provides the setting for an another ap-
plication described in this paper. Precipitation in this

TABLE 6. Sampling errors for spaceborne, ground, and combined
sensors derived from WGR parameters for GATE.
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area has different characteristics than those observed
in oceanic rainfall, but still no significant orographic
effects were detected in the study by Koepsell and
Valdés (1991).

Three raingages, with hourly precipitation values
(Wheelock, Somerville Dam, and Washington-on-the-
Brazos State Park ) were used to estimate the parameters
of the WGR model using time-averaged values. This
area undergoes significantly different weather patterns
throughout an annual cycle. During the spring, sum-
mer, and fall, maritime-tropical air masses control the
climate of the region. During the winter and early
spring, the climate is frequently affected by surges of
cold polar Canadian air. These climate shifts result in
cyclonic midlatitude rainfall events during the winter
and airmass convective rainfall events during the sum-
mer. While there is a fluctuation of rainfall amounts
throughout the annual cycle, there are no definitive
rainy or dry seasons. This can be seen in the means,
variances, and cross correlations for time-aggregated

- rainfall amounts. There are evidently two peak months

of rainfall during the year, but each month contributes
a comparable amount of rain to the annual total. Win-
ter storms are usually long resulting in long autocor-
relation times. These autocorrelation times fall off rap-
idly to low values during the July—-August time period.
In the above study, the precipitation records were di-
vided in three periods: summer, winter, and a transition
period. The parameters of the WGR model for the
summer and the winter were used in our study to define
the spectrum of the WGR model required to apply the
North and Nakamoto technique.

From the results obtained for the two seasons (see
Tables 7 and 8), it may be observed that the satellite
sampling errors are around 10%. The gauges are more
efficient during the winter season due to the large spatial
and temporal correlations as compared with the patchy
summer storms. For the evaluation of the climatic
means for the summer season, raingages spaced
around to 60 km or more will have larger errors than
those obtained using the space sensor. For the winter
season, the ground sensors are better than the space
sensors for gauges spaced up to 200 km apart.

TABLE 7. Sampling errors for spaceborne, ground, and combined
sensors for eastern Texas summer data.

Number of Number of
gauges Al(km) Satellite (%) Raingages (%) Combined (%) gauges Al(km) Satellite (%) Raingages (%) Combined (%)
2500 10 9.8 0.0 0.0 2500 10 10.9 0.2 0.2
625 20 9.8 0.8 04 625 20 10.9 1.5 1.4
277 30 9.8 1.9 1.9 277 30 10.9 33 3.1
100 50 9.8 4.5 4.1 100 50 10.9 7.6 6.2
44 75 9.8 8.3 6.3 44 75 10.9 13.6 8.5
25 100 9.8 12.5 7.7 25 100 10.9 19.9 © 95
21 108 9.8 14.0 8.0 21 108 10.9 21.9 9.7
4 250 9.8 42.1 9.5 4 250 10.9 59.7 10.7
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