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For example, in a two-stage design, the primary
sampling unit (PSU) is selected at the first stage. A
PSU might be defined as a delineation of an SMU
or a selected region such as a 10m x 10m area.
The secondary sampling units (SSUs) are selected
from within the PSU. If much of the travel cost
is involved in traveling to the PSU (for example,
navigating to a selected delineation of an SMU), then
selecting several SSUs from each PSU may be more
cost effective than choosing one SSU from each PSU.

Choosing Efficient Design and Estimation
Strategies

In the geostatistical literature. there has been some
controversy over the applicability of classical sur-
vey sampling strategies in soil surveys. Many of the
above design approaches have been investigated in
the context of soil surveys [9, 10]. Choosing the
appropriate combination of sample design and esti-
mator was investigated for soil surveys in [4] and for
general spatial sampling problems in {6].
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Soil wetness index

Soil wetness is identified as the magnitude of lig-
uid water residing in a vertical profile observable by
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a satellite instrument. The frequencies flown on the
SSMI (Special Sensor Microwave Imager [2]) instru-
ment are incapable of penetrating into the soil or
through a dense vegetative canopy. Therefore, the
index represents the amount of water in the upper
reaches of the soil (top few centimeters) or, where
a dense canopy is present, it represents the water
intercepted by the canopy. The index can also mon-
itor the amount of liquid water present in a melting
snow pack.

The SSMI instrument is flown by the US Defense
Meteorological Satellite Program (DMSP) and con-
tains 7 channels: four with vertical (V) polarization:
19, 22, 37, 85GHz, and three with horizontal (H)
polarization: 19, 37 and 85GHz. These channels
reside at window (19 and 37 GHz) and near win-
dow (22 and 85 GHz) wavelengths. Liquid water near
the surface depresses the emissivity differently at the
various wavelengths, and the relationship of these
emissivity values is used to identify the amount of
liquid water in each SSMI observation (Figure 1).
Consequently the more water that is present near the
surface, the greater emissivity is depressed in the
lower frequencies and the larger the observed tem-
perature gradient across the spectrum of microwave
frequencies.

This relationship, denoted the Basist Wetness
Index (BWI), has been used to identify the magnitude
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Figure 1 A theoretical relationship of emissivity over
a spectrum of microwave frequencies for six different
magnitudes of surface wetness. The top curve corresponds
to 0% of the surface covered with water, and the bottom
curve corresponds to 100% of the surface covered by water.
Note the slope of the curve as the fractional amount of
surface water increases. Reproduced from [2] by permission
of the American Meteorological Society

of surface water. An example of the BWI is pre-
sented in Figure 2, and the numerical calculation
of the index is defined below. The global map of
the BWI values for July 1999 identifies the location
of the Intertropical Convergence Zone over north-
ern Africa, and shows the monsoonal areas in India
and southeastern Asia. Some major river basins (see
Rivers, canals and estuaries) around the world (i.e.
Amazon, Congo, Rio Paraguay and Mississippi) are
evident. Note that the major tributaries of the Amazon
are also observed, but the dense surrounding for-
est does not appear wet, since the instrument cannot
see through the dense canopy. The irrigated regions
around numerous river valleys (e.g. Indus in Pakistan,
Ganges in India, Red River in China) are also clearly
detected. The highest values tend to correspond to the
tundra regions, where the snow cover has melted and
water has pooled on the surface, since the permafrost
below will not allow the water to percolate through
the soil. The areas with zero wetness correspond to
the great deserts of the world.

One advantage of passive microwave observa-
tions is the ability to penetrate clouds. Unfortunately,
the frequencies used in this study cannot penetrate
a dense vegetative canopy, which limits their abil-
ity to see the ground [5]. As a result, it is difficult
to determine what percentage of the signal comes
from the vegetated canopy vs. the ground below [6].
Even when bare ground is observed at microwave
frequencies, the available wavelengths cannot pen-
etrate more than a few centimeters below the sur-
face. Therefore, the microwave measurements do
not always correspond to the true soil moisture [3].
The following section will identify regions of the
world where the wetness index does correspond with
upper level soil moisture, as well as areas where it
does not.

Precipitation values were used as validation of the
wetness index signal throughout many regions of the
world. This analysis provided some clear distinctions
where the BWI has utility and where the canopy or
soil type limits its usefulness. Over most agricultural
areas there is a strong correspondence between the
BWTI signal and precipitation. This is attributed to two
factors. First, crops require sufficient quantities of soil
moisture to flourish. Consequently, there is a strong
signal for the satellite to detect. Second, agricultural
practices generally require that the ground is plowed
and the crops are grown in rows with exposed soil
on the sides, allowing the satellite to gain sufficient
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Figure 2 A map of the Basist Wetness Index (BW1) for the globe during the month of July 1999. Note the high values in
the tundra, wet lands and broad river valleys. The moderate values correspond to areas where the radiating surface contains
some water, while low values correspond to the major desert regions or dense vegetation that hides the ground from the

satellite observation. Reproduced from [2] by permission of the American Meteorological Society

signal from the ground surface where precipitation
regulates the guantity of upper level soil moisture.
Over many agricultural areas around the world the
wetness index has the best correspondence with pre-
cipitation values accumulated over a two- to three-
month period. This result strongly implies that the
BWI signal measures upper level soil moisture, which
is regulated by precipitation over an extended period.

Conversely, the BWI does not show a reliable cor-
respondence to precipitation or upper level moisture
in heavily vegetated areas, including regions that are
covered by a forest canopy and regions where foliage
is sufficiently dense to block the wetness signal orig-
inating from the soil. In such cases most of the signal
corresponds with canopy interception of precipitation.
The BWI also has limited utility for loose granu-
lar soils. These tend to be sparsely vegetated areas
and receive limited precipitation (although there are
some areas of sandy soil where abundant vegetation
and precipitation occur). Under such conditions the
moisture does not reside near the surface. It either
penetrates below the layer where the satellite receives
a signal, or is rapidly evaporated.

Another aspect of the microwave signal 1s its abil-
ity to monitor melting snow cover. Melted snow is
characterized by a strong ‘wet’ signature, but this
signature can have little correlation with the amount
of water entering the soil, particularly when a shal-
low snow pack melts during the day only to freeze
again the following night {1, 4]. Thus it is imper-
ative for the diurnal cycle of the meltwater to be
monitored. If a wet signature is detected during both
the morning and afternoon it is highly likely that the
water is not refreezing during the night and has sat-
urated the snow pack sufficiently that meltwater is
steadily being released. Under this condition the mag-
nitude of the BWI has a strong correspondence to
the quantity of liquid water exiting the snow pack.
Figure 3 demonstrates this signal by displaying the
spatial structure of the BWI during April 1997. At this
time above-average temperatures and rainfall rapidly
melted the excessive snow pack, causing extensive
flooding in the Red River Valley along the Min-
nesota and North Dakota border (see Hydrological
extremes). The area of snow melt of northern US
and southern Canada is also clear.
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Figure 3 The percentage of the radiating surface that is liquid water for April 1997. Reproduced from [2] by permission

of the American Meteorological Society

The BWI is defined by a statistical relationship
that quantitatively identifies how emissivity at the
various frequencies corresponds with the magnitude
of liquid water near the surface. It takes the form
of a linear relationship between channel measure-
ments, 1.e.

BWI = Ae x T,
= BolTy(v2) — Tp{v1)]
+ B1[To(v3) — Tp(v2)] ()

where Ag (change of emissivity) was empirically
determined from global SSMI measurements, T is
surface temperature over wet land, Ty, is the satellite
brightness temperature for a channel, v, is a fre-
quency observed by the SSMI instrument, and each
Bn is an empirically derived regression coefficient
(see Linear models).

This relationship was calibrated from over 44 000
in situ temperatures observed at the surface near the
time of the satellite overpass. The best relationship

used four of the satellite’s channel measurements
from the SSMI observation. The majority of the
weight (i.e. largest B term) corresponds to the 85V
channel — where the emissivity of water is highest. A
histogram of the residuals (difference between in situ
based and satellite-derived surface temperature over
all the observations identified with a ‘wet surface’)
is presented in Figure 4. These residuals between the
SSMI derived temperature and the observed in situ
temperature at the time of the satellite overpass peak
near zero (average error is 0.021 °C), have a low stan-
dard deviation (2.64 °C), and are highly symmetrical
(skewness is 0.066°C). The atmospheric contribu-
tion has also been minimized by the relationship
between window and water vapor channels (devel-
oped in the regression equation), although some error
corresponds with atmospheric contamination. (For a
more complete description of the procedure of calcu-
lating the emissivity effect of water in the radiating
surface, see [7].) The difference between the 19 GHz
(vertically polarized) channel measurement and the
statistically derived surface temperature defines the
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Figure 4 A histogram of the differences between in situ
and SSM/I denived surface temperatures when wetness is
detected on the surface. The right corner of the figure
demonstrates how the observed temperature varies with fre-
quency when surface water is present. As wetness increases,
the observed temperature at the lower frequency becomes
more depressed, which increases the slope of measurements
across the SSMI frequencies. Reproduced from (2] by per-
mission of the American Meteorological Society

BWI. Therefore the BWI is dynamically derived from
each observation of every orbit. These derived values
serve as the foundation of this study.
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Source apportionment

The concept of source apportionment involves iden-
tifying sources of air pollution and estimating appor-
tionments of the concentrations of the pollutants
observed at various sites in the environment. The
results obtained can be used to help manage effec-
tively the quality of the environment.

Receptor-oriented Model

For estimating source apportionment, several recep-
tor-oriented models (see Receptor modeling) of
chemical mass balance (CMB; see Chemical mass
balance) and multivariate statistical methods (factor
analysis, principal component analysis and so on)
have been widely used. See, for example, [1], [2], [5]
and [6]. These models are substantially based on the
assumption of mass conservation and a mass balance
analysis.

Suppose that there are n observations (x;(, ...,
Xiph i=1,....n, of p elements in the material,
where x;; 1s the concentration (ug m~3) of the jth
component in the ith sample. If there are m (<p)
possible sources, then the general receptor-oriented
model can be expressed as

n
x,-jzz:ajkgk;, i=1,...,nj=1,....,p (1)
k=1



